『壹』 离交的工作原理
工作原理就是离子的交换。
运行时:阳树脂(H-R)+(M+)-->:(M-R)+(H+)
阴树脂(OH-R)+(X-)-->:(X-R)+(OH-)
其中M+为金属离子,X-为阴离子。
再生过程为其逆过程。
离子交换器的失效控制
离子交换除盐水处理最简单的流程为 阳床-阴床 组成的一级复床除盐系统。有的一级复床除盐系统采用单元制,即每套一级复床除盐系统包括 阳床、(除碳器)、阴床各一台,在离子交换除盐运行过程中,无论是阳床还是阴床先失效,都是同时再生;还有的一级复床除盐系统采用母管制,即阳床与阳床或阴床与阴床是并联运行的,哪一台交换器失效就再生哪一台。
1 检测和控制原理
强酸性阳树脂对水中各种阳离子的吸附顺序为:Fe3+>Al3+>Ca2+>Mg2+>Na+>H+. ;由此可知,水中金属离子Na+被吸附的能力最弱,所以当离子交换时树脂层的各种离子吸附层逐渐下移,H+.最后被其他阳离子置换下来,当保护层穿透时,首先泄漏的是最下层的Na+;因此监督阳离子交换器失效是以漏钠为标准的;其反应方程为(A代表金属阳离子,R为树脂基团):
An+ +nRH=RnA+n H+
HCO3- + H+ =H2O+CO2↑
强碱性阴树脂对水中各种阴离子的吸附顺序为:SO42->NO3->Cl->OH->HCO3->HSiO3- 。由此可知,HSiO3-的吸附能力最弱,所以当离子交换时树脂层的各种离子吸附层逐渐下移,OH-.被其他阴离子置换下来,当保护层穿透时,首先泄漏的是最下层的HSiO3-;因此监督阴离子交换器失效是以漏硅为标准的;其反应方程为(B代表酸根阴离子,R为树脂基团):
Bm- +mROH=RmB+mOH-
2 控制点和控制方法
由于母管制系统包含了单元制系统,而且它具有能充分使用树脂、提高交换器的出水能力、降低酸碱消耗等优点,我们在研究中主要讨论以这种结构为基础的离子交换除盐水处理系统。
以成都生物制品研究所蛋白分离车间纯水站为例,该系统为母管制水处理系统,系统的结构为:砂滤-活性炭过滤-粗滤-阳床- 一阴-二阴-混床-精滤-纯水罐,系统产水能力为5 t/h,在系统的失效控制研究中,我们提出单元失效控制概念,也就是充分利用了母管制制水系统的优点对系统进行失效控制。
(1)RO对各有机溶质的去除率大于NF膜。(2)不同有机溶质的去除率不相同,有的甚至相差很大(例如,RO和NF膜对乙酸的吸光度去除率分别为95.34%、81.45%,而对苯胺的吸光度去除率则分别为61.50%、46.82%)。
3 出水水质
原水经一级复床除盐后,电导率(25℃)低于10μS/cm,水中硅含量低于100μg/
『贰』 下列离子在强酸性阳离子交换树脂的交换次序
由于你提供的离子交换排代次序没有说明在什么样的介质情况下,尤其是放射性的离子选择性会在不同介质下更为敏感,所以我只能回答您常规水处理的一般应用数据,具体分析回答如下:
离子交换树脂对水中各种离子的交换能力是不同的,即有些离子易被离子交换树脂吸着,但吸着后要把它解吸下来就比较困难;反之,有些离子则难被离子交换树脂吸着,但易被解吸,这种性能称为离子交换树脂的选择性。这种选择性影响到离子交换树脂的交换和再生过程。
它有两个规律:
(1)离子带的电荷越多,越易被离子交换树脂吸着,例如两价离子比一价离子易被吸着;
(2)对于带有相同电荷量的离子,则原子序数大的元素,形成离子的水合半径小,较易被吸着。
对于阳离子交换树脂来说,它对水中各种常见离子的选择性次序为:
Fe3+ >Al3+ >Ca2+ >Mg2+ >K+ ≈NH4+ >Na+ >Li+
这个次序只适合于在含盐量不很高的水溶液中。在浓溶液中,离子间的干扰较大,且水合半径的大小顺序和上述的次序也有些差别,其结果是使得在浓溶液中各离子间的选择性差别较小。
离子交换树脂的选择性除了和被吸着离子的本质有关外,还与离子交换树脂的结构,特别是与其活性基团有关。例如含磺酸基(-SO3-)的强酸性阳离子交换树脂对H+的吸着能力并不很强,在选择性次序中H+居于Na+和Li+之间,即:
Fe3+ >Al3+ >Ca2+ >Mg2+ >K+ ≈NH4+ >Na+ >H+ >Li+;
而含有羧酸基(-COO-)的弱酸性阳离子交换树脂,对H+有特别强的吸着能力,H+的选择性甚至比Fe3+还强,即:
H+ >Fe3+ >Al3+ >Ca2+ >Mg2+ >K+ ≈NH4+ >Na+ >Li+。
『叁』 离子交换柱的阳,阴离子交换树脂顺序,哪个前哪个后
广州华膜--树脂产品的贮存:
离子交换树脂内含一定量的水份,在运输及贮存过程中应尽量保持这部分水份,如贮存过
程中树脂脱了水应先用浓食盐水(10%)浸泡,再逐渐稀释不得直接放入水中,以免树脂急剧
膨胀而破碎。在长期贮存中,强型树脂应转成盐型,弱型树脂可转变成相应的氢型或游离型,
也可转变成盐型,然后浸泡在洁净的水中。树脂在贮存或运输过程中,应保持在5-40℃的温度
环境中避免过冷过热,影响质量。
新树脂的预处理:
新树脂常含有溶剂、未参加聚合反应的物质和少量低聚合物,还可能吸着铁、铝、钢等重
金属离子。当树脂与水、酸、碱或其他溶液相接触时,上述可溶性杂质就会转入溶液中,在使
用初期污染出水水质。所以,新树脂在投运前要进行预处理。
1、 阳树脂预处理步骤如下:
首先使用饱和的食盐水。取其量约等于被处理树脂体积的两倍,将树脂置于10%食盐溶液
中浸泡18-20小时,然后放出食盐水,用清水漂洗净,使排出水不带黄色;其次再用
2%-4%NaOH溶液,其量与上相同,在其中浸泡2-4小时(或作小流量清洗),放出碱液后,重洗
树脂直至排出水接近中性为止;最后用5%HCI溶液,其量亦与上述相同,浸泡4-8小时后放出酸
液,用清水洗至中性待用。
2、 阴树脂的预处理
其预处理方法中的第一步与阳树脂预处理方法中的第一步相同;而后用5%HCI浸泡4-8小时,然后放出酸液,用水清洗至中性;而后用2%-4%NaOH溶液浸泡4-8小时后,放碱液用清水漂洗至
中性待用。
『肆』 离子交换器怎么操作
离子交换器的操作步骤:
(1) 运行操作:运行时,由交换器底部进水,顶部出水。需开启出 水阀门和进水阀门。 (2) 落床操作:当树脂失效时(化验出水水质不合格时),进行落床 操作。为了避免乱层,采用排水落床方式。需开启空气阀门和正洗排放阀门,快速的把水放完后关闭两个阀门。
(3) 再生操作:再生时,从交换器顶部进再生液,流速要慢,再生 时间为40—50分钟。先打开再生进盐门和正洗排放门,再检查再生泵上的阀门为开启状态,然后启动再生泵的电源开关,启动“开”的按钮,直到再生液进完,启动“停”的按钮,最后关闭再生进盐阀门和正洗排放阀门。
(4) 浸泡操作:即让再生液浸泡在交换器内,时间大约为50—60 分钟。若急需用水,此操作步骤可省略。
(5) 置换及正洗操作:置换时需开启正洗进水阀门和正洗排放阀门, 废液排放的流速要慢,控制流速4—5m/h。置换时间大约为30—40分钟。正洗时仍开启正洗进水阀门和正洗排放阀门。正洗时流速要快,时间大约为10—20分钟。此时需从排放口取水样,化验水样的硬度,当水样的硬度≤0.08mmol/L停止正洗,关闭所有阀门。
(6) 启床及清洗操作:启动离子交换器时要迅速进水,进行托床, 流速为30—50m/h,在2—3分钟内就成床,此时进行清洗,出水排放,清洗至水样透明,化验水质合格后,方可投入运行,需先开启进水阀门和反洗排放阀门,合格后开出水阀门,关闭反洗排放阀门,进行正常运行。
『伍』 离子交换原理
离子交换的基本原理 离子交换的选择性定义为离子交换剂对于某些离子显示优先活性的性质。离子交换树脂吸附各种离子的能力不一,有些离子易被交换树脂吸附,但吸着后要把它置换下来就比较困难;而另一些离子很难被吸着,但被置换下来却比较容易,这种性能称为离子交换的选择性。离子交换树脂对水中不同离子的选择性与树脂的交联度、交换基团、可交换离子的性质、水中离子的浓度和水的温度等因素有关。离子交换作用即溶液中的可交换离子与交换基团上的可交换离子发生交换。一般来说,离子交换树脂对价数较高的离子的选择性较大。对于同价离子,则对离子半径较小的离子的选择性较大。在同族同价的金属离子中,原子序数较大的离子其水合半径较小,阳离子交换树脂对其的选择性较大。对于丙烯酸系弱酸性阳离子交换树脂来说,它对一些离子的选择性顺序为:H+>Fe3+>A13+>Ca2+>Mg2+>K+>Na十。 离子交换反应是可逆反应,但是这种可逆反应并不是在均相溶液中进行的,而是在固态的树脂和溶液的接触界面间发生的。这种反应的可逆性使离子交换树脂可以反复使用。以D113型离子交换树脂制备硫酸钙晶须为例说明: D113丙烯酸系弱酸性阳离子交换树脂是一种大孔型离子交换树脂,其内部的网状结构中有无数四通八达的孔道,孔道里面充满了水分子,在孔道的一定部位上分布着可提供交换离子的交换基团。当硫酸锌溶液中的Zn2+,S042-扩散到树脂的孔道中时,由于该树脂对Zn2+选择性强于对Ca2+的选择性,,所以Zn2+就与树脂孔道中的交换基团Ca2+发生快速的交换反应,被交换下来的Ca2+遇到扩散进入孔道的S042-发生沉淀反应,生成硫酸钙沉淀。其过程大致为:
(1)边界水膜内的扩散 水中的Zn2+,S042-离子向树脂颗粒表面迁移,并扩散通过树脂表面的边界水膜层,到达树脂表面; (2)交联网孔内的扩散(或称孔道扩散) Zn2+,S042-离子进入树脂颗粒内部的交联网孔,并进行扩散,到达交换点;
(3)离子交换 Zn2+与树脂基团上的可交换的Ca2+进行交换反应;
(4)交联网孔内的扩散 被交换下来的Ca2+在树脂内部交联网孔中向树脂表面扩散;部分交换下来的Ca2+在扩散过程中遇到由外部扩散进入孔径的S042-发生沉淀反应,生成CaS04沉淀;
(5)边界水膜内的扩散 没有发生沉淀反应的部分Ca2+扩散通过树脂颗粒表面的边界水膜层,并进入水溶液中。 此外,由于离子交换以及沉淀反应的速度很快,硫酸钙沉淀基本在树脂的孔道里生成,因此树脂的孔道就限制了沉淀的生长及形貌,对其具有一定的规整作用。通过调整搅拌速度、反应温度等外界条件,可以使树脂颗粒及其内部孔道发生相应的变化,这样当沉淀在树脂孔道中生成后,就得到了不同尺寸和形貌的硫酸钙沉淀。
『陆』 阳离子交换能力大小顺序
阳离子交换能力大小顺序:Fe3+>Al3+>Ca2+>Mg2+>K+≈NH4+>Na+>Li+。
离子交换树脂对水中各种离子的交换能力是不同的,即有些离子易被离子交换树脂吸着,但吸着后要把它解吸下来就比较困难;反之,有些离子则难被离子交换树脂吸着,但易被解吸,这种性能称为离子交换树脂的选择性。这种选择性影响到离子交换树脂的交换和再生过程。
含义
如水中的K+会被岩土吸附,而置换岩土吸附的Na+到水中。但是当某种离子的相对浓度增大,则其交替吸附能力也随之增大,如海水入侵陆相沉积物(淡水含水层)时,水中的Na+将置换岩土吸附的部分Ca2+,形成富含Ca2+的地下水。
以上内容参考:网络-阳离子交换作用
『柒』 阳阴离子交换树脂的化学式是什么 阳阴离子交换树脂的反应顺序
离子交换树脂属于高分子化合物,结构比较复杂.离子交换剂的结构可以被区分为两个部分:一部分具有高分子的结构形式,称为离子交换剂的骨架(反应式中用R表示);另一部分是带有可交换离子的基团(称为活性集团),它们化合在高分子骨架上。所谓“骨架”,是因为它具有庞大的空间结构,支持着整个化合物,正象动物的骨架支持着肌体一样,从化学的观点来说,它是一种不溶于水的高分子化合物。
离子交换反应如下
离子交换反应是可逆的,例如当以含有硬度的水通过H型离子交换树脂时,其反就如下式:
2RH + Ca2+ → R2Ca + 2H+
当反应进行到失效后,为了恢复离子交换树脂的交换能力,就可以利用离子交换反应的可逆性,用硫酸或盐酸溶液通过此失效的离子交换树脂,以恢复其交换能力,其反应如下:
R2Ca + 2H+ → 2RH + Ca2+
这两种反应,实质上就是可逆反应式(1-1)化学平衡的移动。当水中Ca2+和H型离子交换树脂多时,反应正向进行,反之,则逆向进行。
2RH + Ca2+ ←→ R2Ca + 2H+
离子交换反应的可逆性,是离子交换树脂可以反复使用的重要性质。
影响离子交换树脂选择性的因素很多,例如交换离子的种类、树脂的本质、溶液的浓度等。离子交换的选择性实际上是离子交换平衡的一种表现。
对于阳离子交换来说,此种顺序的规律比较明显,在稀溶液中,强酸性阳树脂对常见阳离子的选择性顺序如下:
Fe3+>Al3+>Ca2+>Mg2+>K+≈NH4>Na+>H+
这可以归纳为两个规律:离子所带电荷量愈大,愈易被吸取;当离子所带电荷量相同时,离子水合半径较小的易被吸取。
对于弱酸性阳树脂,H+的位置向前移动,例如羧酸型树脂对H+选择性居于Fe3+之前。在浓溶液中,选择性顺序有一些不同,某些低价离子会居于高价离子之前。
弱碱树脂 (胺, 通常为三甲胺)它们只能去除强酸型杂质离子,例如 HCl, H2SO4. 它们只能在酸性溶液中使用。
基本规律 (在稀溶液中)
三价离子 > 二价离子 > 单价离子
磺酸型强酸阳树脂(SAC)
Ba > Pb > Sr > Ca > Ni > Cu > Mg
Ag >> Cs > K > NH4 > Na > H > Li
季胺型强碱阴树脂 (SBA)
SO4 > CrO4 > NO3 > CH3COO > I > Br > Cl > F > OH
弱碱性阴离子树脂对阴离子的吸附的一般顺序如下:
OH-> 柠檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3-
希望对你有用
『捌』 离子交换层析中流出物质顺序是什么
若用离子交换层析分离物质,以蛋白质为例,离子交换层析中,基质是由带有电荷的树脂或纤维素组成。带有正电荷的称之阴离子交换树脂;而带有负电荷的称之阳离子树脂。离子交换层析同样可以用于蛋白质的分离纯化。
由于蛋白质也有等电点,当蛋白质处于不同的pH条件下,其带电状况也不同。阴离子交换基质结合带有负电荷的蛋白质,所以这类蛋白质被留在柱子上,然后通过提高洗脱液中的盐浓度等措施,将吸附在柱子上的蛋白质洗脱下来。结合较弱的蛋白质首先被洗脱下来。
反之阳离子交换基质结合带有正电荷的蛋白质,结合的蛋白可以通过逐步增加洗脱液中的盐浓度或是提高洗脱液的pH值洗脱下来。
(8)离子交换运行顺序扩展阅读:
对于离子交换纤维素要用流水洗去少量碎的不易沉淀的颗粒,以保证有较好的均匀度,对于已溶胀好的产品则不必经这一步骤。
溶胀的交换剂使用前要用稀酸或稀碱处理,使之成为带H+或OH-的交换剂型。阴离子交换剂常用“碱-酸-碱”处理,使最终转为-OH-型或盐型交换剂;对于阳离子交换剂则用“酸-碱-酸”处理,使最终转为-H-型交换剂。
梯度不要上升太快,要恰好使移动的区带在快到柱末端时达到解吸状态。目的物的过早解吸,会引起区带扩散;而目的物的过晚解吸会使峰形过宽。
『玖』 离子交换器怎么操作
离子交换器有很多种,以床型来分,有固定床、浮动床、移动床、流动床等内等,不同的床型容,自然操作程序也不同。比方:单纯的固定床有顺流再生工艺,也有逆流再生工艺,但它们的操作程序也不同。所以你就问一个怎么操作,谁又晓得你使用的是什么形式的离子交换器...。