导航:首页 > 净水问答 > 纳滤脱硫废水

纳滤脱硫废水

发布时间:2022-12-18 23:33:08

A. 外压式纳滤陶瓷膜可以应用在哪些领域

陶瓷纳滤膜一般可以应用在以下领域:
、化学工业
(1)石油化工催化剂回收。
催化剂广泛应用于石化和化工生产。反应后一般需要分离产物和催化剂。陶瓷纳滤膜具有良好的耐热性、耐化学溶剂性和机械强度。错流过滤用于催化反应的固液分离。具有耐高温、耐酸碱、耐溶剂等优点。与反应器耦合,可充分提高反应器的效率,分离精度高,并可分离纳米催化剂。
(2)卤水精制在氯碱化工中的应用
陶瓷纳滤膜以其优良的耐污染性和长寿命在氯碱化工领域得到了广泛的应用。采用高效的错流过滤方法,很难使其它炼油和过滤技术取得效果和优势。
2、药品的精细分离
与传统有机膜相比,陶瓷复合纳滤膜具有分离精度高、滤液质量有保证、高通量过滤、产品收率高、废水少、清洗次数少、无需添加添加剂等独特优点。可实现目标产品的脱盐预浓缩。已成功应用于谷氨酸、柠檬酸、衣康酸、维生素C等生物企业。
3、环境水处理
以陶瓷膜和有机膜为核心的一体化工艺,广泛适用于含油废水处理、冶金废水处理、化工废水处理、造纸废水处理、大型纯水和超纯水制备、电厂浓盐水零排放等。
4、气体净化
以陶瓷纳滤膜为核心的一体化工艺处理技术具有分离精度高、流程短、耐酸碱、耐高温、耐污染等独特优点,广泛应用于工业烟气脱硫、高炉固体气分离、汽车尾气处理等领域。le尾气处理等。
5、新材料领域
陶瓷纳滤膜能有效去除浆料中的杂质离子,有效制备超细、超纯纳米粉体。目前,它们已应用于纳米催化剂、超纯有色金属和其他纳米粉末的提纯。也可用于锂电池、石墨烯等材料的纳米颗粒纯化过程。能及时去除生产过程中的杂质,提高产品收率。

B. 常见的精密过滤器有哪些作用

常见的精密过滤器一般是滤芯式过滤器,精密过滤器一般用于前置预处理,主要专通过高精度滤芯属截留或吸附水中残存的微量悬浮颗粒、胶体、微生物等,可以净化水,降低水的硬度,以保障系统后续设备进水安全。

精密过滤器的作用:

1.电子、微电子、半导体工业用高纯水预过滤、终端过滤;

2.医药针剂、大输液、滴眼液、中草药药液等过滤,生物制剂提取、提纯、浓缩;

3.纳滤(NF)、超滤(UF)、反渗透(RO)、电渗析(EDI)等系统保安过滤及终端过滤;

4.油田回注水、锅炉补给水、化学试剂、液体有机制品、高纯化学品、药液等过滤;

5.饮用纯净水、矿泉水、果汁、茶饮料、保健饮品过滤;

6.白酒、葡萄酒、啤酒、黄酒及其他果酒的过滤,纯生啤酒除菌过滤(替代巴氏灭菌);

7.生产、生活废水处理及中水循环再利用过程中的预处理过滤或保安过滤;

8.其他如生物工程、油类精制、印染、纺织行业的给水及废水处理、科研实验过滤等。

C. 制药工业污染物排放标准

医药行业是国民经济的重要组成部分,对我国经济总量增长做出了重要贡献,但同时也造成了比较严重的环境污染。据悉,国家环保总局为加强对制药企业的环境管理,降低排污强度,正在着手制订制药工业污染物排放标准。日前,记者就此采访了国家环保总局科技标准司有关负责人(以下简称“负责人”)。

记者:国家已经颁布《污水综合排放标准》和《大气污染物综合排放标准》,为什么

还要针对制药企业制订专门的排放标准?

负责人:污染物排放标准是对污染源进行控制的基本法律制度,是环境执法的依据,也是企业绿色发展的路标。排放标准是根据采用的最佳可得污染控制技术,并考虑经济承受能力,对排入环境的有害物质和产生污染的各种因素所作的限制性规定。其制定依据是污染控制技术(生产工艺、污染预防、末端处理等),同时考虑环境风险;表达方式主要是数字限值,也可以是操作标准和技术管理规范。为增强标准的针对性和可操作性,我局近年来加大了制定行业型污染物排放标准工作的力度,逐步由综合类、行业类并行的排放标准体系,过渡到以行业类为主的排放标准体系,增加行业型排放标准覆盖面,逐步缩小通用型污染物排放标准适用范围。据不完全统计,我国原料药和药品制剂生产企业有5000多家,具有企业数量多、规模小、布局分散、生产过程原材料投入量大,产出比小、产品附加值较高,污染问题突出等特点。因此,专门针对制药企业制订排放标准非常有必要。

记者:制药工业污染物排放标准编制工作进展情况如何?

负责人:我局从2003年开始启动制药工业污染物排放标准的制订工作。首先开展了标准体系的研究,在综合分析国内外制药工业生产工艺、排污特点的基础上,结合我国医药产业的特点和环境管理的需要,确定制药工业污染物排放标准体系,包含发酵类、化学合成类、提取类、生物工程类、中药类和混装配制类等六类。2004年底,我局下达标准编制任务,成立了由河北环科院牵头,哈尔滨工业大学、华东理工大学、国家环保总局标准所等单位参与的标准编制组。2005年4月底,国家环保总局科技标准司在北京召开了六类标准的开题报告论证会。之后,标准编制组到河北、黑龙江、吉林、辽宁、天津、山东、广东、湖北等省的典型制药企业进行了实地调研,并进行了资料收集和标准起草工作,目前,已经形成标准初稿。近期拟征求各地方、部门和企业的意见。

记者:总局对《制药工业污染物排放标准》的制订有哪些具体要求?

负责人:总局对行业排放标准主要有以下要求:一是突出制药行业污染特点,重点控制对人体健康和生态环境造成危害的有毒有害物质;二是突出行业污染控制技术和清洁生产技术,促进先进技术在治理工程中的应用;三是不断提高环境准入门槛,促进制药行业结构调整,努力向先进国家生产水平、先进工艺靠齐;四是体现新老源区别对待的原则,新源从严控制,体现超前性和滚动性。

记者:排放标准从启动到最后出台还要做哪些工作?

负责人:按照国家环保标准编制程序和要求,排放标准的编制周期一般为两年,特别复杂的项目可适当延期。《制药工业污染物排放标准》目前已经形成标准初稿,下一步在一定范围内讨论后,将向全国公开征求意见,征求意见的范围包括环保系统、行业协会、制药企业、科研院所等。凡关心制药行业污染物排放标准的单位和个人都可以提出意见和建议。我局将及时组织编制组对各单位提出的意见进行研究,修改完善标准文本,并适时召开专家审议会对标准进行技术审查。专家审查通过后,最后由我局召开会议审查批准并会同质检总局发布。

记者:您认为制药企业在标准编制过程中应担任什么角色,起什么作用?

负责人:排放标准为强制性要求,我国有关环保法律已明确规定“超标排污即违法”,因此,广大企业应把排放标准视为企业的生命线,把达标排放作为自己应尽的社会责任。希望广大制药企业关注并积极参与标准编制,建言献策,使制订出来的标准更加完善和科学,符合企业污染治理技术水平和经济承受能力,满足国家环境管理和污染控制的要求。

记者:最后,请您讲一下总局主办“制药工业污染防治技术政策及排放标准研讨会”的目的?

负责人:我局2004年下达了“制药工业污染防治技术政策及排放标准研讨会”的会议计划。这次会议拟就制药工业排放标准划分体系进行研究,对六类标准初稿进行讨论,就制药企业的污染控制技术和清洁生产工艺进行交流,是一个为制药工业污染物排放标准编制工作服务的会议,是一个统一思想、征求意见、交流信息、共同提高的会议。

国家环境保护制药废水污染控制工程技术中心

国家环境保护制药废水污染控制工程技术中心(以下简称“工程技术中心”),是国家环境保护总局批准建立的、在制药行业内开展环境保护工作的技术职能机构,由国家环境保护总局进行政策性指导和业务管理。其主要目的是通过建设国内外一流的研发基地,运用现代化的运行机制,整合社会科技资源,为解决制药工业环境保护重大科技问题、促进环保高技术产业的发展、实现国家制药工业环境保护目标和可持续发展提供技术支持和服务。

“工程技术中心”目前拥有以“中心实验室”、“工艺试验室”、“中试研究基地”、“生产性试验基地”及“示范企业群”为主体的,集科学研究、工艺开发、工程设计、设备制造、运营调试于一身的,并可凝聚、释放“产、学、研”联合研发潜能的制药工业环境科技创新平台和产业化研发基地。

中心实验室配置了色质联机、液相色谱、电感耦合等离子体质谱、总有机碳测试仪、原子吸收、傅立叶红外等国内外一流的的分析测试仪器,以及COD、pH、SS、DO等便携式测定仪,可实现制药工业有毒物质的识别、生物标志物的筛选和实用生物毒理学监测技术研究,为制药工业清洁生产与污染防治技术创新提供基础研究和分析测试平台。

工艺试验室配备了包括复合厌氧颗粒床反应器(HAR)、CASS反应器、膜生物反应器(MBR)等在内的近百台(套)实验模拟装置。其中小型试验平台是针对制药废水的污染特征设计的,具有先进自动控制系统,同时各处理单元可以自由组合和切换,可最大限度的处理监测数据和获取工艺参数,为开展行业高新技术的研发、废水处理工程设计的前期咨询提供技术支撑和服务。

中试研究基地具有多种类型的制药废水源,建有高效厌氧、好氧、膜生物反应器及水资源化等先进的中型扩大试验装备,可根据需求实现单元切换,为制药废水污染防治与水资源化技术小试研究成果的放大及高效处理装备的研究开发提供工艺参数,为科研成果持有者、研究单位、工程设计单位及制药和环保企业科研成果的全面转化、新技术的快速推广应用提供全面的试验条件。

生产性试验基地汇集了生物制药、化学合成制药等众多制药企业的数十种废水和固体废弃物,可实现科研成果向产业化应用的放大试验和重大污染物安全处置的试验,达到整体工艺过程的优化组合与处理效能的经济性藕合的试验验证目的,为不同制药品种废水处理工艺的选择及优化提供长效稳定的技术储备和支持。

示范企业群依托华北制药和石家庄制药两大集团等70多家企业构建,涵盖了发酵类、化学合成类、半合成类、提取及中药类、生物工程类、制剂类等等主要种类,为制药工业污染控制新技术成果转化、新型高效工艺设备的产业化以及清洁生产工艺、技术、方法的推广提供了示范场地。

“工程技术中心”确定了稳定的研究方向,包括制药废水处理关键技术与成套装备的研发及应用、制药行业水资源管理信息化及优化调控、制药工业废弃物生态安全与重大事故应急体系的构建、绿色产品设计及清洁生产、制药行业污染防治技术政策及标准研究等。本着“研发体系社会化、科技成果产业化、运行机制企业化、发展方向市场化”的宗旨,本中心主要开展污染防治与生态保护共性技术、关键技术的研发和产业化工程;建设环保新技术示范工程,推广先进的环保技术和产品;开展国内、国际技术交流与合作,引进、消化、吸收国外先进技术与设备;培养高级环境工程技术人才和管理人才;开展相关领域环保技术政策、技术标准和规范的研究制定工作;承担相关的工程技术评估和工程化验证;开展环境技术咨询和技术服务。

“工程技术中心”借鉴国内外先进的运行管理经验,初步形成了可凝聚、释放“产、学、研”联合研发潜能的运行机制和管理理念。通过机制创新,整合社会科技人力资源、科研物质条件和研究开发资金等有限的科技资源,按照国家“自主创新、重点跨越、支撑发展、引领未来”的科技发展指导方针,在研发方向上面向社会公开征集科技需求课题,对重大研发课题及项目,面向社会公开招聘首席专家,项目实施过程实行首席专家负责制,面向社会组织优秀科技人员,重点开展制药工业领域的重点项目攻关,力争突破能源资源和环境对制药工业可持续发展的制约。

多年来,工程技术中心开展了制药等工业行业的一系列高浓度、难降解有机废水污染防治技术的研究和工程实践,取得了包括水解酸化-膜生物反应器处理难降解高浓度有机废水技术、厌氧-好氧生物反应器有机废水处理技术、中温上流式厌氧污泥床(UASB)反应器高浓度有机废水综合处理技术、高活性厌氧颗粒污泥工业化生产技术、高含硫沼气脱硫技术、厌氧处理Vc废水回流技术、高效内循环厌氧反应器应用技术、含硫有机废水处理方法及气体净化专用设备、Hb菌渣与青霉素菌渣有机肥料生产技术等在内的40多项成果和技术,其中水解酸化-膜生物反应器处理难降解高浓度有机废水技术、中温上流式厌氧污泥床(UASB)反应器高浓度有机废水综合处理技术、高活性厌氧颗粒污泥工业化生产技术、含硫有机废水处理方法及气体净化专用设备等成果获得国家省部级科技进步奖和发明专利。

海正药业

建设EHS体系,走可持续发展之路

浙江海正药业股份有限公司成立于1956年,是中国最大的抗生素抗肿瘤药物生产基地之一,已拥有抗肿瘤、抗寄生虫、心血管系统、抗感染类(包括β-内酰胺类酶抑制剂)、免疫抑制剂、内分泌调节剂、抗抑郁等七大类产品。

以循环经济为切入点,实现经济增长方式转变

海正药业围绕“降低三废排放、降低溶媒消耗、降低生产成本”的思路,大力发展循环经济,实现经济增长方式的转变。

公司在现有溶媒回收的基础上,总结经验,根据已投产和预投产的产品及各种溶媒使用的数量、性质,建立新的有机溶剂回收中心。

公司设立外沙厂区的一个发酵车间为试点,进行电机变频节能技术改造,节能效果显著,节电率在12%以上,供用电回路中高频谐波、瞬变电压、浪涌电流得到了有效遏制,设备故障率有所下降。

公司提高冷却用水和去离子废水的回用率,可以减少其它环节中的用水量,达到节水的目的。目前,公司外沙厂区通过对水的循环利用,用水总量减少近50%。

公司还对发酵废渣进行综合利用开发,将发酵废渣添加豆粕等使之重新发酵,开发有机肥料,变废为宝,增加收益,目前小试已获成功。

以清洁生产为重点,全面改进装备和工艺

海正药业在清洁生产过程中始终把改进装备和提高工艺水平作为工作重点。

对发酵尾气处理系统的改造,重点是解决无组织排放。公司采用高效旋击分离技术和水膜喷淋装置,对真空泵尾气、引风机尾气和发酵渣气流干燥尾气进行整治,对污水处理站加盖闭密,安装喷淋吸收装置和生物脱硫装置,使气体的分离效率高达95%以上,被分离后排出的气体干净清洁,无发酵液和泡沫带出,达到尾气排放标准。

采用先进的微滤、纳滤设备对肿瘤抗生素产品的发酵液进行预处理,产品收率可提高20~30%,同时大大减少废水排放。因此,公司拟将引进国外先进的膜过滤设备,对岩头厂区的车间进行技术改造。

以结构调整为根本,构筑生物产业优势

海正药业始终把调整产业与产品结构作为全面实施清洁生产的根本。在不断淘汰污染大的老产品的同时,发展高效能、低消耗、低污染或基本无污染的新型产业。

公司力求延伸产业链,重点发展低能耗、低污染、高效益的高科技产品,不断扩大原料药(API)和药物制剂的研发和生产能力,在原料药出口的同时,加快API制剂进入欧美主流市场的步伐,尽快形成天然药物、出口制剂、基因重组药物和研发产业等四大新兴产业。

海正药业作为一个发展中的企业,目前正面临着由传统发展向科学发展的经济转型。公司把环境保护、安全生产、社会和谐作为基本政策,把实现可持续发展作为重大战略,在全公司范围内开展大规模的源头控制、污染防治、风险评估、清洁生产、健康安全、危害辨识、防火防灾和社区交流等活动,推进建设现代化企业进程。

D. 微滤、超滤、纳滤、反渗透有什么区别

微滤

微滤又称微孔过滤,是以多孔膜(微孔滤膜)为过滤介质。

在压力推动下,截留溶液中的砂砾、淤泥、黏土等颗粒和贾第虫、隐抱子虫、藻类和一些细菌等,而大量溶剂、小分子及少量大分子溶质都能透过膜的分离过程。

微滤技术通过机械截留作用、物理作用或吸附截留作用、架桥作用以及网络型膜的内部截留作用去除这类物质。

微滤、超滤、纳滤、反渗透比较

E. 重庆印染废水处理的基本方法有哪些

印染废水的处理方法及工艺流程目前,国内的印染废水处理手段以生物法为主,辅以物理法与化学法。由于近年来化纤织物的发展和印染后整理技术的进步,使新型染料、PAV浆料、新型助剂等难生化降解有机物大量进入印染废水,给处理增加了难度。原有的生物处理系统COD去除率大都由原来的70%下降到50%左右,甚至更低。色度的去除是印染废水处理的一大难题,旧的生化法在脱色方面一直不能令人满意。此外,PAV等化学浆料造成的COD占印染废水总COD的比例相当大,但由于它们很难被普通微生物所利用而使其去除率只有20%~30%。针对上述问题,国内外都开展了一些研究工作,主要是新的生物处理工艺和高效专门细菌以及新型化学药剂的探索和应用研究。其中具有代表性的有:厌氧-好氧生物处理工艺、高效脱色菌和PVA降解菌的筛选与应用研究、光降解技术研究、高效脱色混凝剂的研制等。
1、印染废水常用处理技术
印染废水的常用处理方法可分为物理法、化学法与生物法三类。物理法主要有格栅与筛网、调节、沉淀、气浮、过滤、膜技术等,化学法有中和、混凝、电解、氧化、吸附、消毒等,生物法有厌氧生物法、好氧生物法、兼氧生物法。
2、印染废水处理单元的选择系列
(1)调节:对水质水量变化大的废水,调节池应考虑停留时间长些。一般情况下后续处理单元为水解酸化或厌氧处理时,调节时不应采用曝气方式搅拌混合。
(2)混凝反应:废水中含疏水性染料较多时,混凝反应工艺放在生化前面,以去除不溶性染料物质,减轻后续生物处理的负荷。混凝药剂可根据染料性质选用碱式氯化铝(PAC)、硫酸亚铁(FeSO4)等,混凝反应方式采用机械搅拌易于调整水力条件,保证反应充分,反应时间应在25~30min之间。考虑脱色效应时,应把反应时间再适当延长。
(3)中和:原水pH值高时通常用H2S04或HCl中和,为节省药剂用量,可在调节以后。如采用烟道气中和,应考虑脱硫及除灰。
(4)沉淀(气浮):分离物化投药反应由于污泥量大,应优先考虑沉淀〔斜管沉淀易堵不宜采用),通常的辐流沉淀池适用于大水量、竖流沉淀池适用于小水量,当有地皮可利用时,平流沉淀池采用吸泥方式时也可采用。投药量大时泥量也大,辐流池可能会引起异重流,新颖的周边进出水沉淀池可克服这一缺点。如废水中表面活性剂含量高,应选择气浮法,气浮法中压力溶气气浮技术成熟,可考虑选用。
(5)过滤:当出水要求澄清或回用时,应采用砂滤或煤砂两层过滤。
(6)电解法:钛镀钌惰性电极电解法处理酸性染料印染废水脱色效果好,去除COD时,对硫化染料、还原染料、酸性染料、活性染料等均有很高的去除率。金属阳极电解法因泥量较多采用较少。
(7)厌氧水解:印染废水有机物含量COD高,且B/C低,应考虑水解酸化,并增加填料挂膜,池底应设水力搅拌机,保证悬浮活性污泥与水中有机物广泛接触。池体较大时,应设串联系统,以免短路。印染废水较少采用纯厌氧技术,只有当退浆废水等高浓度废水单独分出时可考虑纯厌氧处理。
(8)好氧生物降解:对水量大、浓度高的印染废水优先采用活性污泥法,如氧化沟、间歇式活性污泥法(SBR)、循环式活性污泥法(CSTR)等。对水量小、浓度低的废水可考虑生物接触氧化法,但填料应保证密集度和体积率,并以多级串联方法为宜。曝气方式如采用鼓风曝气,应选用膜片式微孔曝气头或微孔曝气管等,保证充氧效率。
(9)脱色:采用Cl2需保证脱色氧化时间不少于1h,Cl2脱色兼有回调pH值的功能。小规模可选用ClO2、NaClO漂白粉【Ca(ClO)2】、紫外线等。脱色反应池可采用回转隔板或折板,不宜采用机械搅拌或压缩空气反应。
(10)活性炭吸附:活性炭对阳离子染料、直接染料、酸性染料、活性染料等水溶性染料的废水具有良好的吸附性能(对硫化染料、还原染料等不溶性染料的废水效果较差)。生物活性炭(BAC)法是活性炭吸附的衍生技术,利用加入的微生物所分泌的外酶渗入到炭的微孔结构,使活性炭所吸附的有机物不断分解成CO2、H2O或合成新的细胞,最后渗出炭的结构而被去除。BAC技术需保证进水有一定溶解氧,炭床微生物需接种培育,BAC运行周期远高于活性炭吸附。
(11)硅藻土吸附:硅藻土在印染废水中既有混凝作用,又有吸附作用,起到良好的脱色效果。通常,活化硅藻土对亲水性染料脱色效果不一,对疏水性染料效果较好。当废水中表面活性剂和匀染剂较多时,效果将显著下降。
(12)氧化:臭氧氧化对直接染料、酸性染料、碱性染料、活性染料等亲水性染料脱色速度快,效果好;对于还原染料、冰染染料(纳夫妥)、氧化染料、硫化染料、分散染料等疏水性染料,则脱色效果较差,臭氧用量也大。臭氧脱色不会产生“三致物”,可保证废水出水的安全指标。Fenton催化氧化法在去除残余COD方面效率显著,可用于较小水量。TiO2催化氧化法可去除出水的残余色度,是有前景的光催化氧化技术。
(13)膜分离技术
①超滤法:由于超滤膜具有精密的精细孔,可截留水中的大分子等微粒,且操作压力低,设备简单,可用于染料的回收或出水的深度处理。采用醋酸纤维半透膜超滤法回收染料已有成果。
②纳滤法:是用纳滤膜截留污染物的一种新技术,分离压力一般为0.5~2.0MPa,处理水溶性(亲水性)染料废水,可回收有用染料。采用纳滤膜回收直接黑、活性艳红、酸性橙Ⅱ和酸性大红染料废水,已取得成果。
厦门威士邦一直以来专注于印染废水冶理与回用的相关技术研发及应用。2008年4月,基于“Flow Split?SMFTM+HAP ROTM”双膜法技术的盛虹集团印染废水万吨回用系统率先在环太湖流域建成并通过相关部分验收。该工程的建成一举改变了印染企业以往耗水大户、排水大户、污染大户的负面名声,为环太湖流域及至全国其他印染企业起到至关重要的示范作用,并正式宣告印染行业全面进入节水减排、资源回用的新时代。
3、印染废水处理工艺流程
总结印染废水的处理工艺,充分的调节时间是必要的,物化、生化相结合的处理工艺是目前采用的合理工艺。物化法主要用于去除悬浮物、色度及部分COD,投药混凝反应是物化处理的重要环节,分离工艺气浮法具有突出的优点,生化法主要采用厌氧水解-好氧氧化串联工艺,厌氧水解工艺是解决印染废水COD值高、可生化性差及色度高的难题的有效前置技术,经厌氧水解后大部分难降解有机物已被分解为易生物降解小分子有机物,可以提高废水可生化性,保障废水好氧生物处理的效率和出水水质。好氧氧化工艺有多种方式,如氧化沟、间歇式活性污泥法、生物接触氧化等,后者由于易于管理、产泥量少、污泥不易发生膨胀现象及运行成本低等特点,是目前小型印染废水常用的好氧生物处理方法之一,但各个印染企业选用好氧方法时应根据本身废水的特点做出优选,必要时尽可能采取综合治理技术。下面列举几种典型流程。
3.1 水解酸化-生物接触氧化-生物炭印染废水处理工艺
处理印染废水通常采用水解酸化-生物接触氧化-生物炭为主的处理工艺,见图3-1。该处理工艺是近几年来在印染废水处理中采用较多、较成熟的工艺流程。水解酸化的目的是对印染废水中可生化性很差的某些高分子物质和不溶性物质通过水解酸化,降解为小分子物质和可溶性物质,提高可生化性和B/C。值,为后续好氧生化处理创造条件。同时好氧生化处理产生的剩余污泥经沉淀池全部回流到厌氧生化段,进行厌氧消化,减少整个系统剩余污泥排放,即达到自身的污泥平衡。厌氧水解酸化池和生物接触氧化池中均安装填料,属生物膜法处理;生物炭池装活性炭并供氧,兼有悬浮生长和附着生长法特点;脉冲进水的作用是对厌氧水解酸化池进行搅拌。
各部分的水力停留时间一般如下。调节池:8~12h;厌氧水解酸化池:8~10h;生物接触氧化池:6~8h;生物炭池:1~2h;脉冲发生器间隔时间:5~10min。
该处理工艺系统,对于CODcr≤1000mg/L的印染废水,处理后的出水可达到国家排放标准,如进一步深度处理则可回用。
3.2 缺氧水解-生物好氧-混凝组合工艺处理印染污水
废水水量26000m3/d。废水水质为:BOD 200~250mg/L,COD 750~850mg/L,pH值9~11,色度850倍。废水水质要求为:BOD≤30mg/L,COD≤100mg/L,pH值为6~9,色度≤100倍。
组合工艺处理节染废水工艺流程见图3-2。

该组合工艺流程的特点是;①好氧生物处理构筑物前采用缺氧水解池以提高废水的可生化性(如以机织混纺织物或化纤织物为主的降解性较差的印染污水);②沉淀池后设置混凝沉淀池和氧化池,作为三级处理,可获得较好的出水水质,达到处理要求;③废水SS较低,不设置初沉池;④缺氧水解池内设置填料。
该组合工艺的运行数据见表3-6。

3.3 电化学+气浮+水解酸化+两级接触氧化+二级生物炭塔+过滤处理印染废水
该工艺以生化、物化、深度处理相结合,工艺流程见图3-3。

该工艺设计水量5000m3/d。主要水质指标为:COD 1000~1500mg/L,BOD 300~500mg/L,S2-≤35mg/L,色度≤1000倍。要求处理后出水为:COD≤100mg/L,BOD≤30mg/L,色度≤50倍,S2-≤0.5mg/L。
其主要参数为:加酸中和至pH=6~9;水解酸化池水力停留时间4.3h,表面负荷率1m3/(m2.h),设YDT弹性立体填料;—、二级生物接触氧化池水力停留时间分别为4.8h和2.3h,气水比分别为20:1和15:1,中间沉淀池上清液按1:1回流到一级生物接触氧化池始端;中间沉淀池表面负荷率4m3/(m2.h),二沉池表面负荷率3m3/(m2.h);普通化滤池(清水池设在滤池下面,有效容积95m3),流速10m/h,反冲洗强度15L、(m2.s),冲洗时间5min;生物炭池为二级串联,前级为升流式,后级为降流式,过滤速度为3m/h,气水比为5:1,反冲洗强度9L/(m2.s),反冲洗时间5min,3~5d冲洗一次;总调节池水力停留时间11.5h,底部设7条排泥沟,每条沟内设1根DN300mm的穿孔排泥管’污泥排入集泥井后用潜污泵抽至污泥浓缩池。

F. 什么是膜分离装置哪些地方能用

北京和默能源技术有限公司在膜分离法水处理技术是利用选择性透过膜为分离介质内,使水与溶质或微容粒分离,实现水的软化、脱盐和净化,根据分离粒径的不同可分为微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)等。
应用领域:
电厂脱硫废水预处理 锅炉补给水处理 油田采出水工业废水的深度处理 海水淡化 水质软化等方法

G. 精密过滤器是干什么用的

精密过滤装置(也称作保安过滤器)大都采用不锈钢做外壳,内部装过滤滤芯(回例如答PP棉),主要用在多介质预处理过滤之后,反渗透、超滤等膜过滤设备之前。用来滤除经多介质过滤后的细小物质(例如微小的石英沙,活性炭颗粒等),以确保水质过滤精度及保护膜过滤元件不受大颗粒物质的损坏。精密过滤装置内装的过滤滤芯精度等级可分为0.5μs,1μs,5μs,10μs等,根据不同的使用场合选用不同的过滤精度,以保证后出水精度及保证后级膜元件的安全。

1、纳滤(NF)、超滤(UF)、反渗透(RO)、电渗析(EDI)等系统保安过滤及终端过滤;
2、医药针剂、大输液、滴眼液、中草药药液等过滤,生物制剂提取、提纯、浓缩;
3、电子、微电子、半导体工业用高纯水预过滤、终端过滤;
4、油田回注水、锅炉补给水、化学试剂、液体有机制品、高纯化学品等过滤;
5、饮用纯净水、矿泉水、果汁、茶饮料、保健饮品过滤;
6、白酒、葡萄酒、啤酒、黄酒及其他果酒的过滤,纯生啤酒除菌过滤(替代巴氏灭菌);
7、生产、生活废水处理及中水循环再利用过程中的预处理过滤或保安过滤;
8、其他如生物工程、油类精制、印染、纺织行业的给水及废水处理、科研实验过滤等

H. 脱硫废水怎样循环利用

1、将脱硫废水进行预处理除去重金属离子和钙离子、镁离子;
2、将步骤(1)得到的预处理出水进行超滤处理;
3、将步骤(2)得到的超滤出水进行纳滤处理,纳滤处理所得浓水作为脱硫系统的补水回用。

I. 电镀废水怎么处理才能达标排放

电镀废水的处理与回用对节约水资源以及保护环境起着至关重要的作用。本文综述了各种电镀废水处理技术的优缺点,以及一些新材料在电镀废水处理上的应用。
01 化学沉淀法
化学沉淀法是通过向废水中投入药剂,使溶解态的重金属转化成不溶于水的化合物沉淀,再将其从水中分离出来,从而达到去除重金属的目的。
化学沉淀法因为操作简单,技术成熟,成本低,可以同时去除废水中的多种重金属等优点,在电镀废水处理中得到广泛应用。
1.碱性沉淀法
碱性沉淀法是向废水中投加NaOH、石灰、碳酸钠等碱性物质,使重金属形成溶解度较小的氢氧化物或碳酸盐沉淀而被去除。该法具有成本低、操作简单等优点,目前被广泛使用。
但是碱性沉淀法的污泥产量大,会产生二次污染,而且出水pH偏高,需要回调pH。NaOH由于产生污泥量相对较少且易回收利用,在工程上得到广泛应用。欣格瑞水处理专家
2.硫化物沉淀法
硫化物沉淀法是通过投加硫化物(如Na2S、NariS等)使废水中的重金属形成溶度积比氢氧化物更小的沉淀,出水pH在7~9,无需回调pH即可排放。
但是硫化物沉淀颗粒细小,需要添加絮凝剂辅助沉淀,使处理费用增大。硫化物在酸性溶液中还会产生有毒的HS气体,实际操作起来存在局限性。
3.铁氧体法
铁氧体法是根据生产铁氧体的原理发展起来的,令废水中的各种重金属离子形成铁氧体晶体一起沉淀析出,从而净化废水。该法主要是通过向废水中投加硫酸亚铁,经过还原、沉淀絮凝,最终生成铁氧体,因其设备简单、成本低、沉降快、处理效果好等特点而被广泛应用。
pH和硫酸亚铁投加量对铁氧体法去除重金属离子的影响,确定镍、锌、铜离子的最佳絮凝pH分别为8.00~9.80、8.00~10.50和10.00,投加的亚铁离子与它们摩尔比均为2~8,而六价铬的最佳还原pH为4.00~5.50,最佳絮凝pH则为8.00~10.50,最佳投料比为20。出水的镍含量小于0.5mg/L,总铬含量小于1.0mg/L,锌含量小于1.0mg/L,铜含量小于0.5mg/L,达到《电镀污染物排放标准》(GB21900—2008)中“表2”的要求。
化学沉淀法的局限性
随着污水排放标准的提高,传统单一的化学沉淀法很难经济有效地处理电镀废水,常常与其他工艺组合使用。
采用铁氧体-CARBONITE(一种具有物理吸附与离子交换功能的材料)联合工艺处理Ni含量约为4000mg/L的高浓度含镍电镀废水:先以铁氧体法控制pH为11.0,在Fe/Fe。摩尔比O.55,FeSO4·7H2O/Ni质量比21,反应温度35℃的条件下搅拌反应15min,出水Ni平均浓度从4212.5mg/L降至6.8mg/L,去除率达99.84%;然后采用CARBONITE处理,在CARBONITE投加量1.5g/L,pH=6.5,温度35℃的条件下反应6h,Ni去除率可达96.48%,出水Ni浓度为0.24mg/L,达到GB21900-2008中的“表2”标准。
采用高级Fenton一化学沉淀法处理含螯合重金属的废水,使用零价铁和过氧化氢降解螯合物,然后加碱沉淀重金属离子,不仅可以去除镍离子(去除率最高达98.4%),而且可以降低COD化学需氧量。
02 氧化还原法
1.化学氧化法
化学氧化法在处理含氰电镀废水上的效果尤为明显。该方法把废水中的氰根离子(CN一)氧化成氰酸盐(CNO-),再将氰酸盐(CNO-)氧化成二氧化碳和氮气,可以彻底解决氰化物污染问题。
常用的氧化剂包括氯系氧化剂、氧气、臭氧、过氧化氢等,其中碱性氯化法应用最广。采用Fenton法处理初始总氰浓度为2.0mg/L的低浓度含氰电镀废水,在反应初始pH为3.5,H202/FeSO4摩尔比为3.5:1,H202投加量5.0g/L,反应时间60min的最佳条件下,氰化物的去除率可达93%,总氰浓度可降至0_3mg/L。
2.化学还原法
化学还原法在电镀废水处理中主要针对含六价铬废水。该方法是在废水中加入还原剂(如FeSO、NaHSO3、Na2SO3、SO2、铁粉等)把六价铬还原为三价铬,再加入石灰或氢氧化钠进行沉淀分离。上述铁氧体法也可归为化学还原法。
该方法的主要优点是技术成熟,操作简单,处理量大,投资少,在工程应用中有良好的效果,但是污泥量大,会产生二次污染。采用硫酸亚铁作为还原剂,处理80t/d的含总铬7O~80mg/L的电镀废水,出水总铬小于1.5mg/L,处理费用为3.1元/t,具有很高的经济效益。
以焦亚硫酸钠为还原剂处理含80mg/L六价铬、pH为6~7的电镀废水,出水六价铬浓度小于0.2mg/L。
03 电化学法
电化学法是指在电流的作用下,废水中的重金属离子和有机污染物经过氧化还原、分解、沉淀、气浮等一系列反应而得到去除。
该方法的主要优点是去除速率快,可以完全打断配合态金属链接,易于回收利用重金属,占地面积小,污泥量少,但是其极板消耗快,耗电量大,对低浓度电镀废水的去除效果不佳,只适合中小规模的电镀废水处理。
电化学法主要有电凝聚法、磁电解法、内电解法等。
电凝聚法是通过铁板或者铝板作为阳极,电解时产生Fe2+、Fe或Al,随着电解的进行,溶液碱性增大,形成Fe(OH)2、Fe(OH)3或AI(OH)3,通过絮凝沉淀去除污染物。
由于传统的电凝聚法经过长时间的操作,会使电极板发生钝化,近年来高压脉冲电凝聚法逐渐替代传统的电混凝法,它不仅克服了极板钝化的问题,而且电流效率提高20%~30%,电解时间缩短30%~40%,节省电能30%~40%,污泥产生量少,对重金属的去除率可达96%~99%。欣格瑞水处理专家
采用高压脉冲电絮凝技术处理某电镀厂的电镀废水,Cu2十、Ni2、CN一和COD的去除率分别达到99.80%、99.70%、99.68%和67.45%。
电混凝法通常也与其他方法结合使用,利用电凝聚法和臭氧氧化法联合处理电镀废水,以铁和铝做极板,出水六价铬、铁、镍、铜、锌、铅、TOC(总有机碳)、COD的去除率分别为99.94%、100.00%、95.86%、98.66%、99.97%、96.81%、93.24%和93.43%。
近年来内电解法受到广泛关注。内电解法利用了原电池原理,一般向废水中投加铁粉和炭粒,以废水作为电解质媒介,通过氧化还原、置换、絮凝、吸附、共沉淀等多种反应的综合作用,可以一次性去除多种重金属离子。
该方法不需要电能,处理成本低,污泥量少。通过静态试验研究了铁碳微电解法对模拟电镀废水的COD及铜离子的去除效果,去除率分别达到了59.01%和95.49%。然而,采用微电解反应柱研究连续流的运行结果显示,14d后微电解出水的COD去除率仅为10%~15%,铜的去除率降低至45%~50%之间,可见需要定期更换填料或对填料进行再生。
04 膜分离技术
膜分离技术主要包括微滤(MF)、超滤(UF)、纳滤(NF)、反渗透(RO)、电渗析(ED)、液膜(Lv)等,利用膜的选择透过性来对污染物进行分离去除。
该方法去除效果好,可实现重金属回收利用和出水回用,占地面积小,无二次污染,是一种很有发展前景的技术,但是膜的造价高,易受污染。
对膜技术在电镀废水处理中的应用和效果进行了分析,结果表明:结合常规废水处理工艺与膜生物反应器(MBR)组合工艺,电镀废水被处理后的水质达到排放标准;电镀综合废水经UF净化、RO和NF两段脱盐膜的集成工艺处理后,水质达到回用水标准,RO和NF产水的电导率分别低于100gS/cm和1000gS/cm,COD分别约为5mg/L和10mg/L;镀镍漂洗废水通过RO膜后,镍的浓缩高达25倍以上,实现了镍的回收,RO产水水质达到回用标准。
投资与运行费用分析表明:工程运行1年多即可收回RO浓缩镍的设备费用。
液膜法并不是采用传统的固相膜,而是悬浮于液体中很薄的一层乳液颗粒,是一种类似溶剂萃取的新型分离技术,包括制膜、分离、净化及破乳过程。
美籍华人黎念之(NormanN.Li)博士发明了乳状液膜分离技术,该技术同时具有萃取和渗透的优点,把萃取和反萃取两个步骤结合在一起。乳化液膜法还具有传质效率高、选择性好、二次污染小、节约能源和基建投资少的特点,对电镀废水中重金属的处理及回收利用有着良好的效果。
05 离子交换法
离子交换法是利用离子交换剂对废水中的有害物质进行交换分离,常用的离子交换剂有腐殖酸物质、沸石、离子交换树脂、离子交换纤维等。离子交换的运行操作包括交换、反洗、再生、清洗四个步骤。
此方法具有操作简单、可回收利用重金属、二次污染小等特点,但离子交换剂成本高,再生剂耗量大。
研究强酸性离子交换树脂对含镍废水的处理工艺条件及镍回收方法。结果表明:pH为6~7有利于强酸性阳离子交换树脂对镍离子的去除。离子交换除镍的适宜温度为30℃,适宜流速为15BV/h(即每小时l5倍树脂床体积)。适宜的脱附剂为10%盐酸,脱附液流速为2BV/h。前4.6BV脱附液可回用于配制电镀槽液,平均镍离子质量浓度达18.8g/L。
Mei.1ingKong等研究了CHS—l树脂对cr(VI)的吸附能力,发现Cr(VI)在低浓度时,树脂的交换吸附率是由液膜扩散和化学反应控制的。CHS一1树脂对Cr(VI)的最佳吸附pH为2~3,在298K下其饱和吸附能力为347.22mg/g。CHS一1树脂可以用5%的氢氧化钠溶液和5%氯化钠溶液来洗脱,再生后吸附能力没有明显的下降。
使用钛酸酯偶联剂将1一Fe203与丙烯酸甲酯共聚,在碱性条件下进行水解,制备出磁性弱酸阳离子交换树脂NDMC一1。
通过对重金属Cu的吸附研究发现,NDMC—l树脂粒径较小、外表面积大,因而具有较快的动力学性能。具体联系污水宝或参见http://www.dowater.com更多相关技术文档。
06 蒸发浓缩法
蒸发浓缩法是通过加热对电镀废水进行蒸发,使液体浓缩达到回用的效果。一般适用于处理含铬、铜、银、镍等重金属浓度高的废水,用其处理浓度低的重金属废水时耗能大,不经济。
在处理电镀废水中,蒸发浓缩法常常与其他方法一起使用,可实现闭路循环,效果不错,比如常压蒸发器与逆流漂洗系统联合使用。蒸发浓缩法操作简单,技术成熟,可实现循环利用,但是浓缩后的干固体处置费用大,制约了它的应用,目前一般只作为辅助处理手段。
07 生物处理技术
生物处理法是利用微生物或者植物对污染物进行净化,该方法运行成本低,污泥量少,无二次污染,对于水量大的低浓度电镀废水来说是不二之选。生物法主要包括生物絮凝法、生物吸附法、生物化学法和植物修复法。
1.生物絮凝法
生物絮凝法是一种利用微生物或微生物产生的代谢物进行絮凝沉淀来净化水质的方法。微生物絮凝剂是一类由微生物产生并分泌到细胞外、具有絮凝活性的代谢物,能使水中胶体悬浮物相互凝聚、沉淀。
生物絮凝剂与无机絮凝剂和合成有机絮凝剂相比,具有处理废水安全无毒、絮凝效果好、不产生二次污染等优点,但其存在活体生物絮凝剂不易保存,生产成本高等问题,限制了它的实际应用。目前大部分生物絮凝剂还处在探索研究阶段。
生物絮凝剂可以分为以下三类:
(1) 直接利用微生物细胞作为絮凝剂,如一些细菌、放线菌、真菌、酵母等。
(2) 利用微生物细胞壁提取物作为絮凝剂。微生物产生的絮凝物质为糖蛋白、黏多糖、蛋白质等高分子物质,如酵母细胞壁的葡聚糖、Ⅳ-乙酰葡萄糖胺、丝状真菌细胞壁多糖等都可作为良好的生物絮凝剂。
(3) 利用微生物细胞代谢产物的絮凝剂。代谢产物主要有多糖、蛋白质、脂类及其复合物等。
近年来报道的生物絮凝剂主要为多糖类和蛋白质类,前者有ZS一7、ZL—P、H12、DP。152等,后者有MBF—W6、NOC—l等。陶颖等]利用假单胞菌Gx4—1胞外高聚物制得的絮凝剂对cr(Ⅳ)进行了絮凝吸附研究。
其研究结果表明,在适宜条件下Or(Ⅳ)的去除率可达51%。研究枯草芽孢杆菌NX一2制备的生物絮凝剂v一聚谷氨酸(T-PGA)对电镀废水的处理效果,实验证明,T-PGA能有效地去除Cr3+、Ni等重金属离子。
2.生物吸附法
生物吸附法是利用生物体自身的化学结构或成分特性来吸附水中的重金属,然后通过固液分离,从水中分离出重金属。
可以从溶液中分离出重金属的生物体及其衍生物都叫做生物吸附剂。生物吸附剂主要有生物质、细菌、酵母、霉菌、藻类等。该方法成本低,吸附和解析速率快,易于回收重金属,具有选择性,前景广阔。
研究各种因素对枯草芽胞杆菌吸附电镀废水中Cd效果的影响,结果表明:pH为8、吸附剂用量为10g/L(湿重)、搅拌转数为800r/min、吸附时间为10min的条件下,废水中镉的去除率达93%以上。
吸附镉后的枯草芽胞杆菌细胞膨大,色泽变亮,细胞之间相互粘连。Cd2+与细胞表面的钠进行了离子交换吸附。
壳聚糖是一种碱性天然高分子多糖,由海洋生物中甲壳动物提取的甲壳素经过脱乙酰基处理而得到,可以有效地去除电镀废水中的重金属离子。
通过乳化交联法制备了磁性二氧化硅纳米颗粒组成的壳聚糖微球,然后用乙二胺和缩水甘油基三甲基氯化反应的季铵基团改性,所得生物吸附剂具有很高的耐酸性和磁响应。
用它来去除酸性废水中的cr(VI),在pH为2.5、温度为25℃的条件下,最大吸附能力为233.1mg/g,平衡时间为40~120min[取决于初始Cr(VI)的浓度。使用0.3mol/LNaOH和0.3mol/LNaC1的混合液进行吸附剂再生,解吸率达到95.6%,因此该生物吸附剂具有很高的重复使用性。
3.生物化学法
生物化学法是指微生物直接与废水中的重金属进行化学反应,使重金属离子转化为不溶性的物质而被去除。
从电镀废水中筛选分离出3株可以高效降解自由氰根的菌种,在最佳条件下可以将80mg/L的CN一去除到0.22mg/L。研究发现,有许多可以将cr(VI)还原成低毒cr(III)的微生物,如无色杆菌、土壤细菌、芽孢杆菌、脱硫弧菌、肠杆菌、微球菌、硫杆菌、假单胞菌等,其中除了大肠杆菌、芽孢杆菌、硫杆菌、假单胞菌等可以在好氧条件下还原Cr(VI),其余大部分菌种只能在厌氧条件下还原cr(VI)。
R.S.Laxman等发现灰色链霉菌能在24~48h内把cr(VI)还原成cr(III),并能够将cr(III)显著地吸收去除。中科院成都生物研究所的李福、吴乾菁等从电镀污泥、废水及下水道铁管内分离筛选出35株菌种,并获得了SR系列复合功能菌,该功能菌具有高效去除Cr(VI)和其他重金属的功效,并在此基础上进行了工程应用,取得较好的效果。
4.植物修复法
植物修复法是利用植物的吸收、沉淀、富集等作用来处理电镀废水中的重金属和有机物,达到治理污水、修复生态的目的。
该方法对环境的扰动较少,有利于环境的改善,而且处理成本低。人工湿地在这方面起着重要的作用,是一种发展前景广阔的处理方法。
李氏禾是一种可富集金属的水生植物,在去除水中重金属方面具有很大的潜力。在人工湿地种植了李氏禾,用以处理含铬、铜、镍的电镀废水,使它们的含量分别降低了84.4%、97.1%和94_3%。当水力负荷小于0.3m/(m2·d1时,出水中的重金属浓度符合电镀污染物排放标准的要求;当进水铬、铜和镍的浓度为5、10和8mg/L时,仍能达标排放。
可见用李氏禾处理中低浓度的电镀废水是可行的。质量平衡表明,铬、铜和镍大部分保留在人工湿地系统的沉积物中。
08 吸附法
吸附法是利用比表面积大的多孔性材料来吸附电镀废水中的重金属和有机污染物,从而达到污水处理的效果。
活性炭是使用最早、最广的吸附剂,可以吸附多种重金属,吸附容量大,但是活性炭价格昂贵,使用寿命短,需要再生且再生费用不低。一些天然廉价材料,如沸石、橄榄石、高岭土、硅藻土等,也具有较好的吸附能力,但由于各种原因,几乎没有得到工程应用。
以沸石作为吸附剂处理电镀废水,发现在静态条件下,沸石对镍、铜和锌的吸附容量分别达到5.9、4.8和2.7mg/g.先以磁性生物炭去除电镀废水中的Cr(vI),
然后通过外部磁场分离,使得cr(VI)的去除率达到97.11%。而在10rain的磁选后,浊度由4075NTU降至21.8NTU。其研究还证实了吸附过程后,磁性生物炭仍保留原来的磁分离性能。近年来又研制开发了一些新型吸附材料,如文中提到的生物吸附剂以及纳米材料吸附剂。
纳米技术是指在1~100nm尺度上研究和应用原子、分子现象,由此发展起来的多学科交叉、基础研究与应用紧密联系的科学技术。纳米颗粒由于具有常规颗粒所不具备的纳米效应,因而具有更高的催化活性。
纳米材料的表面效应使其具有高的表面活性、高表面能和高的比表面积,所以纳米材料在制备高性能吸附剂方面表现出巨大的潜力。雷立等l采用温和水热法一步快速合成了钛酸盐纳米管(TNTs),并应用于对水中重金属离子Pb(II)、cd(II)和Cr(III)的吸附。
结果表明:pH=5时,初始浓度分别为200、100和50mg/L的Pb(II)、Cd(II)和Cr(III)在TNTs上的平衡吸附量分别为513.04、212.46和66.35mg/L,吸附性能优于传统吸附材料。纳米技术作为一种高效、节能环保的新型处理技术,得到人们的广泛认同,具有很大的发展潜力。
09 光催化技术
光催化处理技术具有选择性小、处理效率高、降解产物彻底、无二次污染等特点。
光催化的核心是光催化剂,常用的有TiO2、ZnO、WO3、SrTiO3、SnO2和Fe2O3。其中TiO2具有化学稳定性好、无毒、兼具氧化和还原作用等诸多特点。TiO:在受到一定能量的光照时会发生电子跃迁,产生电子一空穴对。
光生电子可以直接还原电镀废水中的金属离子,而空穴能将水分子氧化成具有强氧化性的OH自由基,从而把很多难降解的有机物氧化成为COz、H:0等无机物,被认为是最有前途、最有效的水处理方法之一。
以悬浮态的TiO2为催化剂,在紫外光的作用下对络合铜废水进行光催化反应。结果表明:当TiO2投加量为2g/L,废水pH=4时,在300W高压汞灯照射下,载入60mL/min的空气反应40rain,对120mg/LEDTA络合铜废水中Cu(II)与COD的去除率分别达到96.56%和57.67%。实施了“物化一光催化一膜”处理电镀废水的工程实例,出水COD去除率达到70%以上,同时TiO2光催化剂可重复使用。
膜法的引入可大大提高水质,使处理后水质达到中水回用标准,提高了电镀废水的资源化利用率,回用率达到85%以上,大大节约了成本。然而光催化技术在实际应用中受到了很多的限制,如重金属离子在光催化剂表面的吸附率低,催化剂的载体不成熟,遇到色度大的废水时处理效果大幅下降,等等。不过光催化技术作为高效、节能、清洁的处理技术,将会有很大的应用前景。欣格瑞水处理专家
10 重金属捕集剂
重金属捕集剂又叫重金属螯合剂,它能与废水中的绝大部分重金属离子产生强烈的螯合作用,生成的高分子螯合盐不溶于水,通过分离就可以去除废水中的重金属离子。
重金属捕集剂处理后的重金属废水中剩余的重金属离子浓度大部分都能达到国家排放标准。以二硫代氨基甲酸盐重金属离子捕集剂XMT探讨了不同因素对Cu的捕集效果,对Cu去除率在99%以上,出水Cu浓度小于0.05mg/L,出水远低于GB21900-2008的“表3”标准。
选取3种市售重金属捕集剂对实际电镀废水中的Cu2+、Zn2+、Ni进行同步深度处理,发现三聚硫氰酸三钠(简称TMT)对Cu的去除效果最为显著,投加量少且效果稳定,但对Ni的去除效果较差。甲基取代的二硫代氨基甲酸钠(以Me2DTC表示)的适用性最强,对3种重金属离子均具有良好的去除效果,可达到GB21900-2008中的“表3”排放标准,且在DH=9.70时处理效果最佳。至于乙基取代的二硫代氨基甲酸钠(Et2DTC),对Ni的去除效果不佳。
重金属捕集剂因高效、低能、处理费用相对较低等特点而有很大的实用性。

阅读全文

与纳滤脱硫废水相关的资料

热点内容
加仑反渗透膜 浏览:210
反渗透膜对产水有什么影响 浏览:213
农村生活污水处理排放标准 浏览:924
25方钠离子交换器每小时废水量 浏览:234
二氧化碳碱酚醛树脂 浏览:441
ffu空气净化器什么价格 浏览:755
怎么辨别是纯净水 浏览:815
wY在污水中表示什么意思 浏览:832
氰化物蒸馏液能放过夜吗 浏览:596
奥琳德净水器保健效果怎么样 浏览:686
水性树脂测固含取多重 浏览:470
CBC树脂 浏览:175
农村水净化用什么净水器好 浏览:969
树脂摆件能带上飞机吗 浏览:963
污水提升器一直开着 浏览:271
饮水机保鲜定时是什么意思 浏览:23
edi能用几年 浏览:303
购买松下空调过滤网 浏览:184
餐饮店排污水怎么办 浏览:316
安吉尔陶氏ro膜价格 浏览:40