导航:首页 > 净水问答 > 超滤质谱技术

超滤质谱技术

发布时间:2022-06-28 15:23:30

⑴ 质谱检测是什么

质谱检测是一种与光谱并列的谱学方法。

质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。

质谱分析是一种测量离子荷质比(电荷-质量比)的分析方法,其基本原理JosephJohnThomson是使试样中各组分在离子源中发生电离,生成不同荷质比的带正电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。

在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。第一台质谱仪是英国科学家弗朗西斯·阿斯顿于1919年制成的。

阿斯顿用这台装置发现了多种元素同位素,研究了53个非放射性元素,发现了天然存在的287种核素中的212种,第一次证明原子质量亏损。他为此荣获1922年诺贝尔化学奖。

质谱的应用:

质谱技术发展很快。随着质谱技术的发展,质谱技术的应用领域也越来越广。由于质谱分析具有灵敏度高,样品用量少,分析速度快,分离和鉴定同时进行等优点,因此,质谱技术广泛的应用于化学,化工,环境,能源,医药,运动医学,刑侦科学,生命科学,材料科学等各个领域。

质谱仪种类繁多,不同仪器应用特点也不同,一般来说,在300C左右能汽化的样品,可以优先考虑用GC-MS进行分析,因为GC-MS使用EI源,得到的质谱信息多,可以进行库检质谱仪索。

毛细管柱的分离效果也好。如果在300C左右不能汽化,则需要用LC-MS分析,此时主要得分子量信息,如果是串联质谱,还可以得一些结构信息。

⑵ 质谱技术有哪些应用

近年来质谱技术发展很快。随着质谱技术的发展,质谱技术的应用领域也越来越广。由于质谱分析具有灵敏度高,分析速度快,样品用量少,分离和鉴定同时进行等优点,因此,质谱技术广泛的应用于化学、能源、运动医学、刑侦科学、医药、化工、环境、生命科学、材料科学等各个领域。
质谱仪种类繁多,不同仪器应用特点也不同,一般来说,在300C左右能汽化的样品,可以优先考虑用质谱进行分析,得到的质谱信息多,可以进行库检索。毛细管柱的分离效果也好。质谱仪的分辨率是一项重要技术指标,高分辨质谱仪可以提供化合物组成式,这对于结构测定是非常重要的。
质谱分析法对样品有一定的要求。进行质谱分析的样品应是有机溶液,水溶液中的有机物一般不能测定,须进行萃取分离变为有机溶液,或采用顶空进样技术。有些化合物极性太强,在加热过程中易分解,例如有机酸类化合物,此时可以进行酯化处理,将酸变为酯再进行GC-MS分析,由分析结果可以推测酸的结构。如果样品不能汽化也不能酯化,那就只能进行LC-MS分析了。进行LC-MS分析的样品最好是水溶液或甲醇溶液,LC流动相中不应含不挥发盐。

⑶ 质谱仪的工作原理是什么

质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/z大小分离的装置。

分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。

质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。

(3)超滤质谱技术扩展阅读:

质谱仪的分类

1、有机质谱仪

有机质谱仪基本工作原理:以电子轰击或其他的方式使被测物质离子化,形成各种质荷比(m/e)的离子,然后利用电磁学原理使离子按不同的质荷比分离并测量各种离子的强度,从而确定被测物质的分子量和结构。

2、无机质谱仪

无机质谱仪与有机质谱仪工作原理不同的是物质离子化的方式不一样,无机质谱仪是以电感耦合高频放电 (ICP)或其他的方式使被测物质离子化。

3、同位素质谱仪

同位素质谱分析法的特点是测试速度快,结果精确,样品用量少(微克量级)。能精确测定元素的同位素比值。广泛用于核科学,地质年代测定,同位素稀释质谱分析,同位素示踪分析。

⑷ 什么是质谱,质谱分析原理是什么

质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。

质谱分析原理:将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。

质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。
质谱分析是一种测量离子质荷比(质量-电荷比)的分析方法,其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。
质谱技术是一种鉴定技术,在有机分子的鉴定方面发挥非常重要的作用。它能快速而极为准确地测定生物大分子的分子量,使蛋白质组研究从蛋白质鉴定深入到高级结构研究以及各种蛋白质之间的相互作用研究。

⑸ 质谱分析法的基本原理

目前,质谱分析法 ( mass spectrometric method) 是测量同位素丰度最有效的方法。质谱仪根据带电原子和分子在磁场或电场中具有不同的运动,将它们相互分离。由于质谱仪的种类多样,用途又非常广泛,因此,就不一一进行介绍下面仅简单介绍一下质谱分析的基本原理,详细论述可参考 Brand ( 2002) 。

质谱仪一般可分为四个重要的组成部分: ① 进样系统; ② 离子源; ③ 质量分析器; ④ 离子检测器 ( 图 1. 8) 。

图 1. 8 用于稳定同位素测量的气源质谱仪示意图

( 1) 进样系统 ( inlet system) : 这一特殊装置需要在几秒钟内迅速、连续地分析两个气体 ( 样品和标准气) ,所以安装较为特殊,包括一个转换阀( changeover valve) 。这两种气体由直径约 0. 1mm、长约 1m 的毛细管从储样室( reservoir) 中引入,其中一种气体流向离子源 ( ion source) ,另一种气体流向废气泵 ( waste pump) ,从而保持毛细管中的气流连续不断。为避免质量损失( mass discrimination) ,气体物质的同位素丰度测量利用黏性的气体流。在黏性气流状态下,分子的自由路径长度非常小,因此分子经常发生碰撞,气体混合均匀,从而不会发生质量分离 ( mass separation) 。在黏性流进样系统的末端,有一个泄漏口 ( leak) ,使得流线收缩。应用双路进样系统 ( al inlet system)可以对非常少量的样品进行高精度分析,同时,样品分析受黏性气流保持状态的限制。这一过程一般在 15 ~ 20mbar ( 100Pa) 的压力下进行 ( Brand,2002) 。如要减小样品量,则必须在毛细管之前将气体浓缩为很小的体积。

( 2) 离子源 ( ion source) : 是质谱仪中离子形成、加速、聚焦成为狭窄的离子束的部位。在离子源中,气体流总是呈分子状态。气体样品的离子多由电子轰击 ( electron bombardment) 产生。电子束,一般由加热的钨丝或铼丝发出,在静电场中进行加速,在进入电离室 ( ionization chamber) 之前的能量达到 50 ~150eV 之间,以便使一次电离效率最大化。电离之后,根据离子获得的能量,带电分子被进一步分成若干分子碎片,从而产生特定化合物的质谱。

为了增加电离的几率,采用同性质的弱磁场使电子保持螺旋轨道 ( spiral path) 。电子在电离室的末端由带正电的捕集器收集,对电子流进行测量,并由电子发射调节器电路 ( emission regulator circuitry) 将其保持在恒定状态。

电离的分子在电场的作用下脱离电子束,随后由高达数千伏的电压进行加速,其路径形成离子束,该离子束通过出口狭缝进入分析器。因此,进入磁场的正离子在本质上都是单能的,即它们拥有相同的动能,其表达式如下:

稳定同位素地球化学( 第六版)

电离效率决定了质谱仪的灵敏度,其值约为 1000 ~2000 个分子产生一个离子( Brand,2002) 。

( 3) 质量分析器 ( mass analyzer) : 可根据其 m/e ( 质量/电荷) 比,将离子源发出的离子束分离开来。当离子束通过磁场时,离子发生偏转,形成圆周轨迹,其圆周半径与 m/e 的平方根成比例。通过这一过程,离子被分离并形成离子束,每个离子束都具有特定的 m/e 值。

1940 年,Nier 提出了扇形磁分析器 ( sector magnetic analyzer) 。在这种分析器中,离子束发生偏转的磁场呈楔形。离子束以与磁场边界呈直角的角度进入和离开磁场,因此其偏转角度等于楔形角 ( 如可以是 60°) 。扇形磁分析器的优势在于其离子源和检测器相对来说,不受分析器磁场质量损失的影响。

( 4) 离子检测器 ( ion detector) : 离子通过磁场后,被离子检测器所收集。离子检测器将输入的离子转换为电脉冲 ( electrical impulse) ,电脉冲随后被输入放大器。Nier et al. ( 1947) 提出,利用多个检测器同时聚集离子流。这种同时利用两个单独放大器的优势在于,对于所有 m/e 离子束,作为时间函数的离子流波动都是相同的。每一个检测器通道都安装有一个适合于所测离子流天然丰度的高电阻的电阻器。

现代同位素比质谱仪具有至少装有三个法拉第杯 ( Faraday collector,Faraday cup) ,它们位于质谱仪的焦平面 ( focal plane) 上。这是由于相邻峰值的间距随质量变化,并且范围是非线性的,因此,每组同位素往往都需要有一套单独的法拉第杯。

连续流: 同位素比值监测质谱仪

20 世纪 50 年代早期,Nier 提出了双黏性流质谱仪 ( al viscous-flow mass spectrometer) ,20 世纪 80 年代中期对商业质谱仪的硬件做了极小的修改。在过去的几年里,人们为减小用于同位素测量的样品大小而进行了艰苦的尝试。将传统的双路进样技术改为连续流同位素比值监测质谱仪 ( continuous-flowisotope ratio monitoring mass spectrometer) 。使用这种质谱仪时,被分析的气体混合于载气流中的微量的气体中,从而达到黏性流状态。现今,市场在售的大多数气体质谱仪都带有连续流系统,而非双路进样系统。

传统的离线样品制备程序非常耗时,并且分析精度也取决于研究者的技能。而利用在线样品制备技术,可将元素分析器和质谱仪直接结合,从而解决和最大程度地减少很多离线样品制备导致的问题。这两种技术的区别参看表 1. 5。

表 1. 5 离线和在线测量技术之间的对比

这种新型的质谱仪往往结合有色谱技术 ( chromatographic technique) 。同位素测量所需的样品量大小已经急剧减小到十亿分之一摩尔甚至万亿分之一摩尔范围 ( Merritt & Hayes,1994) 。气相色谱-同位素比质谱仪技术 ( GC -IRMS) 的重要特性如下 ( Brand,2002) :

( 1) 按照分子在气相色谱柱 ( GS column) 上流出的顺序对离子流进行测量,但其相对于参比气体的强度将不会发生明显改变。色谱不但能够分离不同的化学物质种类,还可分离不同的同位素种类。也就是说,从色谱柱流出后,随色谱峰上位置的不同,该化合物的同位素组成发生变化。因此,必须对每个色谱峰的整体宽度进行积分,才能获得该化合物真实的同位素比值。

(2)同位素信号的测量时间受色谱峰宽度的限制。对于陡峭的尖峰来说,这一时间可能不超过5s。

(3)在线分析仪器的绝对灵敏度与双路进样系统的仪器相比更为重要。由于色谱法所需的样品量非常小,因此采用大量的样品组以获得有效的统计数据库往往非常重要。

通过采用加入内标样方法,可以实现样品分析标准化。内标样的同位素组成利用传统技术确定。

质谱分析技术有几个独立的发展途径,这些途径均具有两个发展方向:元素分析仪→同位素比质谱仪,毛细管气相色谱→同位素比质谱仪。在元素分析仪中,样品燃烧生成CO2、N2、SO2和H2O,这些气体以化学法捕集,或者在气相色谱柱上被分离。这些技术的优势有:①自动化制备样品;②每个样品的成本较低;③能够进行大量的样品分析。

⑹ 质谱原理

其基本原理是使试样中各组分在离子源中发生电离,生成不同荷质比的带电荷的离子,经加速电场的作用,形成离子束,进入质量分析器。在质量分析器中,再利用电场和磁场使发生相反的速度色散,将它们分别聚焦而得到质谱图,从而确定其质量。

第一台质谱仪是英国科学家弗朗西斯·阿斯顿于1919年制成的。阿斯顿用这台装置发现了多种元素同位素,研究了53个非放射性元素,发现了天然存在的287种核素中的212种,第一次证明原子质量亏损。他为此荣获1922年诺贝尔化学奖。


(6)超滤质谱技术扩展阅读

质谱仪的种类:

①气相色谱-质谱联用仪

在这类仪器中,由于质谱仪工作原理不同,又有气相色谱-四极质谱仪,气相色谱 -飞行时间质谱仪,气相色谱-离子阱质谱仪等。

②液相色谱-质谱联用仪同样,有液相色谱-四器极质谱仪,液相色谱-离子阱质谱仪,液相色谱-飞行时间质谱仪,以及各种各样的液相色谱-质谱-质谱联用仪。

质谱法特别是它与色谱仪及计算机联用的方法,已广泛应用在有机化学、生化、药物代谢、临床、毒物学、农药测定、环境保护、石油化学、地球化学、食品化学、植物化学、宇宙化学和国防化学等领域。

用质谱计作多离子检测,可用于定性分析,例如,在药理生物学研究中能以药物及其代谢产物在气相色谱图上的保留时间和相应质量碎片图为基础,确定药物和代谢产物的存在;也可用于定量分析,用被检化合物的稳定性同位素异构物作为内标,以取得更准确的结果。

⑺ 什么是亲和超滤偶联色谱质谱

摘要 亲和超滤是将连有特异性配基的载体与目标蛋白粗提液混合,特异性地与溶液中的目标物给合,形成体积及分子量远大于杂蛋白的复合物

⑻ 质谱检测是什么呢

质谱检测是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。

质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。

在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。质谱仪器一般由样品导入系统、离子源、质量分析器、检测器、数据处理系统等部分组成。

质谱检测技术的应用:

质谱技术是一种鉴定技术,在有机分子的鉴定方面发挥非常重要的作用。它能快速而极为准确地测定生物大分子的分子量,使蛋白质组研究从蛋白质鉴定深入到高级结构研究以及各种蛋白质之间的相互作用研究。

随着质谱技术的发展,质谱技术的应用领域也越来越广。由于质谱分析具有灵敏度高,样品用量少,分析速度快,分离和鉴定同时进行等优点,因此,质谱技术广泛的应用于化学,化工,环境,能源,医药,运动医学,刑事科学技术,生命科学,材料科学等各个领域。

以上内容参考:网络-质谱

⑼ 蛋白质药物的分离纯化方法

蛋白质组 蛋白质组(Proteome)的概念最先由Marc Wilkins提出,指由一个基因组(genOME),或一个细胞、组织表达的所有蛋白质(PROTein). 蛋白质组的概念与基因组的概念有许多差别,它随着组织、甚至环境状态的不同而改变. 在转录时,一个基因可以多种mRNA形式剪接,并且,同一蛋白可能以许多形式进行翻译后的修饰. 故一个蛋白质组不是一个基因组的直接产物,蛋白质组中蛋白质的数目有时可以超过基因组的数目. 蛋白质组学(Proteomics)处于早期“发育”状态,这个领域的专家否认它是单纯的方法学,就像基因组学一样,不是一个封闭的、概念化的稳定的知识体系,而是一个领域. 蛋白质组学集中于动态描述基因调节,对基因表达的蛋白质水平进行定量的测定,鉴定疾病、药物对生命过程的影响,以及解释基因表达调控的机制. 作为一门科学,蛋白质组研究并非从零开始,它是已有20多年历史的蛋白质(多肽)谱和基因产物图谱技术的一种延伸. 多肽图谱依靠双向电泳(Two-dimensional gel electrophoresis, 2-DE)和进一步的图象分析;而基因产物图谱依靠多种分离后的分析,如质谱技术、氨基酸组分分析等.
[编辑本段]蛋白质组学的研究内容
主要有两方面,一是结构蛋白质组学,二是功能蛋白质组学。其研究前沿大致分为三个方面:
① 针对有关基因组或转录组数据库的生物体或组织细胞,建立其蛋白质组或亚蛋白质组及其蛋白质组连锁群,即组成性蛋白质组学。
② 以重要生命过程或人类重大疾病为对象,进行重要生理病理体系或过程的局部蛋白质组或比较蛋白质组学。
③ 通过多种先进技术研究蛋白质之间的相互作用,绘制某个体系的蛋白,即相互作用蛋白质组学,又称为“细胞图谱”蛋白质组学。
此外,随着蛋白质组学研究的深入,又出现了一些新的研究方向,如亚细胞蛋白质组学、定量蛋白质组学等。
[编辑本段]蛋白质组学研究中的主要技术
1 双向凝胶电泳技术(2-DE)
双向凝胶电泳技术与质谱技术是目前应用最为广泛的研究蛋白质组学的方法。双向凝胶电泳技术利用蛋白质的等电点和分子量差别将各种蛋白质区分开来。虽然二维凝胶电泳难以辨别低丰度蛋白,对操作要求也较高,但其通量高、分辨率和重复性好以及可与质谱联用的特点,使其成为目前最流行、可靠的蛋白质组研究手段。双向凝胶电泳技术及质谱基础的蛋白质组学研究程序为样品制备→等电聚焦→聚丙烯酰胺凝胶电泳→凝胶染色→挖取感兴趣的蛋白质点→胶内酶切→质谱分析确定肽指纹图谱或部分氨基酸序列→利用数据库确定蛋白。蛋白质组研究要求有高分辨率的蛋白质分离及准确、灵敏的质谱鉴定技术。凝胶电泳中蛋白质的着色不仅影响蛋白质分离的分辨率,同时也影响后续的质谱鉴定。蛋白质的染色可分为有机试剂染色、银染、荧光染色及同位素显色四类。
Unlu 等提出了一种荧光差异显示双向电泳(F-2D-DIGE)的定量蛋白质组学分析方法。差异凝胶电泳(DIGE)是对2-DE 在技术上的改进,结合了多重荧光分析的方法,在同一块胶上共同分离多个分别由不同荧光标记的样品,并第一次引入了内标的概念。两种样品中的蛋白质采用不同的荧光标记后混合,进行2-DE,用来检测蛋白质在两种样品中表达情况,极大地提高了结果的准确性、可靠性和可重复性。在DIGE技术中,每个蛋白点都有它自己的内标,并且软件可全自动根据每个蛋白点的内标对其表达量进行校准,保证所检测到的蛋白丰度变化是真实的。DIGE 技术已经在各种样品中得到应用。
2 高效液相色谱技术(HPLC)
尽管二维凝胶电泳(2-DE)是目前常用的对全蛋白组的分析方法,但其存在分离能力有限、存在歧视效应、操作程序复杂等缺陷。对于分析动态范围大、低丰度以及疏水性蛋白质的研究往往很难得到满意的结果。Chong 等使用HPLC/ 质谱比较分析恶性肿瘤前和癌症两种蛋白质差异表达。利用HPLC 分离蛋白质,并用MALDI-TOF-MS 鉴定收集的组分,从而在两种细胞中的差异表达中对蛋白质进行定量分析。多维液相色谱作为一种新型分离技术,不存在相对分子质量和等电点的限制,通过不同模式的组合,消除了二维凝胶电泳的歧视效应,具有峰容量高、便于自动化等特点。二维离子交换- 反相色谱(2D-IEC-RPLC)是蛋白质组学研究中最常用的多维液相色谱分离系统。

⑽ 什么是质谱,质谱分析原理是什么

质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。

质谱分析原理:将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。

质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。

(10)超滤质谱技术扩展阅读

相关仪器:

质谱仪一般由四部分组成:

进样系统——按电离方式的需要,将样品送入离子源的适当部位;

离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束。

质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;

检测器——用来接受、检测和记录被分离后的离子信号。

一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。

阅读全文

与超滤质谱技术相关的资料

热点内容
港台四级片在线观看 浏览:712
任达华温碧霞惊变电影未删减 浏览:691
重生中世纪贵族领主 浏览:522
梅花与达夫的印度电影 浏览:933
福州10吨反渗透设备 浏览:406
水咸用什么爱惠浦净水器 浏览:436
管线饮水机装修怎么预留接软管口 浏览:780
奴隶主与奴隶相关影视 浏览:547
树脂粉袋子拿什么来粘 浏览:698
超滤是比较好还是反渗透好 浏览:506
卜溪净水器怎么换滤芯 浏览:932
处理过的污水怎么算cod 浏览:459
沃尔沃是用树脂做隔音的吗 浏览:966
电影后的演员表内容 浏览:953
受是花花公子攻是军人 浏览:386
泰国老电影讲女子背叛,后来男主神经了 浏览:301
创新水处理有限公司怎么样 浏览:939
什么影院可以看VIP 浏览:455
隔壁的女孩中文字幕 浏览:70
水龙头里面的水垢赌了怎么办 浏览:961