1. EDI与传统混合离子交换技术相比有哪些特点
特点有:
1)能够连续运行,不需要因为再生而备用一套设备;
2)模块化组合方版便,运行权操作简单;
3)水回收率高,EDI的浓水可以回收至反渗透进水;
4)占地面积小,不需要再生和中和处理系统;
5)运行费用低,不使用酸碱。
2. 离子交换分离法的特点
1 分离效率高,既能实现相反电荷离子的分离,又能实现相近电荷离子的分离。
2 应用范围广,可以用于分离、富集、纯化。
3 使用方便,处理量大,多数可再生利用。
4 操作比较麻烦,周期长。
3. 简述蒸馏和离子交换的工艺特点
蒸馏是一种热力学的分离工艺,它利用混合液体或液-固体系中各组分沸点不同,使回低沸点组分蒸发,再冷凝答以分离整个组分的单元操作过程,是蒸发和冷凝两种单元操作的联合。与其它的分离手段,如萃取、过滤结晶等相比,它的优点在于不需使用系统组分以外的其它溶剂,从而保证不会引入新的杂质。
借助于固体离子交换剂中的离子与稀溶液中的离子进行交换,以达到提取或去除溶液中某些离子的目的,是一种属于传质分离过程的单元操作。离子交换是可逆的等当量交换反应。
4. 离子交换树脂的工艺特性
阴阳离子交换树脂工作原理:
离子交换是带电粒子或离子的可逆交换与相同电荷的交换。当存在于不溶性阴阳离子交换树脂树脂基质上的离子有效地与周围溶液中存在的类似电荷的离子交换位置时,会发生这种情况。
阴阳离子交换树脂树脂以这种方式起作用,因为它的官能团基本上是固定的离子,它们永久地结合在树脂的聚合物基质中。这些带电离子将容易与相反电荷的离子结合,这些离子通过施加抗衡离子溶液而被输送。这些反离子将继续与官能团结合,直至达到平衡。
在阴阳离子交换树脂循环期间,将待处理的溶液加入阴阳离子交换树脂树脂床中并使其流过珠粒。当溶液移动通过阴阳离子交换树脂树脂时,树脂的官能团吸引溶液中存在的任何抗衡离子。如果官能团对新抗衡离子的亲和力大于已经存在的那些,那么溶液中的离子将移除现有的离子并取代它们,通过共享的静电吸引力与官能团结合。通常,离子的尺寸和/或价数越大,其与相反电荷的离子的亲和力就越大。
让我们将这些概念应用于典型的阴阳离子交换树脂水软化系统。在该实施例中,软化机理由阳离子交换树脂组成,其中磺酸根阴离子(SO 3 -)官能团固定在阴阳离子交换树脂树脂基质上。然后将含有钠阳离子(Na +)的抗衡离子溶液施加到树脂上。通过静电吸引将Na +保持在固定的SO 3 -阴离子上,在树脂中产生净中性电荷。在活性阴阳离子交换树脂循环期间,将含有硬离子(Ca 2+或Mg 2+)的流加入到阳离子交换树脂中。自SO 3 -官能团对硬度阳离子的亲和力大于对Na +离子的亲和力,硬离子取代Na +离子,然后Na +离子作为处理流的一部分流出阴阳离子交换树脂单元。另一方面,硬度离子(Ca 2+或Mg 2+)由阴阳离子交换树脂树脂保留。
阴阳离子交换树脂成分有哪些?
阴阳离子交换树脂树脂基质通过在称为聚合的过程中使烃链彼此交联而形成。交联使树脂聚合物具有更强,更有弹性的结构和更大的容量(按体积计)。虽然大多数阴阳离子交换树脂树脂的化学组成是聚苯乙烯,但某些类型是由丙烯酸(丙烯腈或丙烯酸甲酯)制造的。然后树脂聚合物经历一种或多种化学处理以将官能团结合到位于整个基质中的离子交换位点。这些官能团赋予阴阳离子交换树脂树脂其分离能力,并且从一种树脂到下一种树脂会有很大差异。最常见的成分包括:
强酸阳离子(SAC)交换树脂
SAC树脂由聚苯乙烯基质和磺酸盐(SO 3 -)官能团组成,其中带有钠离子(Na 2+)用于软化应用,或氢离子(H +)用于脱矿质弱酸阳离子(WAC)交换树脂。WAC树脂由丙烯酸聚合物组成,该聚合物已用硫酸或苛性钠水解以产生羧酸官能团。由于它们对氢离子(H +)的高亲和力,WAC树脂通常用于选择性地除去与碱度相关的阳离子。
强碱阴离子(SBA)交换树脂
SBA树脂通常由经过氯甲基化和胺化的聚苯乙烯基质组成,以将阴离子固定到交换位点。1型SBA树脂是通过应用三甲胺生产的,其产生氯离子(Cl -),而2型SBA树脂通过应用二甲基乙醇胺生产,其产生氢氧根离子(OH -)。
弱碱阴离子(WBA)交换树脂
WBA树脂通常由经过氯甲基化的聚苯乙烯基质组成,然后用二甲胺胺化。WBA树脂的独特之处在于它们不具有可交换的离子,因此用作酸吸收剂以除去与强无机酸相关的阴离子。
螯合树脂
螯合树脂是最常见的特种树脂类型,用于选择性去除某些金属和其他物质。在大多数情况下,树脂基质由聚苯乙烯组成,尽管多种物质用于官能团,包括硫醇,三乙基铵和氨基膦等。
5. 离子交换原理
离子交换的基本原理 离子交换的选择性定义为离子交换剂对于某些离子显示优先活性的性质。离子交换树脂吸附各种离子的能力不一,有些离子易被交换树脂吸附,但吸着后要把它置换下来就比较困难;而另一些离子很难被吸着,但被置换下来却比较容易,这种性能称为离子交换的选择性。离子交换树脂对水中不同离子的选择性与树脂的交联度、交换基团、可交换离子的性质、水中离子的浓度和水的温度等因素有关。离子交换作用即溶液中的可交换离子与交换基团上的可交换离子发生交换。一般来说,离子交换树脂对价数较高的离子的选择性较大。对于同价离子,则对离子半径较小的离子的选择性较大。在同族同价的金属离子中,原子序数较大的离子其水合半径较小,阳离子交换树脂对其的选择性较大。对于丙烯酸系弱酸性阳离子交换树脂来说,它对一些离子的选择性顺序为:H+>Fe3+>A13+>Ca2+>Mg2+>K+>Na十。 离子交换反应是可逆反应,但是这种可逆反应并不是在均相溶液中进行的,而是在固态的树脂和溶液的接触界面间发生的。这种反应的可逆性使离子交换树脂可以反复使用。以D113型离子交换树脂制备硫酸钙晶须为例说明: D113丙烯酸系弱酸性阳离子交换树脂是一种大孔型离子交换树脂,其内部的网状结构中有无数四通八达的孔道,孔道里面充满了水分子,在孔道的一定部位上分布着可提供交换离子的交换基团。当硫酸锌溶液中的Zn2+,S042-扩散到树脂的孔道中时,由于该树脂对Zn2+选择性强于对Ca2+的选择性,,所以Zn2+就与树脂孔道中的交换基团Ca2+发生快速的交换反应,被交换下来的Ca2+遇到扩散进入孔道的S042-发生沉淀反应,生成硫酸钙沉淀。其过程大致为:
(1)边界水膜内的扩散 水中的Zn2+,S042-离子向树脂颗粒表面迁移,并扩散通过树脂表面的边界水膜层,到达树脂表面; (2)交联网孔内的扩散(或称孔道扩散) Zn2+,S042-离子进入树脂颗粒内部的交联网孔,并进行扩散,到达交换点;
(3)离子交换 Zn2+与树脂基团上的可交换的Ca2+进行交换反应;
(4)交联网孔内的扩散 被交换下来的Ca2+在树脂内部交联网孔中向树脂表面扩散;部分交换下来的Ca2+在扩散过程中遇到由外部扩散进入孔径的S042-发生沉淀反应,生成CaS04沉淀;
(5)边界水膜内的扩散 没有发生沉淀反应的部分Ca2+扩散通过树脂颗粒表面的边界水膜层,并进入水溶液中。 此外,由于离子交换以及沉淀反应的速度很快,硫酸钙沉淀基本在树脂的孔道里生成,因此树脂的孔道就限制了沉淀的生长及形貌,对其具有一定的规整作用。通过调整搅拌速度、反应温度等外界条件,可以使树脂颗粒及其内部孔道发生相应的变化,这样当沉淀在树脂孔道中生成后,就得到了不同尺寸和形貌的硫酸钙沉淀。
6. 离子交换膜的特点是什么
1)离子交换膜是一种含离子基团的、对溶液里的离子具有选择透过能力的高分子膜。2)离子交换膜按功能及结构的不同,可分为阳离子交换膜、阴离子交换膜、两性交换膜、镶嵌离子交换膜、聚电解质复合物膜五种类型。3)离子交换膜的膜电阻和选择透过性是膜的电化学性能的重要指标。阳离子在阳膜中透过性次序为: Li+>Na+>NH4+>K+>Rb+>Cs+>Ag+> Tl+>Mg2+>Zn2+>Co2+>Cd2+> Ni2+>Ca2+>Sr2+>Pb2+>Ba2+ 阴离子在阴膜中透过性次序为: F->CH3COO->HCOO->Cl->SCN->Br-> CrO4->NO3->I->(COO)2-(草酸根)>SO42-4)离子交换膜可装配成电渗析器而用于苦咸水的淡化和盐溶液的浓缩。
7. 离子交换树脂的结构有什么特点
离子交换树脂是带有可交换离子功能基团的具有三维网孔结构的高分子聚合物,其能够与溶液中相应的阳离子或阴离子发生交换作用,达到吸附去除或富集提取的目的。
离子交换树脂的结构由三部分组成:不溶性的三维空间网状高分子骨架、连接在高分子骨架上的功能基团以及功能基团上所带的可交换离子。
离子交换树脂按照组成其分子骨架的物质不同,分为苯乙烯系、丙烯酸系、环氧系等;按照其可交换的离子性质分类,可分为阳离子交换树脂和阴离子交换树脂,而阳离子交换树脂又可分为强酸阳离子交换树脂与弱酸阳离子交换树脂,阴离子交换树脂又可分为强碱阴离子交换树脂与弱碱阴离子交换树脂;按照其内部孔道结构的不同,可分为大孔型离子交换树脂与凝胶型离子交换树脂。
(1)强酸阳离子交换树脂
强酸阳离子交换树脂分子骨架上带有强酸性基团(如磺酸基-SO3H),在溶液中,强酸基团易离解出H+,故呈强酸性;而强酸功能基团上的负电基团(如-SO3—),能吸附结合溶液中的其他阳离子,使树脂功能基团上解离的H+与溶液中的其他阳离子发生交换作用。强酸阳离子交换树脂因其强酸功能基团解离能力强,因此,在酸性或碱性溶液中功能基团均能发生解离并产生离子交换作用。
(2)弱酸阳离子交换树脂
弱酸阳离子交换树脂分子骨架上带有弱酸性基团(如羧酸基-COOH),在溶液中,弱酸基团同样可以解离出H+而呈酸性;而弱酸功能基团上的负电基团(如-COO—),能吸附结合溶液中的其他阳离子,使树脂功能基团上解离的H+与溶液中的其他阳离子发生交换作用。但是因为弱酸阳离子交换树脂所带功能基团为弱酸基团,解离性较弱,低pH环境下不利于弱酸基团的解离,因此,弱酸阳离子交换树脂适合在碱性、中性或弱酸性溶液中(如pH:5~14)使用。
(3)强碱阴离子交换树脂
强碱阴离子交换树脂分子骨架上带有强碱性基团(如季胺基-NR3OH),强碱基团能在溶液中离解出OH—而呈强碱性;而强碱基团上的正电基团(如-NR3+),能吸附结合溶液中的其他阴离子,使树脂功能基团上解离的OH—与溶液中的其他阴离子发生交换作用。强碱阴离子交换树脂所带强碱基团具有很强的解离性能,在不同pH环境下均能正常使用。
(4)弱碱阴离子交换树脂
弱碱阴离子交换树脂分子骨架上带有弱碱基团(如伯胺基-NH2、仲胺基-NHR、叔胺基-NR2),弱碱基团在溶液中也能解离出OH—而呈弱碱性;弱碱基团上的正电基团能吸附结合溶液中的其他阴离子,从而产生阴离子交换作用。因为弱碱阴离子交换树脂所带弱碱基团的解离性较弱,因此,其适合在中性或酸性条件下(如pH:1~9)下使用。
8. 离子交换法与反渗透法各有什么特点
反渗透(RO)和离子交换(IE)的比较,反渗透与离子交换优缺点,由于水处理设备的工艺是根据不同的原水水质和出水要求而设计的,针对不同的原水水质特点而设计水处理方案才是最经济有效的方案,同时也是出水水质长期稳定达到要求的保证。除盐处理工艺的要求是多样的,用户对不同技术的看法也是不同。例如有些用户希望用反渗透技术,而有些用户则希望用更传统的技术如离子交换,另外有些用户则以低投资为主要考虑因素。
社会效益:反渗透是当今最先进的除盐技术,利用反渗透对水进行除盐,除盐率在97%以上。该工艺工作量轻,维护量极小,反渗透实行自动操作,人员配置较少,操作管理方便。
离子交换是七十年代以来普遍采用的除盐工艺,它是靠离子交换化学交换来完成对水进行除盐。该工艺操作量较多名维护量较大,人员配置较多,从目前锅炉除盐水工艺系统应用来看,离子交换逐渐被反渗透工艺所取代。反渗透是以电能为动力,无需酸碱再生,若离子交换的工作周期为1天,那么采用反渗透脱除原水97%的盐分,在用离子交换来担负3%的盐分,将使离子交换的工作周期延至长30天以上,极大程度减少酸碱再生废液的排放量,降低了对环境的影响,大大减轻了酸碱排放废水的处理负担。离子交换除盐化学交换,需要酸碱再生,其再生频率大,酸碱用量大,对周围的水和大气环境均有较大程度的影响。