首先你应该说明你是做什么用?
1.软化水:装填完毕后,用大量水正反方向冲洗,直至出水版清亮无杂物;用权8%左右盐液(氯化钠)再生即可;1吨树脂用盐100-150公斤,进盐液时间40-60分钟,冲洗至出水合格合格;
2.除盐水:用盐酸(<4%)再生阳树脂;用氢氧化钠(<4%)再生阴树脂;
3.催化:一般是用阳离子交换树脂的强酸性,应用酸再生;
根据不同的设备情况再生步骤略有不同。
② 阳离子交换树脂的用途和原理
(1)
强酸性阳离子树脂
这类树脂含有大量的强酸性基团,如磺酸基-so3h,容易在溶液中离解出h+,故呈强酸性。树脂离解后,本体所含的负电基团,如so3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的h+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。
树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与h+结合而恢复原来的组成。
(2)
弱酸性阳离子树脂
这类树脂含弱酸性基团,如羧基-cooh,能在水中离解出h+
而呈酸性。树脂离解后余下的负电基团,如r-coo-(r为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低ph下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如ph5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。
(3)
强碱性阴离子树脂
这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-nr3oh(r为碳氢基团),能在水中离解出oh-而呈强碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
这种树脂的离解性很强,在不同ph下都能正常工作。它用强碱(如naoh)进行再生。
(4)
弱碱性阴离子树脂
这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-nh2、仲胺基(二级胺基)-nhr、或叔胺基(三级胺基)-nr2,它们在水中能离解出oh-而呈弱碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。它只能在中性或酸性条件(如ph1~9)下工作。它可用na2co3、nh4oh进行再生。
③ 阳离子交换树脂的注意事项
阳离子交换树脂使用注意事项:
一般阳离子交换树脂都是氢离子型,这样的话就用1~2%的稀硫酸浸泡,时间12小时或以上,再用水洗至中性,即可使用。不能用自来水洗,要有去离子水,树脂的ph一般不测定,测的是通过树脂流出来的溶液的ph。
由于在合成树脂过程中,树脂表面及空隙中混掺有低分子和一些无机杂质(如铜、铁等)、高分子单体物质,以及致孔剂等,因此树脂在正式投入运行之前,必须将这些杂质除去,否则在使用过程中会以各种方式污染树脂。特别应当指出,在含铬废水中,因铬酸是一种氧化剂,如树脂中有铜、铁,便有催化氧化作用,从而加快树脂氧化。预处理方法如下:1、热水洗涤准备使用的新树脂先用热水反复清洗。阳树脂可用70~80℃的热水,阴树脂(特别是强碱阴树脂)的耐热性较差,可用50~60℃的热水。开始浸洗时,每隔15分钟左右换水一次,浸洗时要不是搅拌,换水4~5次后,可隔30分钟左右换水一次,总共换水7~8次,浸泡至洗涤水不带褐色,泡沫很少时为止。
树脂的保养树脂在使用过程中应防止悬浮物、有机物及油类等的污染,同时又要防止某些废水对树脂的剧烈氧化作用。因此,酸性氧化废水进入阴树脂前应去除重金属离子,以防止重金属对树脂的催化作用。每次设备运行完毕后应将交换柱中废水排回废水池,代之以自来水或净化水浸泡。树脂饱和后要及时再生,再生后不宜长期在原液中浸泡停放,应及时淋洗干净。
详情点击:网页链接
④ 732苯乙烯强酸型阳离子交换树脂的使用
洗了一周时间,都洗不到接近中性?
首先,排查一下你的再生方法是否得当版。正确的预处权理再生方法,请参考我在附件中提供的资料。
1、再生液(HCl)浓度是否为4%
2、树脂层是否偏流,或设备布水器等引起进水偏流。
如果检查以上原因未果,那么你可以对树脂进行慢流速反洗一下,再进行正洗。如果还是不行,那么进行快流速反冲一下,然后再冲洗。如果还有问题,你可以和我联系,我估计根本原因是你的操作程序或设备有偏流问题。
⑤ 如何正确使用阴阳离子交换树脂处理鱼缸水质
为了繁殖一些来鱼或者饲源养野生鱼(如亚马逊河流的野生鱼),需要软水,用软水树脂进行做水,通常情况下,绝大多数的观赏鱼不需要。 1、软水树脂分碱性和酸性的,软水是指水的硬度,水族中用GH表示,酸碱度以PH表示,这两个不是一个概念。让水通过软水树脂,就可以让水降低硬度,当树脂交换饱满后,树脂就失效了; 2、可以放在滤盒子里面; 3、 RO机和工厂化的纯净水,都是用的树脂处理水的,原理一样,只是规模大小不一样。软水树脂,是专用于软化硬水的一种专用树脂,通过离子交换技术,使水的硬度小于50mg/L(CaCO3) 。离子交换树脂是一类具有离子交换功能的高分子材料。在溶液中它能将本身的离子与溶液中的同号离子进行交换。按交换基团性质的不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两类。常用的离子交换设备装填的树脂大都是201x7强碱性苯乙烯系阴离子交换树脂及001x7强酸性苯乙烯系阳离子交换树脂。如果在水质要求特别高的场合则使用抛光树脂。
⑥ 阳离子交换树脂怎样预处理
先要已知该离子交换树脂是用作何用,如水处理的钠床,氢床等方面,另一个是该阳树脂是钠型,还是氢型出厂,因以上问题,其预处理方式也不同…。华粼水质
⑦ 求助阳离子交换树脂的使用
需要,配制1mol/L的盐酸溶液浸泡阳离子交换树脂24小时,然后充分洗涤,直到流出液不含氯离子才算洗干净,就可以用了,装柱子,交换,再生
⑧ 阳离子交换树脂和阴离子交换树脂的区别和用法
阳离子交换树脂:
阳离子交换树脂是在交联为7%的苯乙烯,二乙烯共聚体上带有磺酸基(-SO3H)的阳离子交换树脂,是一种磺酸化苯乙烯系凝胶型强酸性阳离子交换树脂。它在碱性、中性、甚至酸性介质中都显示离子交换功能。本产品具有交换容量高、交换速度快、机械强度好等特点。主要用于锅炉硬水软化和纯水制备,也用于湿法冶金、制糖、制药、味精行业,以及作为催化剂和脱水剂。
阳离子交换树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类阳离子交换树脂亦是用酸进行再生(比强酸性树脂较易再生)。
阴离子交换树脂:
阴离子交换树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。
阳离子交换树脂在使用一段时间后,要进行再生处理,即用化学品使离子交换反应以相反方向进行,使阳离子交换树脂的功能基团回复原来状态,以供再次使用。如上述的阴离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。
⑨ 阴阳离子交换树脂的工作原理
离子交换树脂原理即是离子交换树把溶液中的盐分脱离出来的过程:
离子交换树脂作用环境中的水溶液中,含有的金属阳离子(Na+、Ca2+、 K+、 Mg2+、Fe3+等)与阳离子交换树脂(含有的磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基团,在水中易生成H+离子)上的H+进行离子交换,使得溶液中的阳离子被转移到树脂上,而树脂上的H+交换到水中,(即为阳离子交换树脂原理)。
水溶液中的阴离子(Cl-、HCO3-等)与阴离子交换树脂(含有季胺基[-N(CH3)3OH]、胺基(—NH2)或亚胺基(—NH2)等碱性基团,在水中易生成OH-离子)上的OH-进行交换,水中阴离子被转移到树脂上,而树脂上的OH-交换到水中,(即为阴离子交换树脂原理)。而H+与OH-相结合生成水,从而达到脱盐的目的。
(9)阳离子离子交换树脂怎么用扩展阅读:
离子交换树脂使用方法:
1、预选。离子交换树脂的粒度一般控制在20-35目,有些可达到50目,因此在使用前要先干燥,粉碎,过筛,通常干燥时在烘箱中进行,亦可在装有五氧化二磷、氧化钙或者浓硫酸的干燥器中进行,粉碎时不要分得过细,否则影响实验收率。
2、预处理。强碱性离子交换树脂应先用20倍树脂体积的4%氢氧化钠水溶液处理,然后用10倍体积的水洗,再用10倍量4%盐酸处理,最后用蒸馏水洗至中性,然后将氯型转化成OH型,再转化成氯型,最后用10倍4%氢氧化钠水溶液处理。弱碱性离子交换树脂处理时只需用10倍量蒸馏水洗即可,不必洗至中性。
3、装柱。将处理好的树脂至于烧杯中,加水充分搅拌除掉气泡,静置几分钟待树脂大部分沉降后,倾去上层泥状颗粒;反复操作直至上层液澄清后,即可装柱。注意要在柱子底部放1cm后的玻璃丝,用玻璃棒将其压平,将树脂倒入柱子中,还要注意防止气泡产生。
4、树脂交换。将样品配制成一定浓度的水溶液,以适当流速通过柱子,亦可将样品溶液反复通过柱子,直到成分交换完全。用显色法检验成分是否交换彻底。
5、树脂洗脱。注意亲和力弱的成分先被洗下来,常用的离子交换树脂洗脱剂有强酸、强碱、盐类、不同pH缓冲溶液、有机溶液等,可选择梯度洗脱或者单一浓度洗脱。
6、树脂再生。
⑩ 离子交换树脂的一搬使用方法是什么
离子交换树脂的使用方法
1.装柱(采用湿法装柱)
A 实验室
量取:将一定量的树脂与去离子水在烧杯中进行混合,然后将混合的树脂水溶液倒入量筒中,使树脂充分沉降,通过补加和移取,使树脂床层与相应刻度持平,即完成树脂的量取。
装填:关闭离子交换柱下端的出口阀门,用水将量筒中的树脂全部导入离子交换柱中,然后打开交换柱出口阀门,使树脂在柱内沉降压实,然后关闭交换柱出口阀门,待用。(注意:须保留液面高于树脂床层1-2cm,避免干柱。)
B 工业化
新树脂装柱前,应该使用清水和碱液对树脂交换柱相关管道进行清洗,清理出焊渣等固体废料和附着在柱壁和管壁上的尘土与其他杂质。然后,向柱内注入 1/3 体积的水,取少量树脂,将树脂从交换柱顶部人孔处装入柱内。关闭人孔,向柱内注水,同时打开交换柱下部排水阀门,用≥80 目筛网在排水口拦截,观察是否有树脂泄露,如果有个别小颗粒,属于正常现象;如果有大颗粒树脂出现,且量比较多,说明交换柱下滤板有问题,应把树脂和水放出,检查下滤板焊缝和水帽,查找原因,进行检修。检修完毕后,再按照上面的方法检测,直至确定符合要求,然后再将剩余的树脂加入交换柱内。
树脂装柱完成后,先用去离子水对树脂进行反向清洗,清洗流速控制在2-4BV/h,清洗约1h,停止水洗,让树脂自然沉降完全;然后用去离子水对树脂柱床进行正向清洗,清洗流速控制在4-6BV/h,清洗约1h后停止。
2.Seplite树脂预处理
首先用4%的盐酸溶液进行过柱处理,处理流速控制在1-2BV/h,处理量3-4BV;处理完毕后,用去离子水过柱清洗掉柱床及树脂孔道内残留的酸,至出口液pH≥4,停止水洗,树脂床层上至少保留20-30cm的液面层,防止干柱。
然后用4%的氢氧化钠溶液进行过柱处理,处理流速控制在1-2BV/h,处理量3-4BV;处理完毕后,用去离子水过柱清洗掉柱床及树脂孔道内残留的碱,至出口液pH≤10,停止水洗,树脂床层上至少保留20-30cm的液面层,防止干柱。
再用4%的盐酸溶液进行过柱处理,处理流速控制在1-2BV/h,处理量3-4BV;处理完毕后,用去离子水过柱清洗掉柱床及树脂孔道内残留的酸,至出口液pH≥4,停止水洗,树脂床层上至少保留20-30cm的液面层,防止干柱。
最后再用95%以上的乙醇或甲醇溶液以1BV/h的流速进行树脂过柱处理,至进出口醇浓度一致,停止进醇,浸泡2-4h,然后继续过柱处理,至流出液澄清无浑浊时停止,再用去离子水以1~2BV/h的流速过柱清洗树脂,至出口液中无明显的醇味,待用。
3.树脂吸附
料液上柱吸附前须经必要的过滤预处理,以去除料液中的固形物杂质,防止堵塞树脂孔道,影响树脂吸附效果。吸附过程一般采取正向过柱的方式,吸附流速一般建议控制在1-2BV/h,通过检测出口液中目的物(或杂质)的含量,以确定树脂的吸附状态。
1. 吸附后水洗
树脂吸附完成后,用去离子水正向过柱清洗树脂柱床,清洗流速一般控制在1-2BV/h,清洗1-2h,以清除柱床内残留的料液以及部分水溶性杂质。
2. 树脂解析
水洗完成后,可采用4-6%的盐酸溶液或硫酸溶液对树脂进行过柱解析再生,过柱流速一般控制在1-2BV/h,处理量控制在3BV以内。也可采用8-10%的氯化钠溶液进行解析再生,处理流速一般控制在1-2BV/h,处理量控制在3BV以内。
3. 解析后水洗
树脂解析再生完成后,用去离子水正向过柱清洗树脂柱床,清洗流速一般控制在1-2BV/h,清洗1-2h,以清除柱床内残留的解析剂(酸、盐溶液)。
4. 树脂深度再生处理
树脂运行一段时间后,如出现交换容量下降,可用下面的方法对树脂进行深度再生处理。
1.碱再生
用4%的氢氧化钠溶液正向过柱,对树脂进行碱再生处理,处理流速控制在1-2BV/h,处理约1.5h。热碱再生处理完毕后,用去离子水正向过柱清洗,清洗流速2-3BV/h,至出口液pH≤10。
1.酸再生
碱再生并水洗完成后,用4%的盐酸溶液进行正向过柱处理,处理流速控制在1-2BV/h,处理约1.5h。酸再生处理完毕后,用去离子水正向过柱清洗,清洗流速2-3BV/h,至出口液pH≥5。
注:树脂的具体使用方法与具体使用工况、工艺方案等有关,因此,树脂的具体使用方法及细则也可向蓝晓科技应用技术服务人员咨询。
离子交换树脂注意事项:
(1)使用中应尽量避免反复对树脂进行装卸,防止树脂床层不均匀导致偏流。
(2)短时间停运,应将树脂再生、清洗干净后置于清水中浸泡。
(3)长期停运或冬季室温低于5℃,则应将树脂浸泡于15%的NaCL或10%的氢氧化钠水溶液中,防止滋生
细菌与树脂冻结。
离子交换树脂储存方法:
(4)料液上柱前须经必要的过滤处理,以除去固形物杂质,防止堵塞树脂孔道,影响树脂吸附效果。
(1)树脂储运温度5℃—40℃,严禁雨淋、暴晒。
(2)保持树脂的内、外包装完整,防止树脂受污与失水。
(3)防止树脂受冻与受热,树脂一般要求室温避光保存。
(4)避免与有异味、有毒、氧化性物质混杂堆放。