导航:首页 > 净水问答 > 离子交换与吸附离子

离子交换与吸附离子

发布时间:2022-06-28 19:20:16

① 吸附法和离子交换

以各类阴、阳离子交换树脂为固定相的离子交换法,以萃淋树脂为固定专相的萃淋法,以螯合树属脂、螯合纤维、活性炭、聚氨酯泡沫塑料、巯基棉及黄原脂棉等固定相的螯合-吸附法以广泛用于贵金属的分离与富集。

在HCl介质中,贵金属氯配阴离子与阴离子交换树脂相互作用的强度决定于配阴离子的电荷数,其中双电荷的[PtCl42-、[PdCl42-、[PtCl62-、[IrCl62-、[RuCl62-、[OsCl62-牢固地吸附于树脂上,而三电荷的[IrCl63-、[RhCl63-、[RuCl63-仅有很弱的亲和力。铑、钌的配合物。由于其配合物在溶液中电荷的可变性,因此它们的吸附强度也随其电荷数而变化。在实际应用中应考虑这一特性。

② 吸附容量和离子交换容量的区别

吸附容量指的是滤料或离子交换剂吸附某种物质或离子的能力。 即吸附量,在固定床吸附时,达到透过点时的透过容量为吸附容量。吸附装置的吸附容量指在一定的运转条件下(包括再生切换在内)的吸附量,由于吸附剂经多次使用后会发生劣化的现象,故设计吸附装置时,常采用运转条件下的吸附容量为设计吸附容量
离子交换容量:离子交换膜中所含反离子的量

③ 离子交换树脂和吸附树脂的结构有什么区别

  1. 离子交换树脂出三部分组成:一是网状结构的高分子骨架.二是连接在骨架上的功能基团,三是和功能基带相反电荷的可交换离子。三者互为依存、统一于每粒离子交换的珠体之中。离于交换树脂作为商品,它在运输、贮藏和使用时往往部含一定量的水份,因此水分子充满于每粒离子交换树脂的骨架、功能基和反离子之间。

  2. 采用常规的悬浮聚合方法,可制得凝胶型的离子交换树脂,产品一般是透明的、无孔的,树脂吸水后树脂相内产生微孔。采用制孔技术可制得大孔型离子交换树脂,它不同于凝胶树脂,不论大孔树脂是处于干态或湿态、收缩或溶胀,都存在着比凝胶型树脂更多、更大的孔道,比表面也就更大,有利于离子的迁移扩散,提高交换速率和工作效率

  3. 与离子交换树脂相比较,吸附树脂的组成中不存在功能基及功能基的反离子,它类似于不含功能基及功能基反离子的大孔树脂,在制造时往往投入更多的交联剂和更严格地选用致孔剂,以合成具有更大比表而积的不同孔径、不同孔容和不同比表面积的吸附树脂。

  4. 根据所带的功能基的特性,离子交换树脂可分为阳离子交换树脂、阴离子交换树脂和其它树脂。带有酸性功能基、并能与阳离子进行交换的称为阳离子交换树脂,带有碱性功能基并能与阴离子进行交换的称为阴离子交换树脂。基于功能基上酸、碱有强弱之分,离子交换树脂又可细分为强酸性(一SO,H)、中强酸(一PO(OH))及弱酸性(—COOH)、强碱(一N+R,Cl)、弱碱性(一NH,,—NRH,-NR)离子交换树脂。在强碱性离子交换树脂中将含有[(N+(CH2)C1)]的树脂叫强碱I型树脂,含有[(N+(CH3)2(CH,CH,0HD]的树脂叫强碱Ⅱ型树脂。带有鳌合基、氧化还原基、阳阴两性基的树脂;分别称为鳌合树脂、氧化还原树脂和两性树脂。上述树脂通常都用酸、碱、盐再生,而弱酸弱碱的两性树脂可用热水再生,故弱酸弱碱的两性树脂又称热再生树脂.

  5. 吸附树脂可以大体上分为非极性吸附剂、中极性和强极性吸附剂三大类。非极性吸附树脂是偶极矩很小的单体聚合制得并不带任何功能基的吸附树脂。苯乙烯——二乙烯苯体系的吸附剂是非极性吸附树脂的代表。这类非极性吸附树脂的孔表面的疏水性很强,最适于从极性溶剂(如水)中吸附非极性的有机物。中极性吸附材脂是含酯基的吸附树脂。例如,丙烯酸甲酯或甲基丙烯酸甲酯与双甲基丙烯酸乙二醇酯等交联剂共聚的吸附剂,其孔表面疏水和亲水部分共有,既可用于极性溶剂中吸附非极性物质,也可用于非极性溶剂中吸附极性物质。强极性(或称极性)吸附树脂是指含酰氨基、氰基、酚羟基等极性功能基的吸附树脂,它适用于非极性溶剂中吸附极性物质。有时,将含氮、氧、硫等配体的离子交换树脂也称为强极性吸附树脂,因此,离子交换树脂和强极性吸附树脂之间没有严格的界限。

④ 什么是土壤离子吸附与交换作用

植物在生活状态下,根细胞呼吸作用释放大量二氧化碳,这些二氧化碳溶于土壤溶液生成的碳酸,可以离解成氢离子和碳酸氢根离子,并吸附在根细胞的表面。在土壤溶液中也含有一些阳离子和阴离子。根部细胞表面吸附的阳离子、阴离子与土壤溶液中阳离子、阴离子发生交换的过程就叫交换吸附。离子交换后,盐类离子吸附在根细胞的表面,为根系进一步吸收离子做了准备。而根系附近土壤溶液中的阳离子和阴离子,又会从较远处得到进一步的补充。交换吸附不需要消耗代谢能量,与温度无关,发生的速度也很快。是属于非代谢性的。农业生产上及时中耕,防止土壤板结,其作用之一就是促进根系的呼吸,以大量产生可供交换的氢离子和碳酸氢根离子。
离子交换
借助于固体离子交换剂中的离子与稀溶液中的离子进行交换,以达到提取或去除溶液中某些离子的目的,是一种属于传质分离过程的单元操作。离子交换是可逆的等当量交换反应。

⑤ 吸附树脂和离子交换树脂有区别吗,是一样的吗

吸附树脂和离子交换树脂有区别吗,是一样的吗?
1.
离子交换树脂出三部分组成:一是网状结构的高分子骨架.二是连接在骨架上的功能基团,三是和功能基带相反电荷的可交换离子。三者互为依存、统一于每粒离子交换的珠体之中。离于交换树脂作为商品,它在运输、贮藏和使用时往往部含一定量的水份,因此水分子充满于每粒离子交换树脂的骨架、功能基和反离子之间。
2.
采用常规的悬浮聚合方法,可制得凝胶型的离子交换树脂,产品一般是透明的、无孔的,树脂吸水后树脂相内产生微孔。采用制孔技术可制得大孔型离子交换树脂,它不同于凝胶树脂,不论大孔树脂是处于干态或湿态、收缩或溶胀,都存在着比凝胶型树脂更多、更大的孔道,比表面也就更大,有利于离子的迁移扩散,提高交换速率和工作效率
3.
与离子交换树脂相比较,吸附树脂的组成中不存在功能基及功能基的反离子,它类似于不含功能基及功能基反离子的大孔树脂,在制造时往往投入更多的交联剂和更严格地选用致孔剂,以合成具有更大比表而积的不同孔径、不同孔容和不同比表面积的吸附树脂。
4.
根据所带的功能基的特性,离子交换树脂可分为阳离子交换树脂、阴离子交换树脂和其它树脂。带有酸性功能基、并能与阳离子进行交换的称为阳离子交换树脂,带有碱性功能基并能与阴离子进行交换的称为阴离子交换树脂。基于功能基上酸、碱有强弱之分,离子交换树脂又可细分为强酸性(一SO,H)、中强酸(一PO(OH))及弱酸性(—COOH)、强碱(一N+R,Cl)、弱碱性(一NH,,—NRH,-NR)离子交换树脂。在强碱性离子交换树脂中将含有[(N+(CH2)C1)]的树脂叫强碱I型树脂,含有[(N+(CH3)2(CH,CH,0HD]的树脂叫强碱Ⅱ型树脂。带有鳌合基、氧化还原基、阳阴两性基的树脂;分别称为鳌合树脂、氧化还原树脂和两性树脂。上述树脂通常都用酸、碱、盐再生,而弱酸弱碱的两性树脂可用热水再生,故弱酸弱碱的两性树脂又称热再生树脂.
5.
吸附树脂可以大体上分为非极性吸附剂、中极性和强极性吸附剂三大类。非极性吸附树脂是偶极矩很小的单体聚合制得并不带任何功能基的吸附树脂。苯乙烯——二乙烯苯体系的吸附剂是非极性吸附树脂的代表。这类非极性吸附树脂的孔表面的疏水性很强,最适于从极性溶剂(如水)中吸附非极性的有机物。中极性吸附材脂是含酯基的吸附树脂。例如,丙烯酸甲酯或甲基丙烯酸甲酯与双甲基丙烯酸乙二醇酯等交联剂共聚的吸附剂,其孔表面疏水和亲水部分共有,既可用于极性溶剂中吸附非极性物质,也可用于非极性溶剂中吸附极性物质。强极性(或称极性)吸附树脂是指含酰氨基、氰基、酚羟基等极性功能基的吸附树脂,它适用于非极性溶剂中吸附极性物质。有时,将含氮、氧、硫等配体的离子交换树脂也称为强极性吸附树脂,因此,离子交换树脂和强极性吸附树脂之间没有严格的界限。

⑥ 试述土壤中阳离子交换与吸附作用对污染物的迁移转化的影响

阳离子交换使土壤比较重要的性质之一,使土壤本身的特有属性,主要原因就是土壤胶体的负电特性,其电荷分为可变电荷和固定电荷,当pH较低时(到达等电点时),整个性质就会发生变化。阳离子交换,顾名思义,负电荷的土壤胶体表面吸附有一些可交换态的阳离子如K、Mg、Ca等,当污染物特别是重金属类物质与土壤接触时,由于其于土壤胶体表面基团具有更强的结合能力,从而取代部分正电性基团,但是阳离子交换过程并不稳定,属于静电作用,因此自身并不稳定,如上述内容所说,易受pH影响,低pH条件下容易被淋洗。同时由于其具有很强的水溶性,因此生物有效性较高,容易被动植物吸收而贮藏在体内,是土壤化学反应较为活跃的一部分,受土壤环境影响较大。

吸附作用是一种泛称,涉及内容较多,分配、离子交换、络合等都包括在内,以有机质吸附为例,土壤环境中存在很多的有机污染物如农药(有机氯、有机磷)、PAH、PCBs等,通过分配作用,这些污染物易与土壤中的腐殖质、植物残体、黑炭等结合,这一过程既可以促进有机污染物的分解,也可以抑制该过程。例如一些污染物进入当碳粒内部,从而抑制微生物的降解,也就限制了污染物的降解,但是也有一部分可能络合在碳颗粒表面,碳粒表层有较大的比表面积,提供了大量的微生物附着位点,为其降解提供了条件,本身也可以当做电子受体。
这一问题应因具体环境而异,因污染物性质变化而异,环境是复杂的体系,具体结果如何完全看如何读复杂过程进行解读,现在很多过程还是无法解释清楚的,我们目前位置更多的是控制条件,找出影响因素,因此并不是虽有条件都适用的。

⑦ 离子交替吸附作用

离子交替吸附作用主要发生在具有固定电荷的固体矿物表面,无论是阳离子还是阴离子,均可发生交替吸附作用,但目前研究得较多的是阳离子交替吸附作用。离子交替吸附作用的一个重要特点就是,伴随着一定量的一种离子的吸附,必然有等当量的另一种同号离子的解吸(图2-5-4)。离子交替吸附作用之所以具有这样的特点,主要是由于吸附剂通常都具有一定的离子交换容量,因此这里首先对离子交换容量予以讨论。

图2-5-3 有机质表面的负电荷

图2-5-4 阳离子交替吸附作用图解

2.5.2.1 离子交换容量

离子交换容量包括阳离子交换容量(CEC—Cation Exchange Capacity)和阴离子交换容量(AEC—Anion Exchange Capacity),我们主要讨论阳离子交换容量,它被定义为每100 g干吸附剂可吸附阳离子的毫克当量数。例如,在蒙脱石的结晶格架中,铝八面体中的三价铝可被二价镁所置换,根据测定,每摩尔蒙脱石中镁的含量为0.67 mol,即蒙脱石的分子式为:Si8Al3.33Mg0.67O20(OH)4。已知蒙脱石的分子量是734 g,因此这种蒙脱石的阳离子交换容量为:

水文地球化学

在实际中,通常都是通过实验来测定吸附剂的阳离子交换容量。尤其是对于野外所采取的土样或岩样,由于其中含有多种吸附剂,实验测定往往是唯一可行的方法。阳离子交换容量的实验测定在多数情况下都是用pH为7的醋酸铵溶液与一定量固体样品混合,使其全部吸附格位被所饱和,然后用其他溶液(例如NaCl溶液)把被吸附的全部交换出来,达到交换平衡后,测定溶液中Na+的减少量,据此便可计算样品的阳离子交换容量。表252列出了一些粘土矿物及土壤的阳离子交换容量,由表可见,与土壤相比,矿物的阳离子交换容量有更大的变化范围。

松散沉积物的阳离子交换容量受到了多种因素的影响,主要有:

(1)沉积物中吸附剂的种类与数量。例如,我国北方土壤中的粘土矿物以蒙脱石和伊利石为主,因此其CEC值较大,一般在20 meq/100 g以上,高者达50 meq/100 g以上;而南方的红壤,由于其有机胶体含量少,同时所含的粘土矿物多为高岭石及铁、铝的氢氧化物,故CEC较小,一般小于20 meq/100 g。

表2-5-2 一些粘土矿物及土壤的阳离子交换容量

(2)沉积物颗粒的大小。一般来说,沉积物的颗粒越小,其比表面积越大,CEC值越高。例如,根据一河流沉积物的粒径及其CEC的实测结果,随着沉积物的粒径为从4.4μm增至1000μm,其CEC从14~65 meq/100 g变到4~20 meq/100 g,最终减小到0.3~13 meq/100 g。

(3)水溶液的pH值。一般来说,随着水溶液pH值的增加,土壤表面的可变负电荷量增多,其CEC相应增加;相反,随着水溶液pH值的减小,土壤表面的可变负电荷量不断减少,其CEC也随之减小。

2.5.2.2 阳离子交换反应及平衡

阳离子交换反应的一般形式可写为:

水文地球化学

式中:Am+、Bn+表示水溶液中的A、B离子;AX、BX表示吸附在固体表面的A、B离子。上述反应的平衡常数可写为:

水文地球化学

式中:a标记溶液中组分的活度;{}表示表示吸附在固体表面上的离子的活度。对于水溶液中的离子,其活度可使用表2-1-1中的公式进行计算;但对于吸附在固体表面上的离子,其活度的计算至今还没有满意的方法。目前主要采用两种替代的方法来处理这一问题,一种是Vanselow惯例,另一种是Gaines-Thomas惯例。Vanselow惯例是由Vanselow于1932年提出的,他建议使用摩尔分数来代替式(2-5-7)中的{AX}和{BX}。若固体表面仅吸附了A离子和B离子,在一定重量(100 g)的吸附剂表面A、B的含量(mmol)依次为qA和qB,则吸附剂表面A、B的摩尔分数分别为:

水文地球化学

显然,xA+xB=1。这样式(2-5-7)可改写为:

水文地球化学

Gaines-Thomas惯例是由Gaines和Thomas于1953年提出的,他们建议采用当量百分数来代替式(2-5-7)中的{AX}和{BX}。若用yA和yB分别表示吸附剂表面A、B的当量百分数,则有:

水文地球化学

同样,yA+yB=1,这样式(2-5-7)变为:

水文地球化学

目前,这两种惯例都还在被有关的研究者所使用,各有优点,互为补充。事实上,离子交换反应的平衡常数并不是一个常数,它往往随着水溶液的成分、pH值及固体表面成分的变化而变化,因此许多研究者认为将其称为交换系数(Exchange Coefficient)或选择系数(Selectivity Coefficient)更合适一些(Appelo,1994;Deutsch,1997;Benefield,1982;Kehew,2001)。

若已知两种不同离子与同一种离子在某种吸附剂中发生交换反应的交换系数,则可计算出这两种离子发生交换反应的交换系数。例如,若在某种吸附剂中下述反应:

水文地球化学

交换系数分别为KCa-Na和KK-Na,则在该吸附剂中反应:

水文地球化学

的交换系数为:

水文地球化学

这是因为(以Vanselow惯例为例):

水文地球化学

故有:

水文地球化学

表2-5-3列出了不同离子与Na+发生交换反应的交换系数(Vanselow惯例),据此便可按照上述的方法求得这些离子之间发生交换反应时的交换系数。

需要说明的是,在表2-5-3中,I离子与Na+之间交换反应的反应式为:

水文地球化学

表2-5-3 不同离子与Na+发生交换反应时的交换系数

其交换系数的定义式如下:

水文地球化学

【例】在某地下水系统中,有一段含有大量粘土矿物、因此具有明显阳离子交换能力的地段,假定:

(1)该地段含水层的阳离子交换容量为100 meq/100 g,含水层中的交换性阳离子只有Ca2+和Mg2+,初始状态下含水层颗粒中Ca2+、Mg2+的含量相等;

(2)在进入该地段之前,地下水中的Ca2+、Mg2+浓度相等,均为10-3 mol/L;

(3)含水层的孔隙度为n=0.33,固体颗粒的密度为ρ=2.65 g/cm3

(4)含水层中发生的阳离子交换反应为:

水文地球化学

不考虑活度系数的影响,其平衡常数(Vanselow惯例)为:

水文地球化学

试使用阳离子交换平衡关系计算,当地下水通过该地段并达到新的交换平衡后,水溶液中及含水层颗粒表面Ca2+、Mg2+浓度的变化。

【解】:设达到新的交换平衡后,含水层颗粒中Ca2+的摩尔分数为y、水溶液中Ca2+的浓度为x(mmol/L),则这时含水层颗粒中Mg2+的摩尔分数为1-y、水溶液中Mg2+的浓度为2-x(mmol/L),故有:

水文地球化学

整理得:

水文地球化学

已知含水层的CEC=100 meq/100g,因此对于二价阳离子来说,含水层颗粒可吸附的阳离子总量为50 mmol/100 g=0.5 mmol/g。若用z表示达到交换平衡后1 g含水层颗粒中Ca2+的含量,则有:

水文地球化学

以式(2-5-25)带入式(2-5-24)得:

水文地球化学

为了计算上述变化,需要对1 L水所对应的含水层中Ca2+的质量守恒关系进行研究。已知含水层的孔隙度为0.33,显然在这样的含水层中,1 L水所对应的含水层颗粒的体积为0.67/0.33(L),相应的含水层颗粒的质量为:

水文地球化学

故吸附作用前后1 L水所对应的含水层中Ca2+的质量守恒关系为:

水文地球化学

式中的0.25为吸附作用前1 g含水层颗粒中Ca2+的含量(mmol),由式(2-5-27)可得:

水文地球化学

以式(2-5-26)带入式(2-5-28)并整理得:

水文地球化学

这是一个关于z的一元二次方程,求解该方程可得:z=0.2500627 mmol/g。代z入式(2-5-25)和式(2-5-26)可得达到新的交换平衡后含水层颗粒中Ca2+的摩尔分数为0.5001254,水溶液中Ca2+的浓度为0.75 mmol/L,故这时含水层颗粒中Mg2+的摩尔分数为0.4998746、水溶液中Mg2+的浓度为1.25 mmol/L。由此可见,地下水通过该粘性土地段后,尽管Ca2+、Mg2+在含水层颗粒中的含量变化很小,但它们在地下水中的含量变化却较大,Mg2+从原来的1 mmol/L增加到了1.25 mmol/L,Ca2+则从原来的1 mmol/L减少到了0.75 mmol/L。

2.5.2.3 分配系数及离子的吸附亲和力

除了交换系数,还有一个重要的参数需要介绍,这就是分配系数(Separation Factor)(Benefield,1982)。对于反应(2-5-6),它被定义为:

水文地球化学

式中cA和cB分别为水溶液中A、B离子的摩尔浓度。显然,若不考虑活度系数的影响,对于同价离子间的交换反应,QA-B=KA-B。式(2-5-29)可改写为:

水文地球化学

由式(2-5-30)可见,QA-B反映了溶液中B与A的含量之比与吸附剂表面B与A的含量之比之间的相对关系。当QA-B=1时,说明达到交换平衡时B与A在水溶液中的比例等于其在吸附剂表面的比例,因此对于该吸附剂,A和B具有相同的吸附亲和力;当QA-B>1时,说明达到交换平衡时B与A在水溶液中的比例大于其在吸附剂表面的比例,因此A与B相比具有更大的吸附亲和力;当QA-B<1时,说明达到交换平衡时B与A在水溶液中的比例小于其在吸附剂表面的比例,因此B与A相比具有更大的吸附亲和力。

事实上,即使对于同一阳离子交换反应,其分配系数也会随着水溶液性质的变化而变化(Stumm and Morgan,1996)。图2-5-5给出了Na—Ca交换反应的分配系数随Na+浓度的变化。沿着图中的虚线,QNa-Ca=1,这时Na+和Ca2+具有相同的吸附亲和力。但在稀溶液中,例如[Na+]=10-3 mol/L和10-2 mol/L,Ca2+在吸附剂中的比例要远大于其在水溶液中的比例,因此在这种情况下Ca2+具有更强的吸附亲和力。随着Na+浓度的增大,Ca2+的吸附亲和力逐渐减弱,Na+的吸附亲和力则逐渐增强,当[Na+]=2 mol/L时,Na+已经变得比Ca2+具有更强的吸附亲和力。Na—Ca交换反应分配系数的这种变化对于解释一些实际现象具有重要的意义,根据这种变化,我们可以推断淡水含水层中通常含有大量的可交换的Ca2+,而海水含水层中通常含有大量的可交换的Na+。这种变化关系也解释了为什么硬水软化剂能够选择性地去除Ca2+,同时通过使用高Na+浓度的卤水溶液进行冲刷而再生。

图2-5-5 溶液中Ca2+的含量对吸附作用的影响

根据离子交换反应的分配系数,可以定量地评价离子的吸附亲和力。一般来说,离子在土壤中的吸附亲和力具有下述的规律:

(1)高价离子比低价离子具有更高的吸附亲和力。例如,Al3+>Mg2+>Na+;>。这是因为离子交换反应从本质上说是一个静电吸引过程,离子价越高,所受到的静电吸引力就越大,它就越容易被吸附剂所吸附。

(2)同价离子的吸附亲和力随着离子水化半径的减小而增大。例如,Ca2+>Mg2+>Be2+;>K+>Na+>Li+。这是因为离子的水化半径越小,它越容易接近固体表面,从而也就越易于被固体所吸附。

Deutsch(1997)根据Appelo和Postma(1994)的资料,对二价阳离子的吸附亲和力进行了研究,他所得到了吸附亲和力顺序如下:

水文地球化学

在常见的天然地下水系统中,Ca2+和Mg2+通常为地下水中的主要阳离子,它们在水溶液中相对较高的含量将使其成为含水层颗粒表面的主要吸附离子,尽管一些微量元素可能更紧密地被吸附在含水层颗粒表面上。但在污染地下水系统中,若吸附亲和力更强的Pb2+和Ba2+的含量与Ca2+、Mg2+的含量在同一水平上,则含水层颗粒表面的主要吸附离子将变为Pb2+和Ba2+,这将大大地影响Pb2+和Ba2+在地下水中的迁移能力。

综合来讲,阳离子和阴离子的吸附亲和力顺序分别为(何燧源等,2000):

水文地球化学

可见,阳离子中Li+和Na+最不易被吸附,阴离子中Cl-和最不易被吸附。

离子交换对地下水质产生重要影响的一种常见情况就是海水入侵到淡水含水层中。当在沿海地带大量抽取含水层中的淡水时,海水将对含水层进行补给。初始状态下含水层颗粒表面吸附的主要是Ca2+和Mg2+,海水中的主要阳离子为Na+,阴离子为Cl-。这样入侵的海水将导致含水层中发生下述的阳离子交换反应:

水文地球化学

由于Cl-通常不易被吸附,也不参与其他的水岩作用过程。所以相对于Cl-来说,该过程将使得Na+的迁移能力降低。

地下水系统中另一种常见的情况与上述过程相反,这就是Ca2+置换被吸附的Na+,反应式如下:

水文地球化学

人们在大西洋沿岸的砂岩含水层(Zack and Roberts,1988;Knobel and Phillips,1988)以及北美西部的沉积盆地中(Thorstenson等,1979;Henderson,1985)均发现了这种天然的软化过程。该反应发生的前提条件是:含水层中含有碳酸盐矿物,CO2的分压较高,含水层颗粒中含有大量的可交换的Na+

⑧ 吸附树脂与离子交换树脂之间的关系

离子交换树脂就是吸附树脂中的一种,离子交换树脂是通过吸附来进行离子交换的,吸版附树脂不能吸附气权体,吸附树脂主要是用于水处理方面。

离子交换树脂

离子交换树脂是带有官能团(有交换离子的活性基团)、具有网状结构、不溶性的高分子化合物。通常是球形颗粒物。离子交换树脂的全名称由分类名称、骨架(或基因)名称、基本名称组成。孔隙结构分凝胶型和大孔型两种,凡具有物理孔结构的称大孔型树脂,在全名称前加“大孔”。分类属酸性的应在名称前加“阳”,分类属碱性的,在名称前加“阴”。如:大孔强酸性苯乙烯系阳离子交换树脂。

吸附树脂

吸附树脂指的是一类高分子聚合物,可用于除去废水中的有机物,糖液脱色,天然产物和生物化学制品的分离与精制等。吸附树脂品种很多,单体的变化和单体上官能团的变化可赋予树脂各种特殊的性能。其实吸附树脂指的是一类高分子聚合物,外观一般为直径为0.3~1.0 mm的小圆球,它是最近几年高分子领域里新发展起来的一种多孔性树脂,经常用于废水处理、药剂分离和提纯。

⑨ 吸附法和离子交换法异同

吸附法有物理吸附和化学吸附之分,物理吸附如活性炭,把待吸附物吸附在本身的表面,但是可逆过程,化学吸附是通过化学反应将待吸附物吸附,是不可逆的。而离子交换是在溶液或某种介质下两种物质中得离子发生交换,达到去除某种离子的目的

⑩ 根部离子交换吸附原理

根系吸收矿质的过程
1.离子被吸附在根系细胞表面
Ø根部细胞呼吸作用放出CO2和H2O。CO2溶于水生成H2CO3, H2CO3能解离出H+和HCO3-离子,这些离子同土壤溶液和土壤胶粒上吸附的离子交换,如K+、Cl-、NCO3-等进行交换,使土壤中的离子被吸附到根表面。
Ø离子交换按“同荷等价”的原理进行,即阳离子只同阳离子交换,阴离子只能同阴离子交换,而且价数必须相等。
Ø根系还可分泌出一些柠檬酸、苹果酸等有机酸来溶解一些难溶性盐类,并进一步加以吸收。岩石缝中生长的树木、岩石表面的地衣等植物就是通过这种方式来获取矿质营养的。
http://jpkc.yzu.e.cn/course/zhwshl/nljx/sfja/sfjafile/chap3-2.files/frame.htm#slide0100.htm

阅读全文

与离子交换与吸附离子相关的资料

热点内容
联塑牌110公分污水管怎么样 浏览:223
超滤滤芯过滤最低水压 浏览:390
眼镜是水晶石头的好还是树脂的好 浏览:667
关于母乳电影 浏览:869
地坑过滤器交货 浏览:945
吸管饮水机矿泉水怎么开 浏览:213
排污水属于环境保护费吗 浏览:116
盐酸清RO膜 浏览:591
旧的ro膜可用吗 浏览:816
韩国李恩美的全部影片 浏览:694
刻在心底的名字小说 浏览:835
大美小美在医院是哪个电影 浏览:582
张家港脱脂废水浓缩设备多少钱 浏览:553
反渗透和超滤膜怎么选 浏览:671
美菱家用净水滤心多少钱 浏览:544
精彩小电影网站推荐 浏览:945
三级带有天使名字的电影 浏览:584
浴室沙缸过滤器安装图 浏览:693
饮水机排水阀有什么作用 浏览:494
杨柳净水是什么意思 浏览:897