导航:首页 > 净水问答 > 蒙脱石最佳阳离子交换容量

蒙脱石最佳阳离子交换容量

发布时间:2022-12-19 20:10:35

Ⅰ 离子交替吸附作用

离子交替吸附作用主要发生在具有固定电荷的固体矿物表面,无论是阳离子还是阴离子,均可发生交替吸附作用,但目前研究得较多的是阳离子交替吸附作用。离子交替吸附作用的一个重要特点就是,伴随着一定量的一种离子的吸附,必然有等当量的另一种同号离子的解吸(图2-5-4)。离子交替吸附作用之所以具有这样的特点,主要是由于吸附剂通常都具有一定的离子交换容量,因此这里首先对离子交换容量予以讨论。

图2-5-3 有机质表面的负电荷

图2-5-4 阳离子交替吸附作用图解

2.5.2.1 离子交换容量

离子交换容量包括阳离子交换容量(CEC—Cation Exchange Capacity)和阴离子交换容量(AEC—Anion Exchange Capacity),我们主要讨论阳离子交换容量,它被定义为每100 g干吸附剂可吸附阳离子的毫克当量数。例如,在蒙脱石的结晶格架中,铝八面体中的三价铝可被二价镁所置换,根据测定,每摩尔蒙脱石中镁的含量为0.67 mol,即蒙脱石的分子式为:Si8Al3.33Mg0.67O20(OH)4。已知蒙脱石的分子量是734 g,因此这种蒙脱石的阳离子交换容量为:

水文地球化学

在实际中,通常都是通过实验来测定吸附剂的阳离子交换容量。尤其是对于野外所采取的土样或岩样,由于其中含有多种吸附剂,实验测定往往是唯一可行的方法。阳离子交换容量的实验测定在多数情况下都是用pH为7的醋酸铵溶液与一定量固体样品混合,使其全部吸附格位被所饱和,然后用其他溶液(例如NaCl溶液)把被吸附的全部交换出来,达到交换平衡后,测定溶液中Na+的减少量,据此便可计算样品的阳离子交换容量。表252列出了一些粘土矿物及土壤的阳离子交换容量,由表可见,与土壤相比,矿物的阳离子交换容量有更大的变化范围。

松散沉积物的阳离子交换容量受到了多种因素的影响,主要有:

(1)沉积物中吸附剂的种类与数量。例如,我国北方土壤中的粘土矿物以蒙脱石和伊利石为主,因此其CEC值较大,一般在20 meq/100 g以上,高者达50 meq/100 g以上;而南方的红壤,由于其有机胶体含量少,同时所含的粘土矿物多为高岭石及铁、铝的氢氧化物,故CEC较小,一般小于20 meq/100 g。

表2-5-2 一些粘土矿物及土壤的阳离子交换容量

(2)沉积物颗粒的大小。一般来说,沉积物的颗粒越小,其比表面积越大,CEC值越高。例如,根据一河流沉积物的粒径及其CEC的实测结果,随着沉积物的粒径为从4.4μm增至1000μm,其CEC从14~65 meq/100 g变到4~20 meq/100 g,最终减小到0.3~13 meq/100 g。

(3)水溶液的pH值。一般来说,随着水溶液pH值的增加,土壤表面的可变负电荷量增多,其CEC相应增加;相反,随着水溶液pH值的减小,土壤表面的可变负电荷量不断减少,其CEC也随之减小。

2.5.2.2 阳离子交换反应及平衡

阳离子交换反应的一般形式可写为:

水文地球化学

式中:Am+、Bn+表示水溶液中的A、B离子;AX、BX表示吸附在固体表面的A、B离子。上述反应的平衡常数可写为:

水文地球化学

式中:a标记溶液中组分的活度;{}表示表示吸附在固体表面上的离子的活度。对于水溶液中的离子,其活度可使用表2-1-1中的公式进行计算;但对于吸附在固体表面上的离子,其活度的计算至今还没有满意的方法。目前主要采用两种替代的方法来处理这一问题,一种是Vanselow惯例,另一种是Gaines-Thomas惯例。Vanselow惯例是由Vanselow于1932年提出的,他建议使用摩尔分数来代替式(2-5-7)中的{AX}和{BX}。若固体表面仅吸附了A离子和B离子,在一定重量(100 g)的吸附剂表面A、B的含量(mmol)依次为qA和qB,则吸附剂表面A、B的摩尔分数分别为:

水文地球化学

显然,xA+xB=1。这样式(2-5-7)可改写为:

水文地球化学

Gaines-Thomas惯例是由Gaines和Thomas于1953年提出的,他们建议采用当量百分数来代替式(2-5-7)中的{AX}和{BX}。若用yA和yB分别表示吸附剂表面A、B的当量百分数,则有:

水文地球化学

同样,yA+yB=1,这样式(2-5-7)变为:

水文地球化学

目前,这两种惯例都还在被有关的研究者所使用,各有优点,互为补充。事实上,离子交换反应的平衡常数并不是一个常数,它往往随着水溶液的成分、pH值及固体表面成分的变化而变化,因此许多研究者认为将其称为交换系数(Exchange Coefficient)或选择系数(Selectivity Coefficient)更合适一些(Appelo,1994;Deutsch,1997;Benefield,1982;Kehew,2001)。

若已知两种不同离子与同一种离子在某种吸附剂中发生交换反应的交换系数,则可计算出这两种离子发生交换反应的交换系数。例如,若在某种吸附剂中下述反应:

水文地球化学

交换系数分别为KCa-Na和KK-Na,则在该吸附剂中反应:

水文地球化学

的交换系数为:

水文地球化学

这是因为(以Vanselow惯例为例):

水文地球化学

故有:

水文地球化学

表2-5-3列出了不同离子与Na+发生交换反应的交换系数(Vanselow惯例),据此便可按照上述的方法求得这些离子之间发生交换反应时的交换系数。

需要说明的是,在表2-5-3中,I离子与Na+之间交换反应的反应式为:

水文地球化学

表2-5-3 不同离子与Na+发生交换反应时的交换系数

其交换系数的定义式如下:

水文地球化学

【例】在某地下水系统中,有一段含有大量粘土矿物、因此具有明显阳离子交换能力的地段,假定:

(1)该地段含水层的阳离子交换容量为100 meq/100 g,含水层中的交换性阳离子只有Ca2+和Mg2+,初始状态下含水层颗粒中Ca2+、Mg2+的含量相等;

(2)在进入该地段之前,地下水中的Ca2+、Mg2+浓度相等,均为10-3 mol/L;

(3)含水层的孔隙度为n=0.33,固体颗粒的密度为ρ=2.65 g/cm3

(4)含水层中发生的阳离子交换反应为:

水文地球化学

不考虑活度系数的影响,其平衡常数(Vanselow惯例)为:

水文地球化学

试使用阳离子交换平衡关系计算,当地下水通过该地段并达到新的交换平衡后,水溶液中及含水层颗粒表面Ca2+、Mg2+浓度的变化。

【解】:设达到新的交换平衡后,含水层颗粒中Ca2+的摩尔分数为y、水溶液中Ca2+的浓度为x(mmol/L),则这时含水层颗粒中Mg2+的摩尔分数为1-y、水溶液中Mg2+的浓度为2-x(mmol/L),故有:

水文地球化学

整理得:

水文地球化学

已知含水层的CEC=100 meq/100g,因此对于二价阳离子来说,含水层颗粒可吸附的阳离子总量为50 mmol/100 g=0.5 mmol/g。若用z表示达到交换平衡后1 g含水层颗粒中Ca2+的含量,则有:

水文地球化学

以式(2-5-25)带入式(2-5-24)得:

水文地球化学

为了计算上述变化,需要对1 L水所对应的含水层中Ca2+的质量守恒关系进行研究。已知含水层的孔隙度为0.33,显然在这样的含水层中,1 L水所对应的含水层颗粒的体积为0.67/0.33(L),相应的含水层颗粒的质量为:

水文地球化学

故吸附作用前后1 L水所对应的含水层中Ca2+的质量守恒关系为:

水文地球化学

式中的0.25为吸附作用前1 g含水层颗粒中Ca2+的含量(mmol),由式(2-5-27)可得:

水文地球化学

以式(2-5-26)带入式(2-5-28)并整理得:

水文地球化学

这是一个关于z的一元二次方程,求解该方程可得:z=0.2500627 mmol/g。代z入式(2-5-25)和式(2-5-26)可得达到新的交换平衡后含水层颗粒中Ca2+的摩尔分数为0.5001254,水溶液中Ca2+的浓度为0.75 mmol/L,故这时含水层颗粒中Mg2+的摩尔分数为0.4998746、水溶液中Mg2+的浓度为1.25 mmol/L。由此可见,地下水通过该粘性土地段后,尽管Ca2+、Mg2+在含水层颗粒中的含量变化很小,但它们在地下水中的含量变化却较大,Mg2+从原来的1 mmol/L增加到了1.25 mmol/L,Ca2+则从原来的1 mmol/L减少到了0.75 mmol/L。

2.5.2.3 分配系数及离子的吸附亲和力

除了交换系数,还有一个重要的参数需要介绍,这就是分配系数(Separation Factor)(Benefield,1982)。对于反应(2-5-6),它被定义为:

水文地球化学

式中cA和cB分别为水溶液中A、B离子的摩尔浓度。显然,若不考虑活度系数的影响,对于同价离子间的交换反应,QA-B=KA-B。式(2-5-29)可改写为:

水文地球化学

由式(2-5-30)可见,QA-B反映了溶液中B与A的含量之比与吸附剂表面B与A的含量之比之间的相对关系。当QA-B=1时,说明达到交换平衡时B与A在水溶液中的比例等于其在吸附剂表面的比例,因此对于该吸附剂,A和B具有相同的吸附亲和力;当QA-B>1时,说明达到交换平衡时B与A在水溶液中的比例大于其在吸附剂表面的比例,因此A与B相比具有更大的吸附亲和力;当QA-B<1时,说明达到交换平衡时B与A在水溶液中的比例小于其在吸附剂表面的比例,因此B与A相比具有更大的吸附亲和力。

事实上,即使对于同一阳离子交换反应,其分配系数也会随着水溶液性质的变化而变化(Stumm and Morgan,1996)。图2-5-5给出了Na—Ca交换反应的分配系数随Na+浓度的变化。沿着图中的虚线,QNa-Ca=1,这时Na+和Ca2+具有相同的吸附亲和力。但在稀溶液中,例如[Na+]=10-3 mol/L和10-2 mol/L,Ca2+在吸附剂中的比例要远大于其在水溶液中的比例,因此在这种情况下Ca2+具有更强的吸附亲和力。随着Na+浓度的增大,Ca2+的吸附亲和力逐渐减弱,Na+的吸附亲和力则逐渐增强,当[Na+]=2 mol/L时,Na+已经变得比Ca2+具有更强的吸附亲和力。Na—Ca交换反应分配系数的这种变化对于解释一些实际现象具有重要的意义,根据这种变化,我们可以推断淡水含水层中通常含有大量的可交换的Ca2+,而海水含水层中通常含有大量的可交换的Na+。这种变化关系也解释了为什么硬水软化剂能够选择性地去除Ca2+,同时通过使用高Na+浓度的卤水溶液进行冲刷而再生。

图2-5-5 溶液中Ca2+的含量对吸附作用的影响

根据离子交换反应的分配系数,可以定量地评价离子的吸附亲和力。一般来说,离子在土壤中的吸附亲和力具有下述的规律:

(1)高价离子比低价离子具有更高的吸附亲和力。例如,Al3+>Mg2+>Na+;>。这是因为离子交换反应从本质上说是一个静电吸引过程,离子价越高,所受到的静电吸引力就越大,它就越容易被吸附剂所吸附。

(2)同价离子的吸附亲和力随着离子水化半径的减小而增大。例如,Ca2+>Mg2+>Be2+;>K+>Na+>Li+。这是因为离子的水化半径越小,它越容易接近固体表面,从而也就越易于被固体所吸附。

Deutsch(1997)根据Appelo和Postma(1994)的资料,对二价阳离子的吸附亲和力进行了研究,他所得到了吸附亲和力顺序如下:

水文地球化学

在常见的天然地下水系统中,Ca2+和Mg2+通常为地下水中的主要阳离子,它们在水溶液中相对较高的含量将使其成为含水层颗粒表面的主要吸附离子,尽管一些微量元素可能更紧密地被吸附在含水层颗粒表面上。但在污染地下水系统中,若吸附亲和力更强的Pb2+和Ba2+的含量与Ca2+、Mg2+的含量在同一水平上,则含水层颗粒表面的主要吸附离子将变为Pb2+和Ba2+,这将大大地影响Pb2+和Ba2+在地下水中的迁移能力。

综合来讲,阳离子和阴离子的吸附亲和力顺序分别为(何燧源等,2000):

水文地球化学

可见,阳离子中Li+和Na+最不易被吸附,阴离子中Cl-和最不易被吸附。

离子交换对地下水质产生重要影响的一种常见情况就是海水入侵到淡水含水层中。当在沿海地带大量抽取含水层中的淡水时,海水将对含水层进行补给。初始状态下含水层颗粒表面吸附的主要是Ca2+和Mg2+,海水中的主要阳离子为Na+,阴离子为Cl-。这样入侵的海水将导致含水层中发生下述的阳离子交换反应:

水文地球化学

由于Cl-通常不易被吸附,也不参与其他的水岩作用过程。所以相对于Cl-来说,该过程将使得Na+的迁移能力降低。

地下水系统中另一种常见的情况与上述过程相反,这就是Ca2+置换被吸附的Na+,反应式如下:

水文地球化学

人们在大西洋沿岸的砂岩含水层(Zack and Roberts,1988;Knobel and Phillips,1988)以及北美西部的沉积盆地中(Thorstenson等,1979;Henderson,1985)均发现了这种天然的软化过程。该反应发生的前提条件是:含水层中含有碳酸盐矿物,CO2的分压较高,含水层颗粒中含有大量的可交换的Na+

Ⅱ 常见的黏土矿物有哪几种结合水膜的厚度有什么差异

常见的黏土矿物有:油类、树脂类、其他类。粘土矿物主要包括高岭石族、伊利石族、蒙脱石族、蛭石族以及海泡石族等矿物。

结合水膜的厚度差异:不同厚度的PVA水转印膜主要是和要做水转印工件的外壳形状有关,厚度越大,PVA膜在水中溶解后所形成的可拉伸强度就越大。

活化剂喷涂之后也就越容易保持图画不变形的印刷到大坡度和陡面工件上了请酌情参考。常见PVA空白膜一般是20-45um,45um厚度的膜需要溶解的时间最长,但是下膜后印刷的清晰度也最好。

性质

晶体结构与晶体化学特点决定了它们的如下一些性质。离子交换性。具有吸着某些阳离子和阴离子并保持于交换状态的特性。一般交换性阳离子是Ca2+、Mg2+、H+、K+、(NH4)+、Na+,常见的交换性阴离子是(SO4)2-、Cl-、(PO4)3-、(NO3)-。高岭石的阳离子交换容量最低,5~15毫克当量/100克;蒙脱石、蛭石的阳离子交换容量最高,100~150毫克当量/100克。

Ⅲ 土壤阳离子交换量的检出限是多大

根据我来国最新的土壤环境质量标源准(GB 15618-1995),并为对土壤阳离子交换量做出限检。
但通常来说土壤中有机胶体(腐殖质)的CEC(cmol(+)/kg)最大,含量在200~500范围内波动。蛭石为100~150;蒙脱石矿物为主的土壤CEC为70~95;伊利石矿物为主的土壤CEC为10~40;高岭石矿物为主的土壤CEC为3~15;半倍氧化物为主的土壤CEC为2~4
我找了《土壤学》这本书第110页找的答案,够认真吧,求采纳~

Ⅳ 蒙脱石是什么

蒙脱石(montmorillonite)又名微晶高岭石,是一种层状结构、片状结晶的硅酸盐粘土矿,因其最初发现于法国的蒙脱城而命名的,俗名称观音土,其族系物有11种。
蒙脱石属于蒙皂石(Smectite)族二八面体亚族,由二层共顶联接的硅氧四面体片夹一层共棱联接的铝(镁)氧(氢氧)八面体片构成2:1型含结晶水结构,是粘土类矿物中晶体结构变异最强的矿物之一,通过衍射仪慢速扫描的试验结果表明为天然纳米材料。
蒙脱石具有离子交换性能,主要是阳离子如Na+、Ca2+、K+、Mg2+、Li+、H+、Al3+等,交换是可逆的。在pH为7的介质中阳离子交换容量为70~140me/100g。
蒙脱石通常含有三种状态的水,表面自由水,层间吸附水和晶格水。蒙脱石吸水性很强,吸水后膨胀,即晶格底面间距增大,在高水化状态时晶轴C0可达1.84~2.14nm。蒙脱石在水介质中可分散呈胶体状态。蒙脱石受热自由水很快失去,100~200℃脱去吸附水,500℃时大量晶格水开始逸出。
蒙脱石具有电负性,对胶体性质和流变性能影响很大。电负性主要来自三方面:晶格置换连同内部的补偿置换形成的晶格静电荷,每个晶胞约为0.66 nm;破键产生的电负性;八面体片解离形成的电负性。
蒙脱石以其层间可交换阳离子的种类、含量划分属型,当某一阳离子的含量超过阳离子交换容量(∑EC)50%时,即以该阳离子命名,例如钠基蒙脱石(ENa+/∑EC≥50%)、钙基蒙脱石(ECa2+/∑EC≥50%)、铝基蒙脱石 (EAl3+/∑EC≥50%)。当层间没有一个阳离子含量超过50%交换容量时,则以含量最多的两个阳离子命名,如钙钠基蒙脱石、钙镁基蒙脱石等等。
蒙脱石晶体结构属于单斜晶系C2/m空间群,a00.523nm,b00.906nm,c0值可变,当结构单位层之间无水时c00.960nm,如果结构单位层之间有水分子存在,则c0值将随水分子的多少以及层间可交换的阳离子不同而不同,Z=2,为2:1型层状结构。在铝氧八面体层中,大约有1/3的Al3+离子被Mg2+离子取代,为了平衡多余的负电价,结构单位层之间有其它阳离子进入,如Na+、Ca2+等离子以水化阳离子的形式进入结构,但水化阳离子和硅氧四面体中O2-离子的作用力较弱,在一定的条件下这些水化阳离子容易被交换出来,因此,c轴可以膨胀以及阳离子交换容量大是蒙脱石的结构特征。我国关于蒙脱石产品的定义不统一,常造成蒙脱石产品歧义[4]。目前关于蒙脱石产品的定义有二个,一个是非金属矿行业的蒙脱石产品的定义:粘土矿中蒙脱石含量大于80%就称为蒙脱石,如蒙脱石干燥剂等,其产品含量多用吸蓝量等方法定性定量,品位不外乎为高纯度的膨润土而已,蒙脱石是膨润土的一种起主要作用的成分,但膨润土不是蒙脱石,蒙脱石也不是膨润土,只不过是蒙脱石需要从膨润土中提纯精制而得;另一个是医药化妆品等行业对蒙脱石产品的要求,这是真正意义上的蒙脱石,其概念接近科研研究领域上的蒙脱石的界定,其产品含量多用XRD等方法定性定量,本文所述的动物用蒙脱石就是这个层面上的蒙脱石产品。为了和非金属矿行业的蒙脱石产品区别开来,目前国内外常常采用二八面体蒙脱石或十六角蒙脱石的叫法。
蒙脱石用于动物养殖上,产品必须经过提纯,必须确定无毒(砷、汞、铅、方英石不超标),任何将膨润土原矿直接用于动物养殖的结果都将造成对禽畜的伤害以及对人的二次伤害。
蒙脱石在动物养殖上应用非常广泛,其热点几乎都集中在护肠止泻、饲料脱霉、止血消炎、移栏维护等方面。

Ⅳ 蒙脱石的晶体化学特点及其用途

蒙脱石化学成分的理论组成SiO2为66.7%,Al2O3为28.3%,H2O为5%;其结构式为(/2Ca·Na)0.7(Al·Mg·Fe)4(Si·Al)8O20(OH)4·nH2O,是由两个Si—O四面体层夹一层Al—(O,OH)八面体组成一个“结构单位层”,这一点和海泡石相似,都是2∶1型。但其结晶习性不同,它具板状结晶习性,使之成为片状或板状而不是像海泡石那样是纤维状。

蒙脱石结构单位层中的硅氧四面体和铝氧八面体中的硅离子、铝离子能被其他低价阳离子置换,其结果是使结构单位层带负电,从而具有吸附金属阳离子和极性分子的能力。这些被吸附的阳离子和极性分子具有离子交换的性质。所谓离子交换是指矿物中已吸附的离子与溶液中的离子之间进行的当量交换作用。蒙脱石吸附的某些阳离子、阴离子和极性分子具有交换的能力,例如钠质蒙脱石的Na+

交换可表示为

蒙脱石+

-蒙脱石+Na+

离子交换是粘土矿物的重要特性,它常常决定粘土矿物的物理性质,从而决定它的利用方向和经济价值。离子交换是以离子交换容量(CEC)来度量的,即以100g矿物在pH为7时吸附阳离子的毫克当量(mg/100g),蒙脱石或膨润土的离子交换量在70~140mg/100g 之间,它比海泡石的20~40mg/100g要大。

照片8-7 桃源马宗岭膨润土粘土矿

由膨润土(蒙脱石)的离子交换性而派生出它具有膨胀性、吸附性、分散性、粘结性、悬浮性和盐基交换性等一系列性质,因而决定了它一系列的用途,其中在农业上充分利用这些性质就可以作为化肥载体。

Ⅵ 高岭石、蒙脱石和腐殖质的阳离子交换量有何不同

一、性能不同:

蒙脱石:吸水后其体积能膨胀增大几倍到十几倍,具有很强的吸附力和阳离子交换性能。是膨润,土和漂白土的主要组成成分。主要是火山凝灰岩经风化作用的产物。膨润土的膨胀性能以膨胀容表示,膨润土在稀盐酸溶液中膨胀后的容积称为膨胀容,以毫 升/克样表示。

二、类型不同:

胶体的类型;土壤质地;土壤ph值等。不同的粘土矿物中含腐殖质和2:1性粘土矿物较多,阳离子交换量较大。而含高岭石和氧化物的土壤盐离子交换量较小。这就是北方土壤保肥性能好的原因之一。

交换量大也就是土壤能吸附和交换的阳离子容量大,对肥料的影响就不同了。我也总结不好。你还是找本土壤学、植物营养肥料学看看好了。

阳离子交换量测定的意义

土壤是环境中污染物迁移、转换的重要场所,土壤胶体以其巨大的比表面积和带点性,而使土壤具有吸附性。土壤的吸附性和离子交换性能又使它成为重金属类污染物的主要归属。土壤阳离子交换性能对于研究污染物的坏境行为有重大意义,它能调节土壤溶液的浓度,保证土壤溶液成分的多样性,因而保证了土壤溶液的“生理平衡”,同时还可以保持养分免于被雨水淋失。

以上内容参考:网络-土壤阳离子交换量

Ⅶ 含蛭石晶层间层矿物的阳离子交换容量及酸浸研究

彭同江 刘福生 张宝述 孙红娟

(西南科技大学矿物材料及应用研究所,四川绵阳 621010)

摘要 对采自新疆尉犁蛭石矿、河南灵宝-陕西潼关蛭石矿的工业蛭石矿物样品进行了可交换性阳离子、交换容量和酸处理试验研究。结果发现新疆尉犁蛭石矿金云母-蛭石中的可交换性阳离子主要为Na和Ca2+,其次有Mg2+和K、Ba2+和Sr2+。而河南灵宝-陕西潼关蛭石矿工业蛭石样品主要为Ca2+和Mg2+,其次为Na、K等。金云母-蛭石和绿泥石-蛭石间层矿物的阳离子交换容量随间层结构中蛭石晶层的含量增加而增大,一般在56.92~98.95 m mol/100 g之间,仅为蛭石最大阳离子交换容量的一半。金云母-蛭石样品阳离子交换容量大小与K2O含量呈负相关关系,与(Na2O+CaO)含量呈正相关关系。层间可交换性阳离子的氧化物CaO和Na2O的酸浸取率最高,层间不可交换性阳离子的氧化物 K2O次之,八面体中阳离子的氧化物MgO、Fe2O3和Al2O3具有较高的酸浸取率,而四面体阳离子的氧化物SiO2的酸浸取率最低;金云母-蛭石间层矿物中蛭石晶层含量高的样品酸浸取率高,金云母-蛭石间层矿物的耐酸蚀性能不如金云母。

关键词 金云母-蛭石;间层矿物;阳离子交换容量;酸浸取物;酸浸取率。

第一作者简介:彭同江,男,1958年4月出生,博士,教授,矿物晶体化学专业。E-mail:[email protected]

一、含蛭石晶层间层矿物的阳离子交换容量

(一)原理

根据工业蛭石样品的化学成分研究,蛭石晶层中可交换性阳离子的种类主要有:K、Na、Ca2+、Mg2+、Ba2+、Sr2+等。用醋酸铵(NH4Ac)作为淋洗剂,

离子可将工业蛭石中的可交换性阳离子交换出来:

中国非金属矿业

相关系数为0.90。

图1 金云母-蛭石样品阳离子交换容量(CEC) 随K2O 和Na2O+CaO 含量(质量分数) 的变化

可以看出,随着K2O含量的增加,样品的阳离子交换容量减小;随(Na2O+CaO)含量的增加,阳离子交换容量增加。从而表明,随K2O含量的增加,蛭石晶层的含量降低;随(Na2O+CaO)含量的增加,蛭石晶层的含量增加。由此可以得出,在金云母变化为金云母-蛭石的过程中,溶液中富含Na和Ca2+离子组分。

对于金云母-蛭石样品来说,我们发现其阳离子交换容量的大小与样品的粉末X射线衍射谱特征有一定关系。一般说来,阳离子交换容量小于75 m mol/100 g的样品,其粉末X射线衍射图上发现有较强的金云母的衍射峰;高于95 m mol/100 g样品,发现有蛭石的衍射峰。这进一步表明对样品阳离子交换容量的贡献主要来自于间层结构中蛭石晶层的含量。蛭石晶层的含量越高,间层矿物的阳离子交换容量越大。

二、酸浸实验研究

(一)酸处理实验与酸浸取物分析

酸处理试验步骤与实验方法如下:

1)将烧杯在100℃下烘干1 h后称重。

2)分别在烧杯中加0.5 g样品。

3)将盛样品的烧杯放在烘箱中在100℃下烘干2 h。

4)从烘箱中取出烧杯在干燥器中凉至室温后称重,计算出样品除去吸附水后的质量。

5)将烧杯中分别加入0.5 mol/L,1.0 mol/L,1.5 mol/L,2.0 mol/L稀盐酸30 mL,搅拌均匀后静止作用12 h。

6)过滤、洗涤、定溶后用原子吸收光谱法测定滤液中K、Na、Mg、Si、Fe、Al的含量。

利用上述方法对所选的3个样品进行了酸处理和酸浸取物的分析。测定结果转换成氧化物百分含量后列入表2中。

表2 不同浓度的稀盐酸对样品不同氧化物的腐蚀量(wB/%)

注:X为盐酸溶液的浓度,单位mol/L。

(二)酸蚀量与酸浸取物的变化规律

由表2可以看出,在不同盐酸浓度溶液的情况下金云母样品主要氧化物的酸蚀量都大大低于金云母-蛭石样品主要氧化物的酸蚀量,这表明金云母的耐酸性能高于金云母-蛭石间层矿物。

金云母-蛭石间层矿物两个样品不同氧化物的酸浸取率大致相同。按氧化物的酸浸取率的大小可分为三种情形。

(1)处于蛭石晶层层间域中的水化阳离子

刘福生等(2002)给出的金云母-蛭石间层矿物样品的可交换性阳离子氧化物的含量(不考虑H2O)分别为,Wv-6a:CaO 0.612%,Na2O 1.30%;Wv-16:CaO 0.394%,Na2O 1.79%,考虑所含H2O后样品的可交换性阳离子氧化物的含量分别为,Wv-6a:CaO 0.580%,Na2O 1.231%;Wv-16:CaO 0.375%,Na2O 1.702%,这些数值与表2中CaO和Na2O的腐蚀量非常相近(其差别来源于对样品进行不同的处理及分析的误差)。由于水化阳离子与结构层间的结合最弱,故CaO和Na2O的酸浸取率最高,其中CaO几乎全部浸出,Na2O的浸取率在82.27%~89.24%之间。

(2)在结构中以离子键相结合的阳离子

在结构中与阴离子呈离子键结合的阳离子主要有:K、Mg2+、Fe2+、Al3+。相应氧化物酸浸取率分别为 K2O 6.33%~13.80%,Al2O33.67%~12.45%,Fe2O34.44%~11.75%,MgO 3.44%~10.03%。离子键的结合力高于蛭石晶层层间水化阳离子与结构层之间的结合力,而又小于硅氧四面体内的共价键结合力,因此,以离子键结合的阳离子氧化物的酸浸取率低于层间水化阳离子氧化物,而又高于以共价键结合的阳离子氧化物。

(3)在结构中以共价键结合的阳离子

在结构中与阴离子呈共价键结合的阳离子只有Si4+,SiO2的酸浸取率最低,为2.15%~3.02%。

蛭石晶层的水化阳离子最容易被酸淋滤出来,即使在低浓度的盐酸溶液中,且它们的酸蚀量随盐酸浓度的增大变化很小;其次是处于金云母晶层的层间K离子。MgO、Fe2O3和Al2O3也具有较高的酸蚀量百分数,其中MgO、Al2O3的酸蚀量随盐酸浓度的增大而急剧增大,Fe2O3酸蚀量随盐酸浓度的增大而缓慢增大;SiO2的酸蚀量最低,且酸蚀量随盐酸浓度的增大变化很小。

金云母-蛭石样品与金云母样品相比较,层间阳离子、八面体阳离子、四面体阳离子都具有较高的氧化物酸蚀量百分数。这表明金云母-蛭石的结构稳定性较金云母差,即使是金云母-蛭石间层结构中的金云母晶层也是如此。这一结果与热分析所得出的结果(彭同江等,1995)是完全一致的。

(三)金云母-蛭石间层矿物酸蚀机理

对于蛭石及含蛭石晶层的间层矿物酸蚀机理的研究不多。但对于蒙脱石酸活化机理研究已经很深入,并得出比较一致的结论。即当用酸处理蒙脱石时 蒙脱石层间的可交换性阳离子(如Ca2+、Mg2+、Na、K等)可被氢离子交换而溶出,同时随之溶出的还有蒙脱石八面体结构中的铝离子及羟基。因此,活化后的蒙脱石比表面积增大,形成多孔活性物质,使其吸附性及离子交换性进一步增强(张晓妹,2002)。下面结合前面的试验与分析结果对金云母-蛭石间层矿物酸蚀机理进行讨论。

1.酸浸取反应机理

金云母-蛭石间层矿物中蛭石晶层的结构和阳离子占位与蒙脱石的大致相同,只是蛭石晶层八面体中的阳离子主要是Mg2+,而蒙脱石则主要是Al3+,而与蛭石晶层相间排列的还有金云母晶层。因此,金云母-蛭石间层矿物的酸蚀机理可以看成是蛭石晶层和金云母晶层分别与酸进行作用。

蛭石晶层与盐酸产生离子交换反应和酸腐蚀反应,后者导致结构的局部破坏。其中离子交换反应是氢离子将样品中蛭石晶层的层间可交换阳离子如K、Na、Ca2+、Mg2+等置换出来。

氢质蛭石晶层在酸的继续作用下结构产生局部破坏,溶出八面体中的阳离子及羟基,硅氧四面体转化为偏硅酸。

金云母晶层与盐酸产生酸腐蚀反应,产生局部结构被破坏,溶出层间阳离子、八面体中的阳离子及羟基,硅氧四面体转化为偏硅酸。

上述反应可归三类:H离子与蛭石晶层层间可交换阳离子的交换反应;H离子与结构中八面体片上的(OH)-和四面体片中Si-OH上的(OH)-中和形成H2O的反应;阳离子从结构上解离形成盐和偏硅酸的反应。

2.酸浸取规律的晶体化学分析

金云母-蛭石间层矿物属三八面体层状硅酸盐矿物。由金云母的晶体结构特点可知,结构中阳离子与阴离子结合有两种化学键,即离子键和共价键。其中,四面体阳离子(主要为 Si4+)与阴离子(氧)的化学键主要为共价键,因而在结构中的联结力最强;八面体阳离子(主要为Mg2+)以离子键与阴离子(氧和羟基)结合,联结力相对较强;层间阳离子位于层间域内与底面氧以弱离子键结合,联结力较弱。金云母-蛭石间层矿物结构中金云母晶层的情形与金云母相类似,蛭石晶层的八面体和四面体两种位置的化学键特点与金云母的情形也相类似。在金云母-蛭石间层结构中联结力相对最弱的位置是蛭石晶层层间水化阳离子的位置,由于水分子的存在,层间阳离子与结构层的联结力比金云母的更弱。

上述晶体化学特点决定了四面体阳离子Si4+的酸浸取率最小,八面体阳离子Mg2+、Al3+、Fe2+酸浸取率较大,层间可交换性阳离子Na、Ca2+最大。

因此,金云母-蛭石间层矿物样品不同氧化物酸浸取率的大小取决于晶体结构的强度和阴阳离子之间的化学键强度的大小。

3.酸蚀作用历程与结构破坏

根据酸蚀试验和分析结果,结合金云母-蛭石的晶体结构特点,得出金云母-蛭石酸蚀作用和结构破坏的过程如下。

酸蚀过程中各种酸蚀反应首先沿矿物颗粒边缘和结构缺陷部位进行。H离子与层间可交换阳离子产生交换反应,形成氢质蛭石,交换出来的阳离子Na、Ca2+、K等形成盐;H离子与八面体中的(OH)-作用,形成H2O,其结果导致与(OH)-呈配位关系的Mg2+和其他阳离子随(OH)-的解离而裸露于外表面并变得不稳定,从而脱离结构表面并进入溶液形成盐;H离子与四面体片边缘的Si-O(或OH)作用,中和后形成H2O,并使Si4+裸露,进一步使Si4+解离并形成偏硅酸配阴离子;伴随着H离子的这些反应,还会导致金云母晶层边缘的层间阳离子(主要为K)从结构中解离出来;整个结构的破坏程度和酸蚀量随H浓度增大和反应时间的增长而增大。酸蚀反应主要发生在结构层的边缘、层间域和结构缺陷部位。

X射线分析结果表明,金云母-蛭石间层矿物具有较好的耐酸蚀性能,层间可交换性阳离子的氢交换反应和边缘与缺陷部位离子的解离和浸取,没有导致金云母-蛭石间层结构的破坏。但结合酸浸取物和酸浸取残留物的研究,金云母-蛭石间层矿物的耐酸蚀性能不如金云母。

三、结论

金云母-蛭石间层矿物具有良好的阳离子交换性。因此,它可用于环保,吸附水中的重金属离子或有机污染物,回收有用物质;在农业上用作储水和储肥载体,改良土壤等等。含蛭石晶层矿物结构中的Ca、Mg、K、Fe等元素在酸性条件下易被淋滤出来。因此,它可在农业上用作储水和储肥载体,同时又是长效肥料。一方面可为植物提供K、Mg、Ca、Si、Fe等有用元素;另一方面可以起到改良土壤的作用,即增加土壤的保水,保肥性能,降低土壤的密度,提高土壤的透气性能等等。

酸浸取的结果导致金云母-蛭石间层矿物中蛭石晶层的可交换性阳离子几乎全部被淋滤交换出来,同时也在结构层边缘和结构缺陷部位淋滤出其他组分。其结果导致金云母-蛭石间层矿物比表面积增大,形成多孔活性物质,使其吸附性及离子交换性进一步增强(Suquet et al.,1991;Suquet et al.,1994)。因此,酸处理后的金云母-蛭石间层矿物可用于环保方面作污水处理剂。

An Experimental Study on Cation Exchange Capacity and Acid Soaking of Vermiculite Containing Interstratified Minerals

Peng Tongjiang,Liu Fusheng,Zhang Baoshu,Sun Hongjuan

(The Research Institute of Mineral Materials and Their Application,Southwest University of Sciences and Technology,Mianyang Sichuan 621010,China)

Abstract:The changeable cations,the exchange capacity and acid erodibility of instrial vermiculite samples from Weli Mine,Xinjiang Autonomous Region,Lingbao Mine,Henan Province,and Tongguan Mine,Shanxi Province are studied.It is found that the changeable cations of phlogopite-vermiculite samples from Weli Mine are mainly Na,Ca2+,and Mg2+,K,Ba2+,Sr2+in the next place.The changeable cations of phlogopite vermiculite samples from Tongguan Mine are mainly Mg2+,Ca2+,and Na,Kin the next place.The cation exchange capacity of phlogopite-vermiculite and chlorite-vermiculite increases with the increase of content of ver miculite crystal layer in interstratified structure.The cation exchange capacity is commonly between 56.92 m mol/100 g and 98.95 m mol/100 g,which is only a half of the maximal value of cation exchange capacity of vermiculite.The cation exchange capacity of phlogopite-vermiculite is negatively related to the content of K2O and positively related to the content of Na2O and CaO.The acid soak-out ratios of CaO and Na2O are the highest and that of K2O is lower slightly,the acid soak-out ratios of MgO,Fe2O3and Al2O3are relatively higher,but the acid soak-out ratios of SiO2are the lowest.The acid corroding contents of the samples with more vermiculite layer are higher.The acid-resistant property of the phlogopite-vermiculite interstratified mineral is not as good as the phlogopite.

Key words:phlogopite-vermiculite,interstratified minerals,cation exchange capacity,acid soak-out-substances,acid soak-out-ratio.

Ⅷ 蒙脱石/膨润土的膨胀容、胶质价和阳离子交换容量有关系吗它们之间有什么联系

阳离子交换容量:在一定pH值(=7)时,每千克土中所含有的全部交换性阳离子(K+、Na+、Ca2+、
Mg2+、NH4+、H+、Al3+等)的厘摩尔数(potential CEC).
胶质价:膨润土与水按比例混合后,加适量氧化镁,使其凝聚形成的凝胶体的体积,称为胶质价。 以15克样形成的凝胶体积的毫升数表示。胶质价显示试样颗粒分散与水化程度,是分散 性、亲水性和膨胀性的综合表现,它的大小与膨润土矿的属型和蒙脱石含量密切相关,钠 基比钙基、酸性膨润土的胶质价高,同一属型的膨润土,含蒙脱石愈多,胶质价愈高。所 以,胶质价是鉴定膨润土矿石属型和估价膨润土质量的技术指标之一。
膨胀容:膨润土的膨胀性能以膨胀容表示,膨润土在稀盐酸溶液中膨胀后的容积称为膨胀容,以毫 升/克样表示。钠基膨润土比钙基、酸性膨润土的膨胀容高;同一属型的膨润土,含蒙脱石 愈多,膨胀容愈高。膨胀容是鉴定膨润土矿石属型和估价膨润土质量的技术指标之一
联系:CEC中K+ Na+含量高----胶质价 膨胀容就高。反之就低。

Ⅸ 测定膨润土(蒙脱石)阳离子交换容量CEC有什么意义

膨润土(蒙脱石)晶层中的阳离子具有可交换性能,在一定的物理—化学条件下,不仅Ca2+、Mg2+、Na+、K+等可相互交换,而且H+、多核金属阳离子(如羟基铝十三聚体)、有机阳离子(如二甲基双十八烷基氯化铵)也可交换晶层间的阳离子。阳离子交换性是膨润土(蒙脱石)的重要工艺特性,利用这一特性,可进行膨润土的改型,由钙基膨润土改型为钠基膨润土、活性白土、锂基膨润土、有机膨润土、柱撑蒙脱石等产品。 阳离子交换容量(Cation Exchange Capacity)是指PH值为7的条件下所吸附的K+、Na+、Ca2+、Mg2+ 等阳离子总量,简称为CEC。膨润土矿阳离子交换容量和交换性阳离子是判断膨润土矿质量和划分膨润土矿属型的主要依据, CEC值愈大表示其带负电量愈大,其水化、膨胀和分散能力愈强;反之,其水化、膨胀和分散能力愈差。如北票市膨润土阳离子交换容量CEC 为66.7mmol/100g,阜新市的膨润土阳离子交换容量CEC 为85.55 mmol/100g,内蒙古优质膨润土阳离子交换容量CEC为115—139 mmol/100g。
研究表明,蒙脱土的片层中间的CEC通常在60-120mmol/100G范围内,这是一个比较适合与聚合物插层形成纳米复合材料的离子交换容量。因为如果无机物的离子交换容量太高,极高的层间库仑力使得无机物片层间作用力过大,不利于大分子链的插入;如果无机物的离子交换容量太低,无机物不能有效地与聚合物相互作用,不足以保证无机物与聚合物基体的相容性,同样不能得到插层纳米复合物材料。适宜的离子交换容量、优良的力学性能使得蒙脱土成为制备PLS纳米复合材料的首选矿物。CEC值和膨润土(蒙脱石)的内表面积与蒙脱石含量呈正相关关系,用阳离子交换容量CEC 为100mmol/100g的膨润土和 用阳离子交换容量CEC 为61mmol/100g的膨润土制备插层纳米复合物材料,尽管层间距相差不大(d001=1.98和1.91nm),但比表面(421.5和127.2m2。g-1)和吸氨量(318.3和80.7mg。g-1)却有较大的差别. 与原料土的比表面(76.0和90.5m2。g-1)及吸氨量(49.2和62.1mg。g-1)相比,分别增加5.5和1.4倍及6.5和1.3倍,比表面和吸氨量的增加倍数有一定的对应关系. 这说明层电荷密度主要影响材料的表面性质. 由于层间距(d001)的变化主要取决于交联剂的大小, 因而不同层电荷密度对于采用同种的交联剂制备材料的层间距影响不大。
测定CEC的方法很多,如定氮蒸镏法、醋酸铵法、氯化铵-醋酸钠法、氯化铵-无水乙醇法、氯化铵-氨水法、氯化钡-硫酸法等。目前,膨润土CEC测定是依据国标JC/T 593—1995(膨润土试验方法)。具体方法如下:
(1)方法提要
用含指示阳离子NH4+的提取剂处理膨润土矿试样,将试样中可交换性阳离子全部置换进入提取液中,并使试样饱和吸附指示阳离子转化成铵基上。将铵基土和提取液分离,测定提取液中的钾、钠、钙及镁等离子,则为相应的交换性阳离子量。
(2)主要试剂和材料
a. 离心机:测量范围为0~400r/min;
b. 磁力搅拌器:测量范围为50~2 400r/min’
c. 钾、钠、钙、镁混合标准溶液〔c(0.01Na+、0.005Ca2+、0.005Mg2+、0.002K+)〕称取0.5004g碳酸钙(基准试剂),0.201 5g氧化镁(基准试剂),0.5844g氯化钠(高纯试剂)和0.1491g氯化钾(高纯试剂)于250mL烧杯中,加水后以少量稀盐酸使之溶解(小心防止跳溅)。加热煮沸赶尽二氧化碳,冷却。将溶液移入1 000mL容量瓶中,用水稀释至刻度,摇匀,移于干燥塑料瓶中保存;
d. 交换液:称取28.6g氯化铵置于250mL水中,加入600mL无水乙醇,摇匀,用1+1氨水调节pH为8.2,用水稀释至1L,即为0.5mol/L氯化铵-60%乙醇溶液。
e. EDTA标准溶液〔c(0.01EDTA)〕:取3.72g乙二胺四乙酸二钠,溶解于1 000mL水中。
标定:吸取10mL0.01mol/L氯化钙(基准试剂)标准溶液于100mL烧杯中,用水稀释至40~50mL左右。加入5mL4mol/L氢氧化钠溶液,使pH≈12~13,加少许酸性铬蓝K-萘酚绿B混合指示剂,用EDTA溶液滴至纯蓝色为终点。
c1= c2·V3/ V4
式中:
c1——EDTA标准溶液的实际浓度,mol/L;
c2——氯化钙标准溶液的浓度,mol/L;
V3——氯化钙标准溶液的体积,mL;
V4——滴定时消耗EDTA标准溶液的体积,mL。
f. 洗涤液:50%乙醇,95%乙醇。
(3)试验步骤
称取在115~110℃下烘干的试样1.000g,置于100mL离心管中。加入20mL50%乙醇,在磁力搅拌器上搅拌3~5min取下,离心(转速为300r/min左右),弃去管内清液,再在离心管内加入50mL交换液,在磁力搅拌器上搅拌30min后取下,离心,清液收集到100mL容量瓶中。将残渣和离心管内壁用95%乙醇洗涤(约20mL),经搅拌离心后,清液合并于上述100mL容量瓶中,用水稀释至刻度,摇匀,待测。残渣弃去。
交换性钙、镁的测定,取上述母液25mL,置于150mL烧杯中,加水稀释至约50mL,加1mL1+1三乙醇胺和3~4mL4mol/L氢氧化钠,再加少许酸性铬蓝K-萘酚绿B混合指示剂,用0.01mol/LEDTA标准溶液滴定至纯蓝色,记下读数V5,然手用1+1盐酸中和pH为7,再加氨水-氯化铵缓冲溶液(pH=10),再用0.01mol/LEDTA标准溶液滴至纯蓝色记下读数V6。
交换性钾、钠的测定:取25mL母液于100mL烧杯中,加入2~3滴1+1盐酸,低温蒸干。加入1mL1+1盐酸及15~20mL水,微热溶解可溶性盐,冷却后溶液移入100mL容量瓶中,以水稀释至刻度、摇匀,在火焰光度计上测定钾、钠。标准曲线的绘制:分取0、3、6、9、12、15mL钾、钠、钙、镁混合标准溶液于100mL容量瓶中,加入2mL1+1盐酸,用水稀释至刻度、摇匀。在与试样同一条件下测量钾、钠的读数,并绘制标准曲线(此标准系列分别相当于每100g样中含有0、170、345、520、690、860mg的交换性钠和0、60、120、175、240、295mg的交换性钾。
(4)结果计算
钙、镁的含量按下式计算:
交换性钙g/100g= (40c5V5)/(2.5m3)
交换性镁g/100g=[ 24c5(V6-V5)]/ (2.5m3)
式中:
c5—EDTA标准溶液的实际摩尔浓度mol/L;
V6、V5—滴定时耗用EDTA标准溶液的毫升数,mL;
m3——试样质量,g。
钾、钠的含量按(10)式计算:
交换性钾(g/100g)= Kmg /(2.5m3)
交换性钠(g/100g)= Namg/(2.5m3)
式中:
Kmg,Namg—由标准曲线上查得的钾钠的毫克数;
m3——试样质量,g。

Ⅹ 蒙脱石在医药中有什么作用

蒙脱石(montmorillonite)又名微晶高岭石,是一种层状结构、片状结晶的硅酸盐粘土矿,因其最初发现于法国的蒙脱城而命名的。
蒙脱石成分为(Na,Ca) 0.33 ( Al,Mg)2[Si4O10](OH)2•nH2O ,水的含量变化很大。颗粒细小,约0.2~1微米,具胶体分散特性,通常呈块状或土状集合体产出。在电子显微镜下观察,晶体属单斜晶系,一般呈不规则片状。颜色为白色带浅灰,有时带浅蓝或浅红色,光泽暗淡;莫氏硬度2~2.5,比重 2~2.7,堆积密度为1-1.1g/mL。具有很强的吸附能力和离子交换能力 。同时还具有高度的胶体性、可塑性和粘结力。吸水性很强,加水膨胀,体积可增加几倍到十几倍,是组成膨润土的主要成分。可用作钻探泥浆,铸型砂和铁矿球团的粘合剂,造纸、橡胶、化妆品的填充剂,纺织和石油工业中作吸收剂、石油脱色和裂化催化剂的原料。
蒙脱石是蒙皂石(Smectite)族矿物二八面体亚族中的矿物, E+0.33(Al1.67Mg0.33)Si4O10(OH)2•nH2O,其中E+为可交换的层间阳离子。二八面体亚族的晶体化学通式为:Mu+V+Z(AlxFey3+Mgz)2.00(Si4-(u+v)Fev3+、Alu)O10(OH)2 •nH2O。式中u+v+z为层间电荷,蒙脱石一般为22。蒙脱石属于单斜晶系,晶胞参数:a0=0.517nm,b0=0.894nm,c0=0.96~1.52nm.。化学成分:SiO2 48%~56%,Al2O3 11%~22%,Fe2O3 0%~5%,MgO 4%~9%,CaO 0.8%~3.5%,H2O 12%~24%。此外还含有K2O、Na2O、MnO、FeO、TiO2、P2O5、Cl和CO2等。矿物颗粒细,在电子显微镜下可见到片状、球状、海绵状等集合体形状。
蒙脱石具有离子交换性能,主要是阳离子如Na+、Ca2+、K+、Mg2+、Li+、H+、Al3+等,交换是可逆的。在pH为7的介质中阳离子交换容量为70~140me/100g。
蒙脱石通常含有三种状态的水,表面自由水,层间吸附水和晶格水。蒙脱石吸水性很强,吸水后膨胀,即晶格底面间距增大,在高水化状态时晶轴C0可达1.84~2.14nm。蒙脱石在水介质中可分散呈胶体状态。蒙脱石受热自由水很快失去,100~200℃脱去吸附水,500℃时大量晶格水开始逸出。
蒙脱石具有电负性,对胶体性质和流变性能影响很大。电负性主要来自三方面:晶格置换连同内部的补偿置换形成的晶格静电荷,每个晶胞约为0.66;破键产生的电负性;八面体片解离形成的电负性。
蒙脱石以其层间可交换阳离子的种类、含量划分属型,当某一阳离子的含量超过阳离子交换容量(∑EC)50%时,即以该阳离子命名,例如钠基蒙脱石(ENa+/∑EC≥50%)、钙基蒙脱石(ECa2+/∑EC≥50%)、铝基蒙脱石 (EAl3+/∑EC≥50%)。当层间没有一个阳离子含量超过50%交换容量时,则以含量最多的两个阳离子命名,如钙钠基蒙脱石、钙镁基蒙脱石等等。
蒙脱石((MxnH2O)(Al2-xMgx)[Si4O10](OH)2)的晶体结构属于单斜晶系C2/m空间群,a0»0.523nm,b0»0.906nm,c0值可变,当结构单位层之间无水时c0»0.960nm,如果结构单位层之间有水分子存在,则c0值将随水分子的多少以及层间可交换的阳离子不同而不同,Z=2,为2:1型层状结构。在铝氧八面体层中,大约有1/3的Al3+离子被Mg2+离子取代,为了平衡多余的负电价,结构单位层之间有其它阳离子进入,如Na+、Ca2+等离子以水化阳离子的形式进入结构,但水化阳离子和硅氧四面体中O2-离子的作用力较弱,在一定的条件下这些水化阳离子容易被交换出来,因此,c轴可以膨胀以及阳离子交换容量大是蒙脱石的结构特征。
蒙脱石因其特有的物理化学特性被广泛地应用于冶金、机电、化工、建筑、涂料、石油、纺织、食品、水利、交通、医药、造纸、环境保护、新材料、日用品、农业和畜牧业等领域。 随着科技的进步,企业、用户和顾客对蒙脱石超细粉体的品质要求愈来愈高,例如催化剂、医药、颜料、涂料、农业和化妆品等,都要求微米、亚微米甚至纳米级的产品。蒙脱石工业正在向高纯、超细和精细化方向发展。
我国蒙脱石和膨润土相比用量非常小,我国被作为普通膨润土产品使用的蒙脱石用量非常大,应用已达24个领域,年用量已超过290万吨,以2003年为例,铸造业占38%;钻井泥浆占24%;铁矿球团占16%;活性白土占15%;都是一些低档次的产品。价值稍高的产品不足7%,主要消费在油漆、轻工、农业、建筑等领域。在国外已普遍采用的产品如医用蒙脱石、有机蒙脱石、蒙脱石凝胶、蒙脱石干燥剂等在我国尚正起步。大量开采的蒙脱石原矿被出口或被作为普通膨润土产品使用。我国出口的蒙脱石原矿多属蒙脱石含量高、色白、易选的矿石,这些不易多得的优质矿石,是无法再生的资源,轻易出口实属可惜。
蒙脱石是组成膨润土的主要成分,但膨润土不是蒙脱石。蒙脱石应作为膨润土高附加值精细化工产品进行研制和生产,应大力开发如医用蒙脱石、有机蒙脱石、蒙脱石凝胶、硅酸镁铝、柱撑蒙脱石、交联蒙脱石、速溶蒙脱石、羟基蒙脱石、高聚物纳米复合材料等高科技产品,改变我国蒙脱石被作为普通膨润土产品使用的这种现状,而这些高科技产品开发基础和技术关键就是高纯度蒙脱石。因此说开发高纯度蒙脱石的意义重大。
主治拉肚子。

阅读全文

与蒙脱石最佳阳离子交换容量相关的资料

热点内容
25方钠离子交换器每小时废水量 浏览:234
二氧化碳碱酚醛树脂 浏览:441
ffu空气净化器什么价格 浏览:755
怎么辨别是纯净水 浏览:815
wY在污水中表示什么意思 浏览:832
氰化物蒸馏液能放过夜吗 浏览:596
奥琳德净水器保健效果怎么样 浏览:686
水性树脂测固含取多重 浏览:470
CBC树脂 浏览:175
农村水净化用什么净水器好 浏览:969
树脂摆件能带上飞机吗 浏览:963
污水提升器一直开着 浏览:271
饮水机保鲜定时是什么意思 浏览:23
edi能用几年 浏览:303
购买松下空调过滤网 浏览:184
餐饮店排污水怎么办 浏览:316
安吉尔陶氏ro膜价格 浏览:40
空气净化器宠物狗怎么 浏览:602
空气净化器滤网用水洗了怎么办 浏览:30
净水器反渗透膜过滤器水管怎么接 浏览:107