『壹』 德国赛多利斯的Vivaflow切向流过滤和浓缩装置使用方便吗
赛多利斯的实验室切向流超滤系统 Vivaflow 即插即用,兼具卓越的灵活性和优异性能。
『贰』 超滤原理的超滤应用
超滤(Ultrafiltration)技术是一来种膜滤自法,也有错流过滤(Cross Filtration)之称。它能从周围含有微粒的介质中分离出10~100A的微粒,这个尺寸范围内的微粒,通常是指液体内的溶质。其基本原理是在常温下以一定压力和流量,利用不对称微孔结构和半透膜介质,依靠膜两侧的压力差作为推动力,以错流方式进行过滤,使溶剂及小分子物质通过,大分子物质和微粒子如蛋白质、水溶性高聚物、细菌等被滤膜阻留,从而达到分离、分级、纯化、浓缩目的的一种新型膜分离技术。
『叁』 净水设备常识:超滤膜过滤原理及过滤方式
中国市场上的净水设备大致可分为净水器和纯水机两大类。所谓净水器就是去除水中的悬浮物以及对人体有害的有机化合物,无机化合物,重金属,细菌,又能保留人体所需要的向量元素和矿物质的产品;所谓纯水机就是滤除水中所有的杂质,只剩下完全纯净的水分子。长期饮用纯净水是不利于人体健康的,纯水失去了人体所需的微量元素,长期饮用对身体不利。所有,我们可以选择超滤膜净水器,但是超滤膜净水器过滤原理及过滤方式如何?
超滤膜过滤原理
超滤是一种与膜孔径大小相关的筛分过程,以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当原液流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的净化、分离和浓缩的目的。
超滤膜过滤方式
一个中空纤维超滤膜组件主要是由成百到上千根中空纤维丝和膜壳两部分组成,一般将中空纤维内径在0.6-6mm之间的超滤膜称为毛细管式超滤膜,毛细管式超滤膜因内径较大,因此不易被大颗粒物质堵塞,更适用于过滤原液浓度较大的场合。
1.内压式过滤:
原液先从膜丝内孔进,经压力差驱动,沿径向由内向外渗透过中空纤维成透过液为内压式过滤,内压式过滤可以使用高压大流量的顺冲洗,使冲洗水流与膜孔成切向方向快速流过,从而可以将吸附在膜内孔表面上的污染物冲去,恢复膜的水通量。
2.外压式过滤:
原液经压力差驱动沿径向由外向内渗透过中空纤维膜丝成为透过液,而截留的物质汇集在中空丝的外部时为外压式过滤。:外压式超滤膜密封在膜壳内,水流的死角多,无法使用快速直冲的方法清除膜表面附着的污染物,因而不能完全去污。
『肆』 切向流的介绍
切向流是指液体流抄动方向与过滤方向呈垂直方向的过滤形式。传统的液体死端过滤(dead end),也叫垂直过滤,是大部分微孔过滤(MF,微滤),包括除菌过滤所采用的过滤形式,其液体的流动方向与过滤方向一致,随着过滤的进行,过滤膜表面形成的滤饼层或凝胶层厚度逐渐增大,流速逐渐降低。当过滤介质为孔径细小的超滤膜或微滤膜时料液中固形物含量很高时,采取死端过滤方式,流速将急速降低,因此死端过滤只能处理小体积的料液。
『伍』 超滤的应用
超滤膜的最小截留分子量为500道尔顿,在生物制药中可用来分离蛋白质、酶、核酸、多糖、多肽、抗生素、病毒等。超滤的优点是没有相转移,无需添加任何强烈化学物质,可以在低温下操作,过滤速率较快,便于做无菌处理等。所有这些都能使分离操作简化,避免了生物活性物质的活力损失和变性。
由于超滤技术有以上诸多优点,故常被用作:
(1)大分子物质的脱盐和浓缩,以及大分子物质溶剂系统的交换平衡。
(2)大分子物质的分级分离。
(3)生化制剂或其他制剂的去热原处理。
超滤技术已成为制药工业、食品工业、电子工业以及环境保护诸领域中不可缺少的有力工具 。 超滤技术的关键是膜。膜有各种不同的类型和规格,可根据工作的需要来选用。早期的膜是各向同性的均匀膜,即常用的微孔薄膜,其孔径通常是0.05mm 和0.025mm。近几年来生产了一些各向异性的不对称超滤膜,其中一种各向异性扩散膜是由一层非常薄的、具有一定孔径的多孔皮肤层(厚约0.1mm~1.0mm),和一层相对厚得多的(约1mm)更易通渗的、作为支撑用的海绵层组成。皮肤层决定了膜的选择性,而海绵层增加了机械强度。由于皮肤层非常薄,因此高效、通透性好、流量大,且不易被溶质阻塞而导致流速下降。常用的膜一般是由乙酸纤维或硝酸纤维或此二者的混合物制成。近来为适应制药和食品工业上灭菌的需要,发展了非纤维型的各向膜,例如聚砜膜、聚砜酰胺膜和聚丙烯腈膜等。这种膜在pH 1~14都是稳定的,且能在90℃下正常工作。超滤膜通常是比较稳定的,若使用恰当,能连续用1~2年。暂时不用,可浸在1%甲醛溶液或0.2%NaN3中保存。超滤膜的基本性能指标主要有:水通量[cm3/(cm2?h)];截留率(以百分率%表示);化学物理稳定性(包括机械强度)等。
超滤装置一般由若干超滤组件构成。通常可分为板框式、管式、螺旋卷式和中空纤维式四种主要类型。由于超滤法处理的液体多数是含有水溶性生物大分子、有机胶体、多糖及微生物等。这些物质极易粘附和沉积于膜表面上,造成严重的浓差极化和堵塞,这是超滤法最关键的问题,要克服浓差极化,通常可加大液体流量,加强湍流和加强搅拌。
在生物制品中应用超滤法有很高的经济效益,例如供静脉注射的25%人胎盘血白蛋白(即胎白)通常是用硫酸铵盐析法、透析脱盐、真空浓缩等工艺制备的,该工艺流程硫酸铵耗量大,能源消耗多,操作时间长,透析过程易产生污染。改用超滤工艺后,平均回收率可达97.18%;吸附损失为1.69%;透过损失为1.23%;截留率为98.77%。大幅度提高了白蛋白的产量和质量,每年可节省硫酸铵6.2吨,自来水16000吨。目前国外生产超滤膜和超滤装置最有名的厂家是美国的Milipore公司和德国的Sartorius公司。国内的知名厂家有立升。
超滤在废水处理中的应用
(1)还原性染料废水处理;
(2)电泳涂漆废水处理;
(3)含乳化油废水处理;
(4)生活污水处理 一种孔径规格一致,额定孔径范围为0.001-0.02微米的微孔过滤膜。采用超滤膜以压力差为推动力的膜过
滤方法为超滤膜过滤。超滤膜大多由醋酯纤维或与其性能类似的高分子材料制得。最适于处理溶液中溶质的分离和增浓,也常用于其他分离技术难以完成的胶状悬浮液的分离,其应用领域在不断扩大。以压力差为推动力的膜过滤可区分为超滤膜过滤、微孔膜过滤和逆渗透膜过滤三类。它们的区分是根据膜层所能截留的最小粒子尺寸或分子量大小。以膜的额定孔径范围作为区分标准时,则微孔膜(MF)的额定孔径范围为0.02~10μm;超滤膜(UF)为0.001~0.02μm;逆渗透膜(RO)为0.0001~0.001μm。由此可知,超滤膜最适于处理溶液中溶质的分离和增浓,或采用其他分离技术所难以完成的胶状悬浮液的分离。超滤膜的制膜技术,即获得预期尺寸和窄分布微孔的技术是极其重要的。孔的控制因素较多,如根据制膜时溶液的种类和浓度、蒸发及凝聚条件等不同可得到不同孔径及孔径分布的超滤膜。超滤膜一般为高分子分离膜,用作超滤膜的高分子材料主要有纤维素衍生物、聚砜、聚丙烯腈、聚酰胺及聚碳酸酯等。超滤膜可被做成平面膜、卷式膜、管式膜或中空纤维膜等形式,广泛用于如医药工业、食品工业、环境工程等。我们都知道筛子是用来筛东西的,它能将细小物体放行,而将个头较大的截留下来。可是,您听说过能筛分子的筛子吗?超膜--这种超级筛子能将尺寸不等的分子筛分开来!那么,到底什么是超滤膜呢? 超滤膜是一种具有超级“筛分”分离功能的多孔膜。它的孔径只有几纳米到几十纳米,也就是说只有一根头发丝的1‰!在膜的一侧施以适当压力,就能筛出大于孔径的溶质分子,以分离分子量大于500道尔顿、粒径大于2~20纳米的颗粒。超滤膜的结构有对称和非对称之分。前者是各向同性的,没有皮层,所有方向上的孔隙都是一样的,属于深层过滤;后者具有较致密的表层和以指状结构为主的底层,表层厚度为0.1微米或更小,并具有排列有序的微孔,底层厚度为200~250微米,属于表层过滤。工业使用的超滤膜一般为非对称膜。超滤膜的膜材料主要有纤维素及其衍生物、聚碳酸酯、聚氯乙烯、聚偏氟乙烯、聚砜、聚丙烯腈、聚酰胺、聚砜酰胺、磺化聚砜、交链的聚乙烯醇、改性丙烯酸聚合物等等。
超滤厨饮用两用机:①PP棉滤芯、②活性碳、③纳米膜表超滤膜滤芯、④复合滤芯,五级过滤设备多加了一个后置活性炭,六级的多加了一个矿化滤芯就成立市场上见到的直饮水机。更多级的就加更多针对性的滤芯。 (1)增压泵超滤膜以力差为推动力进行过滤,当原水的水压不能满足过滤需求时,系统需要增加泵加压,以实现超滤膜分离作用,由于超滤膜的工作压力较低,一般小于O·7MPa,故在系统设计时,一般选用离心泵,选择离心泵的主要依据是扬程、流量、泵体材质,其次是泵的体积大小、外观造型和价格等。
①扬程和流量的选择根据超滤系统设计中所需要的进水工作压力,跨膜压差和通水流量,来选择泵的扬程和流量。一般选择水泵的扬程和流量应当等于或略大于设计供水量和工作压力,以满足超滤系统的正常运行。
②泵体材质的选择根据原水水质的情况来选择合适的泵体材质以减少投资成本,其材质不能与原水中的成分产生任何反应,也不能有溶解现象。当原水的pH值为6.5~8.5时可选用铸铁泵体;当原水为海水时,应选耐海水腐蚀的塑料泵体;医药和食品工业水处理却一般选择使用不锈钢泵体。
化学清洗泵一般选择耐化学药剂的泵体。
(2)减压阀 当原水水压大于系统设计水压时,要对原水进行减压。一般采用可减静压的减压阀来实现,减压阀减压的精度视超滤系统而定。另根据原水的水质选择适合材质的减压阀,一般可选的材质为铜、不锈钢、铁、塑胶。
(3)物理清洗和化学清洗系统 清洗系统主要由配药箱、净水箱、循环泵组成,采用气水混合清洗的还包括空压机,一般物理清洗分为等压冲洗和反冲洗。等压冲洗时是关闭产水阀,全开浓水阀,使原水以快于正常工作状态时的流速冲刷膜表面,去除污垢。反冲洗是关闭原水阀采用循环泵,将净水箱中的水从产水口打入膜组件。使净水按正常过滤的反方向透过膜,冲刷掉膜表面的污染物,并使其从浓水口排出,反冲洗后,马上进行等压冲洗。能更有效地将被截留的污染物排出,为了加强清洗效果,顺冲时,可采用气水混合液进行冲洗。
化学清洗系统是用循环泵将配药箱内的清洗液送入超滤系统,进行循环清洗和浸泡,靠化学药品的作用去除膜表面的污垢,以恢复膜的产水能力,维持设计流量要求。
(4)消毒灭菌系统超滤的消毒灭菌系统所用设备和操作程序与化学清洗系统相同,仅需要将清洗液换成灭菌液即可,一般使用的灭菌剂为次氯酸钠和过氧化氢,在选择灭菌剂时要考虑剂膜的材质和灭菌剂浓度。例如Ps材质膜不能采用含有阴离子表面活性剂的灭菌剂,否则会对膜造成不可逆的通量损失。
(5)自动化计量、监控和仪表
①计量水流量采用流量表来计量,流量计有转子流量计、浮子流量计、电磁流量计、挣针式流量计等。在超滤系统中大多采用玻璃浮子(转子)流量计,主要是显示直观,价格低,一台超滤系统最少需要设置两个流量计以便观察,一个是产水流量计,一个是浓水流量计或原水进水流量计。 流量计规格的选择是根据系统的流量大小而定,浮子流量计的选择通常选用的量程为1.5~2倍的实际最大测量流量。
②监控系统及仪表超滤系统在运行时,必须严格按照设计参数进行操作,这需要系统的相关参数进行监控,其中主要的监控项目是水质、流量、压力,可以手动操作,也可采用仪表和可编程控制器对系统进行自动控制。
对水质的监控可采用水质监测仪进行,对水压的监控可采用压力开关和压力表进行,对流量的控制可采用电子流量计进行监测,并将监测信号反馈到PLC中,然后来控制泵,阀门及清洗系统,从而实现系统的自动化。
压力是超滤系统的一个重要参数,故在压力表选择时,要注意其精度和耐用性。压力表量程的选择,以使用压力能使指针处于刻度盘的1/2~2/3位置为宜,并要考虑水锤对压力表的冲击。
『陆』 切向流过滤原理
切向流过滤原理:它是一种压力驱动的,根据分子尺寸的膜分离过程。用TFF,样本混合物不是像直流过滤那样被强迫通过一个单一的通路来通过膜。而是流体通过多次再循环的方式,切向通过膜的表面。
这种由施加压力带来的清扫,降低了初始样本在膜表面的积累。比膜截留分子量大的目标分子得到了保留,然而小分子和缓冲液通过了膜。
切向流过滤是一种浓缩和脱盐10ml到几千升样本溶液的有效方法。它可以用来从小的生物分子中分离大的生物分子,捕获细胞悬浮液以及澄清发酵液和细胞裂解物。TFF可以应用于一系列应用包括蛋白质化学,分子生物学,免疫学,生物化学和微生物学。
常规过滤是指在压力的作用下,液体直接穿过滤膜进入下游,而大的颗粒或分子则被截留在膜的上游或内部,小的颗粒或分子透过膜进入下游。在这种操作方式下,液体的流动方向是垂直于膜表面进入下游。常规过滤的应用包括澄清过滤、除菌过滤和除病毒过滤等。
切向流过滤则是指液体的流动方向是平行于膜表面的,在压力的作用下只有一部分的液体穿过滤膜进入下游,这种操作方式也有人称之为“错流过滤”(Cross Flow Filtration)。由于切向流在过滤过程中对膜包的表面进行不停的“冲刷”,所以在这种操作模式下有效的缓解了大的颗粒和分子在膜上的堆积,这就使得这种操作模式在很多应用中具有独特的优势。
切向流过滤中,泵推动流体通过滤膜表面,冲刷去除其上截留的分子,从而使滤膜表面的积垢程度降至最低。于此同时,切向流体也会产生垂直于滤膜的压力,推动溶质和小分子通过滤膜。如此方能完成过滤。利用细分筛网分离沙子与鹅卵石的模拟试验,有助于理解切向流过滤的机理:筛网眼象征滤膜上的孔隙,而沙子与鹅卵石象征待分离的分子,在直流过滤中,沙子-鹅卵石混合物被迫向着筛网眼方向移动,随着一些较小的砂粒通过筛网眼落下,在筛网表面形成一个鹅卵石层,阻碍顶部砂粒向筛网方向移动并通过筛网眼,在直流过滤中,增加压力,仅能对混合物施加压力,而无助于分离的促进。
相比之下,在切向流过滤模式中,通过混合物的再循环防止限制层的形成,此再循环类似于:振动以去除阻塞筛网眼的鹅卵石,使得位于混合物顶部的砂粒落下并通过筛网眼。因此,利用切向流过滤进行生物分子分离,效率更高,浓缩或渗滤速度更为快捷。
『柒』 切向流的切向流
对于较大规模的料液过滤时,就需要采用切向流过滤方式,液体流动在过滤介质表面回产生剪切力,答减小了滤饼层或凝胶层的堆积,保证了稳定的过滤速度。因此且切向流过滤方式被广泛地应用于超滤(UF)和部分的微滤(MF)的处理过程。
『捌』 超滤设备的优点有哪些
过滤过程是在常温下进行,条件温和无成分破坏,因而特别适宜对热敏感专的物质,如药属物、酶、果汁等的分离、分级、浓缩与富集。
2. 过滤过程不发生相变化,无需加热,能耗低,无需添加化学试剂,无污染,是一种节能环保的分离技术。
3. 超滤技术分离效率高,对稀溶液中的微量成分的回收、低浓度溶液的浓缩均非常有效。
4. 超滤过程仅采用压力作为膜分离的动力,因此分离装置简单、流程短、操作简便、易于控制和维护。
超滤设备的应用范围:
主要包括食品工业、饮料工业、乳品工业、生物发酵、生物医药、医药化工、生物制剂、中药制剂、临床医学、印染废水、食品工业废水处理、资源回收以及环境工程、污水、废水的回收利用、地表水处理、生活饮用水处理、用来进行海水淡化等等。
『玖』 何谓切向流过滤超滤时为什么要采用切向流过滤
切向流是指液体流动方向与过滤方向呈垂直方向的过滤形式,切向流过内滤时,待过滤的液体的容流动方向和过滤膜平面的方向平行,液体就会垂直于膜表面穿过膜孔。
超滤时,过滤较大规模的料液就需要采用切向流过滤方式,它会产生湍流(二次流),由于有了湍流,液体流动在过滤介质表面(即超滤膜表面)产生剪切力,减小了滤饼层或凝胶层在膜表面的堆积,使沉淀从膜表面剥离,降低膜污染,保证稳定的过滤速度。
『拾』 超滤设备的应用领域
◆矿泉水:在矿泉水制造中,应用超滤技术,在工程设计中,将根据矿泉水的水源水质分析报告,针对性地选择膜的孔径和膜的类型,设计超滤设计。
◆食品:乳制品、果汁、酒、调味品等食品的生产中逐步采用超滤技术,如牛奶或乳清中蛋白和低分子量的乳糖与水的分离,果汁澄清和去菌消毒,酒中有色蛋白、多糖及其它胶体杂质的去除等,酱油、醋中细菌的脱除,较传统方法显示出经济、可靠、保证质量等优点。
◆医药:在医药和生物化工生产中,常需要对热敏性物质进行分离提纯,超滤技术对此显示其突出的优点。用超滤来分离浓缩生物活性物(如酶、病毒、核酸、特殊蛋白等)是相当合适的从动、植物中提取的药物(如生物碱、荷尔蒙等),其提取液中常有大分子或固体物质,很多情况下可以用超滤来分离,使产品质量得到提高。
◆纯水、超纯水:工业用水的初级纯化,纯水超纯水制备RO预处理,纯水、超纯水终端处理。
◆环保:工业废水深度处理,城市中水回用系统,电泳漆、油品的回收。
◆发酵:生化发酵液分离与精制、酶的浓缩与精制、糖及木糖醇澄清过滤。