导航:首页 > 净水问答 > 纳滤浓缩液氧化

纳滤浓缩液氧化

发布时间:2022-06-28 16:28:08

⑴ 工业纳滤膜正确清洗方法是什么

纳滤膜清洗方抄法

一般情况下,清洗时先用低pH值后用高pH值的洗液,这主要与膜上污染物的形成因素有关。系统运行过程中,胶体粒子和有机物污染先在膜上沉积和吸附,形成膜表面的第一层垢,碳酸盐及金属氧化物垢是逐渐形成的,沉积于胶体垢之上,并缓慢渗入胶体中。因此,先用酸性溶液去除上部污垢,并可达到松动下层胶体的作用,然后再用碱性溶液清洗,可快速达到清洗效果。

⑵ 植物化学成分的提取分离纯化方法

分离提纯作为一种重要的化学方法,不仅在化学研究中具有重要作用,在化工生产中也同样具有十分重要的作用。不少重要的化学研究与化工生产,都是以分离提纯为主体的。诺贝尔化学奖金获得者居里夫人正是在极为困难的条件下对沥青铀矿进行反复的分离与提纯,从而发现了钋和镭两种元素的。石油工业通过分离石油中不同的馏分,得到石油气、汽油、煤油等产品。分离提纯的方法一直沿着两个不同的方向在完善。其一是研究如何获得高纯度物质的方向。例如,如何获得纯度高达99.9999%以上的高纯硅。其二是如何将经济的分离提纯方法,应用于大规模的工业生产。例如,钛白粉(二氧化钛)是一种很普通的白色颜料,用于搪瓷、化妆品工业生产等。由于铁矿与钛矿共生的缘故,所制得的钛白粉往往混有铁质,用作颜料或化妆品填料会泛黄。除去铁质的方法在实验室并不太难,但在工业生产上工艺复杂,技术问题颇多,致使基本不含铁的一级品钛白粉与含有少量铁质的二级品钛白粉价格相去甚远。因此,如何使用简便的方法除去钛白粉中的铁,一直是颜料厂科技人员的攻关项目。现在有的地方出现了二级品钛白粉涨库现象(库存过多,销售困难),而一级品却只能依赖进口。如果能使二级品提高为一级品,不仅能满足市场需求,还能减少进口,甚至组织外销出口。分离提纯的方法不拘泥于物理变化还是化学变化。在可能的条件下使样品中的杂质或使样品中各种成分分离开来的变化都可以使用。常用的分离提纯的方法有以下几种:1.分级结晶法。这种方法常用加热蒸发溶液,控制溶液的密度,使其中一部分溶质结晶析出。经反复的操作可以达到分离提纯的目的。2.分步沉淀法。这种方法常选用适宜的试剂或调节pH,使溶液中的某一部分沉淀析出。经反复的操作,也可达到分离提纯的目的。3.选择性氧化还原法。用适宜的氧化剂或还原剂,使混合物中的某些成分氧化或还原,并进一步达到分离提纯的目的。4.吸收、吸附法。用适宜的试剂吸收混合物中的某些成分,例如用烧碱吸收混合气体中的二氧化碳。或者用适宜的物质吸附混合物中有的某些成分,如用活性炭吸附某些气体,从而达到分离提纯的目的。5.液液溶剂萃取法。选用适宜的溶剂,把混合物中的某些成分溶解吸收,从而达到分离提纯的目的。6.蒸馏法。控制混合溶液蒸气的冷凝温度,使不同沸点的成分分步冷凝析出,从而达到分离提纯的目的。在思考如何使物质分离提纯时,应考虑各组分的化学和物理性质,然后才能选择适宜的方法。显然,方法的选用是建立在熟悉各种物质的物性、化性的基础之上的。常见物质分离提纯的10种方法 1.结晶和重结晶:利用物质在溶液中溶解度随温度变化较大,如NaCl,KNO3。
2.蒸馏冷却法:在沸点上差值大。乙醇中(水):加入新制的CaO吸收大部分水再蒸馏。
3.过滤法:溶与不溶。
4.升华法:SiO2(I2)。
5.萃取法:如用CCl4来萃取I2水中的I2。
6.溶解法:Fe粉(A1粉):溶解在过量的NaOH溶液里过滤分离。
7.增加法:把杂质转化成所需要的物质:CO2(CO):通过热的CuO;CO2(SO2):通过NaHCO3溶液。
8.吸收法:用做除去混合气体中的气体杂质,气体杂质必须被药品吸收:N2(O2):将混合气体通过铜网吸收O2。
9.转化法:两种物质难以直接分离,加药品变得容易分离,然后再还原回去:Al(OH)3,Fe(OH)3:先加NaOH溶液把Al(OH)3溶解,过滤,除去Fe(OH)3,再加酸让NaAlO2转化成A1(OH)3。
10.纸上层析(不作要求)

⑶ 纳滤产生的浓缩液有哪些处理方法

这是什么什么料液,
1、可以考虑先用高压纳滤再进行浓缩,出来的滤液过反渗透
2、浓缩液直接进MVR或多效蒸发

⑷ 纳滤膜的作用

纳滤膜的应用范围很广泛,主要包括以下一些方面:
1、地下水除硬度
2、地表水除有机物、色度
3、油水分离
4、乙二醇回收
5、硫酸铜回收
6、有机、无机液体分离、浓缩
7、染料提纯、浓缩、脱盐
8、天然药物分离、浓缩
9、发酵液浓缩
纳滤膜介绍
纳滤膜(Nanofiltration Membranes)是80年代末期问世的一种新型分离膜,其截留分子量介于反渗透膜和超滤膜之间,约为200-2000,由此推测纳滤膜可能拥有lnm左右的微孔结构,故称之为“纳滤”。纳滤膜大多是复合膜,其表而分离层由聚电解质构成,因而对无机盐具有一定的截留率。国外已经商品化的纳滤膜大多是通过界而缩聚及缩合法在微孔基膜上复合一层具有纳米级孔径的超薄分离层。
纳滤膜材质:聚酰胺材质
纳滤膜:能截留纳米级(0.001微米)的物质。纳滤膜的操作区间介于超滤和反渗透之间,其截留有机物的分子量约为200-800MW左右,截留溶解盐类的能力为20%-98%之间,对可溶性单价离子的去除率低于高价离子,纳滤一般用于去除地表水中的有机物和色素、地下水中的硬度及镭,且部分去除溶解盐,在食品和医药生产中有用物质的提取、浓缩。纳滤膜的运行压力一般3.5-30bar。 膜技术。在我国农村,小镇水厂中,往往管理不严,容易造成出水带菌,也须深度处理。

⑸ 谁有电镀废水中纳滤膜处理工艺介绍

电镀废水中纳滤膜处理工艺
该技术利用纳滤膜处理离子交换单元获得的六价铬离子再生浓缩液,将六价铬离子分离,实现电镀废水中六价铬离子的直接回用;纳滤膜产水用于离子交换纤维再生,可减少离子交换工艺对药剂的消耗,同时产水中未被纳滤膜分离的少量六价铬离子不会从系统中流失,不会对环境造成污染;离子交换单元产水可通过深度处理获得纯水,实现水资源的回收利用。

⑹ 纳滤膜分离技术如何应用在废水处理

纳滤膜分离技术经常被应用到工业重金属废水处理中,应用纳滤膜分离技术专对重工业生产属过程中产生的废水进行处理:一方面可以实现对90%以上的废水进行回收,使其钝化;另一方面可以使肺水肿的金属离子含量浓缩约10倍。将纳滤膜应用在造纸废水处理中,不仅可以实现对废水中COD(约90%)的处理,而且其膜通量与传统的聚砜超滤膜相比更高。

⑺ 纳滤的应用

纳滤分离作为一项新型的膜分离技术,技术原理近似机械筛分。但是纳滤膜本体带有电荷性。这是它在很低压力下仍具有较高脱盐性能和截留分子量为数百的膜也可脱除无机盐的重要原因。
纳滤分离愈来愈广泛地应用于电子、食品和医药等行业,诸如超纯水制备、果汁高度浓缩、多肽和氨基酸分离、抗生素浓缩与纯化、乳清蛋白浓缩、纳滤膜-生化反应器耦合等实际分离过程中。与超滤或反渗透相比,纳滤过程对单价离子和分子量低于200的有机物截留较差,而对二价或多价离子及分子量介于200~500之间的有机物有较高脱除率,基于这一特性,纳滤过程主要应用于水的软化、净化以及相对分子质量在百级的物质的分离、分级和浓缩(如染料、抗生素、多肽、多醣等化工和生物工程产物的分级和浓缩)、脱色和去异味等。主要用于饮用水中脱除Ca、Mg离子等硬度成分、三卤甲烷中间体、异味、色度、农药、合成洗涤剂,可溶性有机物,及蒸发残留物质。
随着对环境保护和资源综合利用认识的不断提高,人们希望在治理废水的同时实现有价物质的回收,比如:大豆乳清废液中含有1%左右的低聚糖和少量的盐,亚硫酸盐法制备化纤浆和造纸浆过程出现的亚硫酸钙废液中含有2%~2.5%的六碳糖和五碳糖,制糖工业中出现的废糖蜜中含有少量的盐等等。
NF分离是一种绿色水处理技术,在某些方面可以替代传统费用高,工艺繁琐的污水处理方 法.其技术特点是:能截留分子量大于100的有机物以及多价离子,允许小分子有机物和单 价离子透过;可在高温,酸,碱等苛刻条件下运行,耐污染;运行压力低,膜通量高,装置 运行费用低;可以和其他污水处理过程相结合以进一步降低费用和提高处理效果.在水处理 中,NF膜主要用于含溶剂废水的处理,能有效地去除水中的色度,硬度和异味.NF膜以其特殊的分离性能已成功地应用于制糖,制浆造纸,电镀,机械加工以及化工反应催化剂的回收等行业的废水处理.
纳滤是一种绿色水处理技术,是国际上膜分离技术的最新发展,在某些方面可以替代传统费用高、工艺繁琐的污水处理方法。纳米级孔径且带有电荷的特殊过滤性能特点是:能截留分子量大于200的有机物以及多价离子,允许小分子有机物和单价离子透过;可在高温、酸、碱等苛刻条件下运行,膜耐受的条件范围宽,浓缩倍数高,耐污染;运行压力低,膜通量高,装置运行费用低,能耗极低(唯一驱动力是压力)。
由于纳滤膜特殊的孔径范围和制备时的特殊处理(如复合化、荷电化),使得纳滤膜具有较特殊的分离性能,其在降低废水COD、水源水的色度、硬度和去除饮用水中的有机物(TOC)、三卤代烷(THMs)前驱物等方面的应用近年来受到广泛重视,已成功地应用于制糖行业、造纸行业、电镀行业、机械加工行业及化工反应催化剂的回收行业等的废水处理中。纳滤膜的应用研究主要集中在几个方面:根据中性溶质的分子量大小而进行分离;截留有机物分子而让单价电解质透过膜层;根据离子价态而实现离子问的分离。根据纳滤膜分离的特点,其应用范围主要适用于下述情况的物质分离:①对单价盐分离的截留率要求不高;②要求进行不同价态离子的分离,如软化处理;③需要对高分子量有机物与低分子量有机物进行分离,如葡萄酒脱醇;④盐和对应的酸的分离;⑤有机物和无机物的分离,如染料脱盐、乳清浓缩脱盐和饮用水净化。
纳滤膜具有热稳定性、耐酸、耐碱和耐溶剂等优良性质,在废水的有价物质回收中起到不可估量的作用,广泛地应用于各种有机废水的回收处理。比如农药废液处理、乳清和抗菌素脱盐、电镀废液中金属回收、各种石化废水处理等。在给水处理中,纳滤膜主要用于制备软化水、饮用纯净水,能有效地去除水中的色度、硬度和异味 。
试验研究及应用
(1)日用化工废水处理.用NF膜处理日用化工废水的应用研究表明NF膜耐酸碱,有优良的截留率,对重金属有很好的去除率,不存在膜污染问题.据估计,由于NF膜的运行费用低于反渗透技术,对有机小分子有良好的脱除率,可能会覆盖90%以上的日用化工废水处理.
(2)石油工业废水处理.
石油工业废水主要包括石油开采和炼制过程中产生的含各种无机盐和有机物的废水,其成分 非常复杂,处理难度大.采用膜法特别是NF法与其他方法相给合,既可有效处理废水还可以 回收有用物质.例如,先用NF膜将原油废水分离成富油的水相和无油的盐水相,然后把富油 相加入到新鲜的供水中再进入洗油工序,这样既回收了原油又节约了用水.以前多采用反渗 透 和相分离结合的方法处理石油工业废水,但存在着膜污染严重的问题,如果在反渗透前加一NF膜,就可以解决膜污染的问题.石油工业的含酚废水中主要含有苯酚,甲基酚,硝基酚以 及各类取代酚,此类物质的毒性很大,必须脱除后才能排放,若采用NF技术,不仅酚的脱除 率可达95%以上,而且在较低压力下就能高效地将废水中的镉,镍,汞,钛等重金属高价离子脱除,其费用比反渗透等方法低得多.
(3)杀虫剂废水处理.一般的水处理方法不能除去污染水中的低分子有机农药.通过研究NF膜对不含酚杀虫剂的截留性能发现除了二氯化物以外,其他杀虫剂的截留 率均高于96.7%,所有杀虫剂在NF膜上的吸附能力均受其疏水性的影响.采用NF处理含有酚 类杀虫剂的废水也十分有效.
(4)化纤,印染工业废水处理.NF可以用于印染过程排水中染料及助剂的脱除和回用.处 理染料聚合浆料时,由于大多数染料的分子量在几百到几千,NF膜可以让一些无机盐或小分 子通过,而对较大的染料分子进行截取,粗染料浆液经NF系统后,染料可以富集,而无机盐 的浓度下降,脱盐率大于98%,染料损失率小于0.1%,而且可以在高温下运行.此外,NF还 可以用于纤维加工过程中的含油废水的处理及回收再利用.
(5)生活污水处理.采用常用的生物降解和化学氧化相结合的方法处理生活污水时,氧化 剂的消耗很大,残留物多.如果在它们之间增加一个NF系统,让能被微生物降解的小分子( 分子量小于100)通过,不能生物降解的有机大分子(分子量大于100)被截留下来经化学氧化 后再生物降解,这样就可以充分发挥生物降解的作用,节省氧化剂或活性炭的用量,降低最 终残留物的含量.
(6)热电厂二次废水的治理及回收利用.热电厂的二次废水主要来自冲灰,除尘及冷却系统,此类废水中含有大量的悬浮固体,灰份 及高含量的盐份和部分有机物.利用NF可以把这一类废水处理成工业回用水.首先用微滤除 去水中的全部悬浮颗粒,质量分数为99%的BOD,98%的COD,73%的总氮和17%的总磷,同时将水中的菌落总数降到3~4个/L,然后加酸降低pH以除去CO2,最后再经NF脱盐,达到锅炉用水的质量.澳大利亚太平洋热电厂的Eraring发电站已用NF对此类废水进行处理,每天处理1 000~15 000 m3废水,既减轻了市政供水系统的负荷,每年又可为热电厂节约 操作费用80万美元.该热电厂准备扩大发电规模,用水量也相应增大,估计到2010年,处理 此类废水量将达5 000 m3/d,效益极其可观.
(7)酸洗废液处理.钢厂的酸洗工序是将钢材浸入质量分数为20%左右的硫酸酸洗槽中进行 酸洗.随着酸洗的进行,硫酸浓度逐渐降低,硫酸亚铁浓度不断增高,当溶液中硫酸的质量 分数降至6%~8%,生成的硫酸亚铁浓度超过200~250 g/L时,酸洗速率下降,必须更 换酸洗液,排放酸洗废液.酸洗好的钢材必须用清水进行冲洗以除去表面的酸性物质,又造 成了废酸水的外排.为了保护环境,节约资源,可采用NF工艺处理酸洗废液.利用NF膜对硫 酸和硫酸亚铁截留率的不同,先将硫酸亚铁截留在浓缩液中,然后将浓缩液送入冷却结晶罐,冷却结晶出FeSO4·7H2O;透过液再经能截留硫酸的另一NF膜组件,截留后浓缩为20%的 硫酸,再生酸液回收利用,透过液则排至废酸水站,进一步处理排放或回收.这一工艺回收 了硫酸和硫酸亚铁,同时实现了酸洗废液的回收综合利用和废酸水达标排放的目的.
(8)造纸废水处理.采用NF膜技术替代传统的化学处理 法能更为有效地除去深色木质素.木浆漂白过程产生的氯化木质素 是带负电的,容易被带负电性的NF膜截留,并且对膜不会产生污染.另外,因为整个处理过程中对阳离子(Na+)的脱除率并没有严格要求,采用反渗透技术就显得没有必要 .采用超滤/纳滤处理牛皮纸制造废水有很好的效果。
工程应用
纳滤膜的孔径范围介于反渗透膜和超滤膜之间,其对二价和多价离了及分子量在200~1000之间的有机物有较高的脱除性能,而对单价离子和小分子的脱除率则较低。而且,与反渗透过程相比,纳滤过程的操作压力更低(一般在1.0Mpa左右);同时由于纳滤膜对单价离子和小分子的脱除率低,过程渗透压较小,所以,在相同条件下,纳滤与反渗透相比可节能15%左右[3]。因而在水处理中,纳滤被广泛应用于饮用水的浓度净化、水软化、有机物和生物活性物质的除盐和浓缩、水中三卤代物前躯物的去除、不同分子量有机物的分级和浓缩、废水脱色等领域。
Sibille等研究了法国Auverw-sur-Oise市的地下水,对纳滤和生物处理饮用水(臭氧—生物活性炭过滤)进行了对比。结果表明,纳滤可以显著提高饮用水的水质,减少细菌数量和有机物的浓度,从而使后续消毒更有效,也减少了三氯甲烷的形成。但是,研究又指出,少量极易被细菌等吸收的可生物降解的有机物质(BOM:BiologicalOrganicMatter)、可同化有机碳(AOC:AssimilableOrganicCarbon)也能透过纳滤膜。
虽然,纳滤技术的工程应用在美国、日本等国家的给水行业中已经得到大规模的推广,但在我国,将纳滤技术广泛地应用于工程实践的条件还不成熟,尚处于尝试阶段、本要问题是国产纳滤膜的性能指标不够过关。已有工程实例的报道,如国内首套工业化大规模膜软化系统——山东长岛南隍城纳滤示范工程,是纳滤技术在高硬度海岛苦咸水净化的实际应用。该工程由国家海洋局杭州水处理中心设计,于1997年4月正式投入生产淡水,系统连续正常运行27个月,淡化水符合国家生活饮用水卫生标准。
有关学者曾采用纳滤膜对某市自来水(以污染严重的淮河水为原水)进行深度处理试验,研究了纳滤循环制水试验工艺的效果。结果表明,循环试验工艺与单级纳滤工艺相比,在同样较低的压力下,出水率较高,并且能耗降低,减少了浓水排放。即使在回收率较高(80%)的情况下,膜出水中的总有机碳(TOC)仍比自来水低50%;对致会变物的去除十分显著,使Ames试验阳性的水转为阴性。
纳滤膜应用问题
纳滤膜有较高的膜通量,可以截留有机及无机污染物,而对人体必需的一些离子又有较大的透过率,因此,把纳滤膜应用于饮用水的深度净化较其它的膜分离技术有较大的优势。把钢滤膜应用于给水处理领域的主要问题是:
这三个问题是膜分离的基本问题,也是纳滤膜法水处理技术难以广泛应用的主要原因。世界各国的水处理工作者正在进行广泛的研究,寻求解决这些问题的途径。纳滤技术在给水处理领域的推广应用还依赖于这些问题的进一步解决。

⑻ 在纳滤(膜分离)过程中,Rejection是什么意思说的详细一些谢!

Rejection是指截留率

面向饮用水制备过程的纳滤膜分离技术
Application of nanofiltration membranes to drinking water proction
<<膜科学与技术 >>2003年04期
王大新 , 王晓琳

纳滤膜分离技术在饮用水制备方面具有独特的作用,是制备优质饮用水的有效方法.依据电荷效应,纳滤膜可以降低水质硬度,去除饮用水中对人体有害的硝酸盐、砷、氟化物和重金属等无机污染物;依据筛分效应,纳滤膜可以有效地去除农药残留物、三氯甲烷及其中间体、激素以及天然有机物等有机污染物.文章详细综述了国内外纳滤膜技术在饮用水制备中应用研究的最新进展,纳滤膜对地表水或地下水中存在的各种无机、有机污染物的分离特性及饮用水制备过程中的纳滤膜污染与防治对策.

膜分离技术处理电镀废水的实验研究

慧聪网 2005年9月20日10时17分 信息来源:夏俊方 网友评论 0 条 进入论坛

由图9可知,当压力(ΔP)小于3.0 MPa时,Cu离子截留率(R1)随着压力(ΔP)的增加而上升;当压力(ΔP)大于3.0 MPa时,Cu离子截留率(R1)随着压力(ΔP)增加而呈下降趋势。这一现象的原因和纳滤过程相似。当压力(ΔP)小于3.0 MPa时,Cu离子截留率(R1)的正向变化趋势可和纳滤过程作同样的解释。当压力(ΔP)大于3.0 MPa时,Cu离子截留率(R1)的反向变化趋势。这可能是由于压力已经达到反渗透膜最佳运行压力范围的上限。此时,膜拦截溶质的能力已大为减弱,溶质开始大量透过膜片,导致其截留率呈下降趋势。

由图10可知,COD截留率(R2)随着压力(ΔP)的增加而上升。和Cu离子的上升变化趋势的原因一样,非平衡热力学模型的Spiegler-Kedem方程能很好的解释这一现象。

有一个问题:Cu离子的截留率(R1)和COD的截留率(R2)变化曲线不同,COD曲线没有下降趋势。这可能是由于反渗透膜对COD分子和Cu离子的截留能力有所差异。当运行压力(ΔP)大于3.0 MPa时,膜对Cu离子的截留能力已经下降了很多,而对COD分子的截留能力下降不大。但可以发现,COD曲线随着压力的增加,已逐渐趋于平缓,这说明膜对COD的截留能力也在下降。

压力实验表明:SE抗污染反渗透膜的最佳运行压力为3.0 MPa。

3.2.2浓缩倍数(n)对反渗透膜分离性能的影响

反渗透实验采用3.0 MPa的压力运行。反渗透浓缩实验料液为纳滤过程浓缩10倍的浓缩液,体积50L。

反渗透浓缩试验采用浓水回流方式,即浓水回流入料液桶。浓缩倍数是按照料液桶内剩余料液的体积与原始料液的体积比来确定。例如,料液桶内还剩下1/10料液时,即为浓缩10倍,取样测试。

浓缩倍数对反渗透膜分离性能的影响曲线如图11、12、13所示。

由图11可知,膜通量(Jw)随着料液浓度(C)增加而降低。这一现象和纳滤过程一样,也可以根据优先吸附——毛细孔流模型来解释。

由图12可知,在浓缩两倍之前,Cu离子截留率(R1)随浓缩倍数(n)增大而上升,之后则开始呈下降趋势。这一现象可根据细孔理论来解释。细孔理论的依据有两点:其一是膜截留溶质分子主要考虑筛分作用的机理;其二是视溶质分子为刚性球。反渗透过程截留溶质(中性分子和电解质)主要是依靠筛分机理,因此可以用细孔理论来解释。细孔理论表明:膜对溶质溶液的截留率在一定浓度范围内随溶液浓度的变化不大,可视为不变。在本实验中,浓缩两倍的浓度可能还未超出细孔理论所限定的范围,溶质浓度虽然增加,但还不能大量通过膜片,因此溶质的透过量变化不是很大。而同时,膜通量(Jw)在下降,但下降趋势不是很大。综合溶质透过量和膜通量两方面的因素,Cu离子的截留率呈略微上升的趋势。浓缩2倍以后,该浓度值可能已经超过细孔理论所限定的范围,溶质浓度的进一步增加导致其透过膜片的量开始逐步增加,因而Cu的截留率(R1)会呈下降趋势。

由图13可知,在浓缩6倍之前,COD离子截留率(R2)随浓缩倍数(n)增大而上升,之后则开始呈下降趋势。这一现象的原因和Cu离子截留率变化的原因一样。反渗透膜截留COD分子和Cu离子所依据的都是筛分原理,导致COD截留率在浓缩6倍时出现下降趋势,可能是6倍浓度是超过细孔理论所限定范围的临界点。

表2 反渗透浓缩分离实验数据表

项目浓度浓缩倍数 渗透液(mg/L) 浓缩液(mg/L) 截留率 膜通量(L/min)
Cu离子 COD Cu离子 COD Cu离子 COD
初 始 4.07 343 1478 2430 99.72% 85.88% 0.393
2 倍 6.06 552 2950 4375 99.79% 87.38% 0.346
4 倍 17.17 923 5889 8010 99.71% 88.48% 0.224
6 倍 47.78 1200 9183 11920 99.48% 90.16% 0.133
8 倍 121.49 4160 12216 15000 99.01% 72.27% 0.036
10 倍 220.45 5510 14325 17020 98.46% 67.63% 0.021

6.反渗透浓缩的实验结果

反渗透浓缩实验的目的是希望能够尽可能的浓缩料液,本次实验是在纳滤浓缩的基础上将料液再浓缩10倍,实验数据如表2所示。

由表2可以知道,在初始状态时,料液Cu离子浓度为1478mg/L,渗透液浓度为4.07mg/L;料液浓缩10倍后,其浓度达到14625mg/L,透过液浓度为220.45mg/L。

在初始状态时,料液COD值为2430mg/L,渗透液浓度为343mg/L;浓缩10倍后,浓缩液COD为17020mg/L,渗透液浓度为5510mg/L。

4. 结论

通过实验室规模的实验,研究了不同压力(ΔP)和浓缩倍数(n)条件下,纳滤膜和反渗透膜的分离性能,得到如下结论:

1.在ΔP=1.5 MPa条件下进行浓缩,纳滤膜可以使料液浓缩近10倍,料液体积浓缩为原来的1/10。纳滤膜对Cu离子的截留率在96%以上,对COD的截留率在57%以上。随着浓度的增加,纳滤膜的截留率会降低。

2.在ΔP=3.0 MPa条件下进行浓缩,反渗透膜可以使料液浓缩近10倍,料液体积浓缩为原来的1/10。反渗透膜对Cu离子的截留率在98%以上,对COD的截留率在67%以上。随着浓度的增加,反渗透膜的截留率会降低。

3.本实验在浓缩过程中,没有调整料液pH值。原因是pH值对膜分离性能确有影响,但在实际工程中调整pH值需要增加设备投资和运行费用。综合权衡效果和投资这两方面的影响,实际工程中一般不会调节对废水pH值后再进行膜分离处理。

4.和反渗透阶段相比,纳滤阶段的透过液浓度不是太高。因此,纳滤阶段的浓缩倍数应该还可以提高。

Research on The Treatment of Electroplating Rinsing Wastewater

with Separating Membrane

Xia junfang1,Gao qilin2

(1. Xia junfang, Shanghai Wantyeah Environment engineering CO.,Ltd )

(2.Cao haiyun )

Abstract In this article, the NF+RO system is used to condense the copper electroplating rinsing wastewater. The study show: In the NF phase, at the condition of that pressure(ΔP)=1.5 MPa , the wastewater can be condensed 10 times; The rejection for copper is above 96% and COD is above 57%. In the RO phase, at the condition of that pressure(ΔP)=3.0 MPa , the wastewater can be condensed 10 times; The rejection for copper is above 98% and COD is above 67%. When the the concentration of the wastewater increased, the rejection of NF and RO decreased.

Key words: Membrane separating, Nanofiltration, Reverse Osmosis, Condense,

Electroplating Wastewater

参考文献

[1] 许振良. 膜法水处理技术. 北京:化学工业出版社,2001 :1~2

[2] Wang X L et al. Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell-Meyer-Siever model. Journal of Membrane Science. 1995,103:117~133

[3] Nakao. S.,Kimura S. Models Transport Phenomena and Their Applications for Ultrafiltration Data. Journal of Chemical Engineering of Japan. 1982(15):200~204。

⑼ 垃圾渗滤液处理起来为什么效果这么差呢

垃圾渗滤液处理工艺:生物处理+深度处理+后处理
预处理包括生物法、版物理法、化学法等,处理权目的主要是去除氨氮和无机杂质,或改善渗沥液的可生化性。
生物处理包括厌氧法、好氧法等,处理对象主要是渗沥液中的有机污染物和氨氮等。
深度处理包括纳滤、反渗透、吸附过滤、高级化学氧化等,处理对象主要是渗沥液中的悬浮物、溶解物和胶体等。深度处理应以膜处理工艺为主,具体工艺应根据处理要求选择。
后处理包括污泥的浓缩、脱水、干燥、焚烧以及浓缩液蒸发、焚烧等,处理对象是渗沥液处理过程产生的剩余污泥以及纳滤和反渗透产生的浓缩液。

阅读全文

与纳滤浓缩液氧化相关的资料

热点内容
负压空气净化器怎么使用 浏览:92
蓝珍珠滤芯是哪里生产的 浏览:641
电影票开场了能取票吗 浏览:819
台湾四级电影排名 浏览:43
美的反渗透净水器制水太小怎么办 浏览:287
污水治理攻坚专项行动方案 浏览:209
法国殖民电影有哪些 浏览:409
完美的飞行完整版 浏览:621
免vip的影视网址 浏览:798
污水提升泵用电量 浏览:566
高浓度难降解有机废水有哪些 浏览:337
大一蒸馏设备价格 浏览:501
循环水加什么药可除垢 浏览:866
五金厂的污水处理费多少钱一吨 浏览:586
饮水机花塘牌线怎么连接视频 浏览:543
纯净水桶里放泡沫怎么办 浏览:642
二手纳滤设备 浏览:388
求长片 浏览:514
漆面上的水垢 浏览:906
污水处理产业发展 浏览:448