超滤膜是什么?
超滤(UF)基本上是按分子量大小进行分离的压力驱动膜过程。超滤膜的孔径一般在—100nm之间,能够截留分子量在300—500,000道尔顿的物质,包括多糖、生物分子、聚合物和胶体物质等。大多数超滤膜所标称的切割分子量一般定义为膜具有90%以上截留率的最小分子量。
超滤膜具有哪些特点?
1. 亲水性膜丝,通量大
超滤膜通过降低膜表面张力,大幅改善了膜的亲水性,使水通量大幅增加,膜表面涂覆牢度强,衰减慢,经过相对高温的水洗和碱洗不易脱落,膜丝抗污染能力提高,耐化学腐蚀性增强。
2. 过滤精度高
超滤膜丝空隙分布均匀,膜孔数量繁多,结构稳定,过滤精度高达0.01微米,彻底滤除原水中的细菌、病毒、胶体、铁锈等各种杂质,出水稳定,水质可达国家饮用水标准,真正实现优质净化水效果。
3. 截留高,抗污染性强
超滤膜的膜丝分布狭窄,且微孔形状呈倒喇叭状,起稳定截留作用的表皮层孔径小,支撑层孔径大,污染物不能进入到支撑层,避免不可恢复的堵塞,使膜丝抗污染性强,在原水水质波动频繁,水质较为恶劣的条件下运行仍能保证良好的过滤效果。
4. 膜丝强度高
超滤膜膜丝拥有的机械强度大,每一根超滤膜丝在各种复杂的工况条件下运行稳定,不易出现断丝,保证超滤出水水质优良。
5. 易清洗,易恢复,使用寿命长
膜公司独特的制膜工艺,使超滤膜膜丝内外壁平整光滑,具有永久亲水性的特质,从而使超滤膜在过滤介质中:胶体、油、蛋白质与污染物质在膜的表面聚结成球状,这种聚结物很容易从膜表面脱离,通过简单的反洗就可以清洗干净,不易污堵,可有效减少化学清洗频率,延长超滤膜使用寿命。
㈡ 工业生产用超滤膜的进水水质如何保证
这命题太大了,细格栅安排上
㈢ 超滤膜的净水原理是什么
超滤膜的过复滤原理是什制么?
超滤膜的筛分过程,以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当原液流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的净化、分离和浓缩的目的。
每米长的超滤膜丝管壁上约有60亿个0.01微米的微孔,其孔径只允许水分子、水中的有益矿物质和微量元素通过,而较小细菌的体积都在0.02微米以上,因此细菌以及比细菌体积大得多的胶体、铁锈、悬浮物、泥沙、大分子有机物等都能被超滤膜截留下来,从而实现了净化过程。在单位膜丝面积产水量不变的情况下,滤芯装填的膜面积越大,则滤芯的总产水量越多。
你所问的从内到外,还是从外到内,这两种都有,因为超滤膜有两种分别是:内压式和外压式
内压式的超滤膜就是从内到外。
外压式的超滤膜就是从外到内。
㈣ 超滤膜主要有哪些优点和缺点
超滤膜主要具有以下优点:
1.回收率高,所得产品品质优良,可实现物料的高回效分答离、纯化及高倍数浓缩。系统制作材质采用卫生级管阀,现场清洁卫生,满足GMP或FDA生产规范要求。系统工艺设计先进,集成化程度高,结构紧凑,占地面积少,操作与维护简便,工人劳动强度低。
2.处理过程无相变,对物料中组成成分无任何不良影响,且分离、纯化、浓缩过程中始终处于常温状态,特别适用于热敏性物质的处理,完全避免了高温对生物活性物质破坏这一弊端,有效保留原物料体系中的生物活性物质及营养成分。
3.超滤设备系统能耗低,生产周期短,与传统工艺设备相比,设备运行费用低,能有效降低生产成本,提高企业经济效益。
4.操作简便,成本低廉,不需增加任何化学试剂,尤其是超滤技术的实验条件温和,与蒸发、冷冻干燥相比没有相的变化,而且不引起温度、pH的变化,因而可以防止生物大分子的变性、失活和自溶。在生物大分子的制备技术中,超滤主要用于生物大分子的脱盐、脱水和浓缩等。
超滤膜缺点:
超滤法也有一定的局限性,它不能直接得到干粉制剂。对于蛋白质溶液,一般只能得到10~50%的浓度。超滤膜的缺点是膜更换费用较高,技术设备投资很大。
㈤ 影响超滤膜产水量的因素是什么
流速的变化对产水量的影响不像温度和压力那样明显,流速太慢容易导致超滤膜堵塞,太快则影响产水量。超滤是一种利用膜分离技术的筛分过程,以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当原液流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的净化、分离和浓缩的目的。每米长的超滤膜丝管壁上约有60亿个0.01微米的微孔,其孔径只允许水分子、水中的有益矿物质和微量元素通过,而最小细菌的体积都在0.02微米以上,因此细菌以及比细菌体积大得多的胶体、铁锈、悬浮物、泥沙、大分子有机物等都能被超滤膜截留下来,从而实现了净化过程。
㈥ 原水预处理的胶体污染的防治
胶体是具有1nm到1μm粒径,像粘土一样很难自然沉降的微粒子。在水中通常带负电。因此胶体粒子间由于静电斥力的作用,不会发生聚合。 絮凝是加入絮凝剂中和胶体粒子表面的电荷,使得胶体粒子间的排斥力变弱,最终导致微粒子之间变的更容易聚集。絮凝通过以下三个方式起作用:
(1)胶体间的引力和反作用力;
(2)粒子和粒子的接触、冲撞;
(3)化学作用(金属氢氧化物的溶解度)。
多数常用絮凝剂与水中的碱成分反应易生成金属氢氧化物,如果加入絮凝剂的量过多,会导致生成的氢氧化物析出并对膜元件造成污染。常用絮凝剂见右图表格。
影响絮凝的因素,除了絮凝剂的注入量以外,还有pH 值、搅拌条件、共存离子以及水温等。在实际设计中,必须预先对这些絮凝条件进行预测。最适合的条件要用测试器进行测试,由生成的絮凝体特性状态决定设计条件,当然最终还需要用实际的溶液来决定确切的絮凝条件。 按照过滤的速度可分为缓速过滤和急速过滤两个大类。右图中列出了不同过滤方式的不同特征:介质过滤可以有效的去除反渗透和纳滤给水中的悬浮物,降低浊度和SDI 值。仅靠絮凝、砂滤无法把原水中的粒子有效捕捉时,还可以配合使用絮凝沉淀和气浮组合。但是,添加过滤辅助药剂或者絮凝剂,有可能会导致反渗透和纳滤膜污染。因此需要做小型烧杯实验,以确认药剂的添加是否对反渗透和纳滤系统有影响。
在选择滤速时,依据原水水质的不同可以有所变化。通常对于地下水水源,由于水中的胶体、悬浮物含量较少,可以选择较高的滤速;对于污染较严重的地表水,滤速的设定一定不能太高,以免对反渗透和纳滤系统造成严重污染
从工程实际经验上,对于受污染的地表水,过滤速度应尽量小于8 米/小时,有条件的可以接近6 米/ 小时,最高也不要超过10 米/小时。 活性炭可以用来吸附溶解性有机物以及游离氯和臭氧等氧化剂,用活性炭作为反渗透和纳滤膜系统的预处理已经被广泛使用。通常被采用的活性炭有两种类型:
颗粒活性炭(Granular Activated Carbon,缩写:GAC)
粉末活性炭(PowderedActivated Carbon,缩写:PAC)
他们的特征如右图所示: 微滤(MF)和超滤(UF)是近几年才大规模应用的反渗透和纳滤预处理工艺。 同絮凝、沉淀以及砂滤比较,其过滤的水质稳定、设备管理比较简单,也不会产生过滤残渣或絮凝污泥等废弃物。
作为预处理,微滤和超滤膜的使用几乎可以完全去除不溶解的物质,降低颗粒物的污染风险,使得反渗透的设计水通量可以适当增加约10 – 20 %。但是微滤和超滤也不能包治百病,并非采用了微滤和超滤就可以排除一切对反渗透和纳滤产生污染的物质。
一方面是由于微滤以及用于反渗透和纳滤预处理的超滤膜都属于筛分过滤,过滤孔径大约在0.02 – 0.05 微米之间,虽然大部分不溶解的物质都会被截留,但是很多溶解在水中的有机物同样会对反渗透和纳滤系统产生污染,而这恰恰是微滤和超滤预处理不能解决的。
另一方面,微滤和超滤预处理系统经常要伴随着药剂的加入,例如:絮凝剂、阻凝剂、氧化剂、酸和碱等,这些化学物质有可能在微滤和超滤的产水中存留,进而导致反渗透和纳滤膜的污染和劣化。其中尤其要注意的是絮凝剂和氧化剂,从目前大量的双膜法(MF/UF+RO)案例来看,大多数微滤和超滤系统会在线投加絮凝剂,种类以铁盐和铝盐为主,这是为了在原水中造成微絮凝以提高微滤和超滤的产水水质,部分絮凝剂未能充分反应并透过微滤和超滤膜进入产水侧,由于在产水水箱中有一定的停留时间,导致这些透过的絮凝剂发生二次絮凝,这对反渗透和纳滤膜会造成严重的污染。
氧化剂的投加主要是为了杀灭水中的微生物,在微滤和超滤的反洗步骤中也经常使用,但是残留的氧化剂如果没有充分的还原,就会造成反渗透和纳滤膜的氧化,导致不可恢复的破坏。
因此,在选择微滤和超滤作为预处理时,一定要严格控制药剂的投加量、严格按照微滤和超滤制造商提供的设计参数设计,虽然微滤和超滤系统自动化程度高、运行操作简单,但也同样要做好维护工作,确保系统稳定的运行。 在有的井水中含有还原态的Fe2+和Mn2+ 。这种水在氧化后或者当水中的氢氧根超过5 mg/L 时,Fe2+会转变为Fe3+,生成胶体的氢氧化物。
4 Fe(HCO3)2 + O2 + H2O → 4 Fe(OH)3 + 8 CO2
铁比锰更容易造成反渗透和纳滤膜的污染。用反渗透系统来处理这样的水时,重要的是不要接触空气。在进入反渗透装置前对原水进行氧化,然后使用过滤器脱除,也可以防止铁和锰带来的污染。 对铁和锰的进水要求可参见预处理方法目录下的“RO和NF系统进水水质要求”表格。
㈦ 超滤膜在净水器中起到了什么功能
起到了净化功能。
超滤膜筛分过程,以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当原液流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液。
因而实现对原液的净化、分离和浓缩的目的。每米长的超滤膜丝管壁上约有60亿个0.01微米的微孔,其孔径只允许水分子、水中的有益矿物质和微量元素通过。
而已知世界最小细菌的体积在0.2微米,因此细菌以及比细菌体积大得多的胶体、铁锈、悬浮物、泥沙、大分子有机物等都能被超滤膜截留下来,从而实现了净化过程。
(7)水中的胶体对超滤膜的影响扩展阅读
超滤膜在使用后必须要定时的清洗,不然就会影响超滤膜的使用性能与寿命,定时的清洗也能保持超滤膜具有良好的通透性,清洗的方法一般会根据超滤膜的性质与处理料液的性质来决定,不过大多数情况下是用清水来清洗,然后依据情况不同采用不同的化学制剂来清洗。
具体的可分为以下几种情况,电涂料材料可以选用含离子的增溶剂来清洗;水溶性的涂料可采用“桥键”型溶剂清洗;食品工业蛋白质沉淀可以采用阮酶溶剂、磷酸盐、硅酸盐为基础的碱性去垢剂清洗;膜表面的无机盐沉淀可利用EDTA之类的螯合剂、酸、碱来清除。
㈧ 净水器超滤膜有什么作用
超滤膜在净水器中的作用主要是过滤,超滤膜能够有效地过滤掉水中的悬浮物、胶体、有机大分子、细菌、微生物等杂质。
㈨ 影响超滤膜运行的因素有哪些
温度对产水量的影响:
温度对超滤膜系统的水分子的活性增强,粘滞性减小,故产水量增加。反之则产水量减少,因此即使是同一超滤膜系统在冬天和夏天的产水量的差异也是很大的,温度与产水量的关系是成正比的。一般在允许的温度条件下,温度系统约为0.0215/1°C,即温度每上升一度,则相应的产水量增加2.15%,因此可以使用调节水温的方法来实现超滤系统的产水量的稳定一致。
水质变化:
一方面,进水水质经由10μ过滤后,保证浊度小于1NTV,浓度不大于百分之五,且水温应在5至40摄氏度之间,压力应不大于0.2MPa,在此基础上,保证进水回收率在80%以上,酸碱度为2至13之间。另一方面,水质异常也是影响超滤出水量的重要条件,包括在雨季,原水中所蕴含的颗粒物、悬浮物会增多,使浊度达不到相关要求。加之进水的主要来源是地表水,所蕴含的有机物较多,在压力不均衡和连接不紧密的情况下会混入一定质量的生水,被截留于超滤膜表面,致使定期的清洁难以维持,直接导致超滤出水量降低。
操作压力对产水量的影响:
在低压时超滤膜的产水量与压力成正比关系,即产水量随着压力升高而升高,但当压力值超过0.3mpa时,即使压力再升高,其产水量的增加也很小,主要是由于在高压下超滤膜被压密而增加透水阻力所致,因此在超滤系统设计应注意;
超滤过程:
原水在管道内或管道外流动,小分子溶质及溶剂穿过膜逐渐形成超滤液,并降低浓度,成为浓缩液,从而实现小分子溶质和溶剂分离和浓缩。超滤过程具有动态性,且膜不易堵塞,但会随着运行时间的增加,产生吸附作用,使超滤膜表面形成残渣等物质。因此,超滤的各项特征是保证出水量的必要条件。
进水浑浊度对产水量的影响:
进水浊度越大时,超滤膜受到影响的产水量越少,而且进水浊度大更易引起超滤膜的堵塞,在确定超滤膜产生量时也应考虑进水浊度的影响,一般可采用以下方法降低浊度的影响;
A、 增加前级预处理降低原水浊度;
B、 使用错流过滤方式,并降低系统回收率;
流速对产水量的影响:
流速的变化对产水量的影响虽不像温度和压力那样明显,流速过大时反而会导致膜组件的产水量下降,这主要是因为由于流速加快增加了组件压力损失而造成的,因此在设计超滤系统流速时,一定要控制在给定的流速范围内,流速太慢影响超滤分离质量,容易形成浓差极化,太快则影响产水量。
㈩ 其实超滤膜过滤出来的水,和烧开的自来水有什么区别..
一、水的微量元素含量不同
超滤膜过滤出来的水在过滤的过程中虽然去掉了胶体、悬专浮物等大属分子有机物,但是也去除了一些微量元素,自来水只进行了粗过滤和杀菌,所以超滤膜过滤出来的水中的锌等微量元素远远低于自来水。
二、水的处理过程不同
超滤膜过滤是一种筛分的过程,以超滤膜为过滤介质,在一定的压力下,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过,而体积大于膜孔径的物质则被留下成为浓缩液,从而实现了对水的净化。
烧开的自来水是一种灭菌除垢的过程,自来水经过粗过滤和灭菌去掉了悬浮物杂质和细菌等有害物质,随后自来水经煮沸后除垢并进一步灭菌。
(10)水中的胶体对超滤膜的影响扩展阅读
超滤膜的材质很多,包括:聚偏氟乙烯、聚丙烯、聚乙烯、聚丙烯腈、聚氯乙烯等。当超滤用于水处理时,其材质的化学稳定性和亲水性是两个最重要的性质。
化学稳定性决定了材料在酸碱、氧化剂、微生物等的作用下的寿命,它还直接关系到清洗可以采取的方法,亲水性则决定了膜材料对水中有机污染物的吸附程度,主要影响膜的通量。