导航:首页 > 净水问答 > 离子交换纯化质粒

离子交换纯化质粒

发布时间:2022-04-12 14:00:23

A. 求助酵母质粒提取不成功

大量提取的质粒DNA一般需进一步纯化,常用柱层析法和氯化铯梯度离心法。常使用的所有纯化方法都利用了质粒DNA相对较小及共价闭合环状这样两个性质。例如,用氯化铯-溴化乙锭梯度平衡离心分离质粒和染色体DNA就取决于溴化乙锭与线状以及与闭环DNA分子的结合量有所不同。溴化乙锭通过嵌入碱基之间而与DNA结合,进而使双螺旋解旋。由此导致线状DNA的长度有所增加,作为补偿,将在闭环质粒DNA中引入超螺旋单位。最后,超螺旋度大为增加,从而阻止了溴化乙锭分子的继续嵌入。但线状分子不受此限,可继续结合溴化乙锭,直至达到饱和(每2个碱基对大约结合1个溴化乙锭分子)。由于染料的结合量有所差别,线状和闭环DNA分子在含有饱和量溴化乙锭的氯化铯度中的浮力密度也有所不同。多年来,氯化铯-溴化乙锭梯度平衡离心已成为制备大量质粒DNA的首选方法。然而该过程既昂贵又费时,为此发展了许多替代方法。其中主要包括利用离子交换层析、凝胶过滤层析、分级沉淀等分离质粒DNA和宿主DNA的方法。尽管这些方法大多数均被束之高阁,但其中最好的方法,也应是聚乙二醇分级沉淀法,聚乙二醇分级沉淀法与氯化铯-溴化乙锭梯度平衡离心法有一点不同,那就是不能有效地把带切口的环状分子同闭环质粒DNA分开,因此,纯化容易带上切口的极大质粒(大于15kb)。用于生物物理学测定的闭环质粒时,平衡离心仍是首选的方法。然而,两种纯化方法都可得到足以胜任分子克隆中各种复杂工作的质粒DNA,包括用于哺乳动物细胞的转染以及利用外切核酸酶产生成套的缺失突变体。

B. 离子交换过程的5个步骤

离子交换过程归纳为如下几个过程1.水中离子在水溶液中向树脂表面扩散2.水中离子进入树脂颗粒的交联网孔,并进行扩散3.水中离子与树脂交换基团接触,发生复分解反应,进行离子交换4.被交换下来的离子,在树脂的交联网孔内向树脂表面扩散5.被交换下来的离子,向水溶液中扩散影响交换的主要因素有流速、原料液浓度、温度等。流速原料液的流速实际上反映了达到反应平衡的时间,在交换过程中,离子进行扩散—交换—扩散一系列步骤,有效地控制流速很重要。一般,交换液流速大,离子的透析量就高,未来及交换而通过树脂层流失的量增多。因此,应根据交换容量等选择适宜的流速。原料液浓度树脂中可交换的离子与溶液中同性离子既有可能进行交换,也有可能相斥,液相离子浓度高,树脂接触机会多,较易进入树脂网孔内,液相浓度低,树脂交换容量大时,则相反。但液相离子浓度过高,将引起树脂表面及内部交联网孔收缩,也会影响离子进入网孔。实验证明,在流速一定时,溶液浓度越高,溶质的流失量液越大。温度温度越提高,离子的热运动越剧烈。单位时间碰撞次数增加,可加快反应速率。但温度太高,离子的吸附强度会降低,甚至还会影响树脂的热稳定性,经济上不利,实际生产中采用室温操作较宜。

赞同0
暂无评论

C. 简述核酸分离的基本 原理

通过机械磨碎细胞或加入表面活性剂裂解细胞使内容物提取出来,再加入蛋白变性剂变性沉淀蛋白质。最后靠核酸在醇溶液中溶解度下降的特点提取纯的核酸。

D. 建立离子交换法纯化蛋白质的方法需要摸索哪些条件

  1. pH值,缓冲液的pH值对于蛋白结合离子交换层析有非常大的影响,需要先摸索出合适的版pH值,既能权保证蛋白结合上离子交换层析,又不会出现不稳定沉淀的情况。

  2. 盐浓度,盐浓度是离子交换层析洗脱的关键,需要摸索出蛋白能在什么样的盐浓度下被洗脱,且洗脱后纯度能够达到最初的要求。

  3. 柱体积,尽管各种离子交换层析均有理论结合蛋白量,但各种蛋白情况不一样,需要摸索出能够完全结合目的蛋白合适的柱体积。既不会太大造成洗脱浓度过稀,也不会太小造成目标蛋白过载。

  4. 温度,温度可能会造成蛋白变性等等。

E. 质粒DNA纯化的试验原理

溴化乙锭通过嵌入碱基之间而与DNA结合,进而使双螺旋解旋。由此导致线状DNA的长度有所增加,作为补偿,将在闭环质粒DNA中引入超螺旋单位。最后,超螺旋度大为增加, 从而阻止了溴化乙锭分子的继续嵌入。但线状分子不受此限,可继续结合更多溴化乙锭,直至达到饱和( 每2个碱基对大约结合1个溴化乙锭分子) 。由于染料的结合量有所差别,线状和闭环DNA分子在含有饱和量溴化乙锭的氯化铯度中的浮力密度也有所不同。多年来,氯化铯-溴化乙锭梯度平衡离心已成为制备大量质粒DNA 的首选方法。然而该过程既昂贵又费时,为此发展了许多替代方法。其中主要包括利用离子交换层析、凝胶过滤层析、分级沉淀等分离质粒DNA和宿主DNA的方法。尽管这些方法大多数均被束之高阁,但其中最好的方法,也应是聚乙二醇分级沉淀法。
从大肠杆菌细胞中分离质粒DNA的方法众多,其分离的依据可利用分子大小不同,碱基组成的差异以及质粒DNA的超螺旋共价闭合环状结构的特点来进行。碱基性法抽提效果良好,既经济且得率较高。抽提到的质量DNA可用于酶切、连接和转化。对于分子量较大拷贝较少对的质粒DNA,由于DNA片段较大易于损伤断裂,因此选用吕华铯密度超高离心法抽提DNA,且具有纯度高、步骤少、方法稳定且获得的质量DNA是超螺旋构型等特点。对于高拷贝数质粒,用少量制备法抽提质粒DNA就有足够量可用于基因操作。 最近已得到改进(R.Treisman,个人通讯)并达到较高境界, 使用该方法可得到极高纯度的质粒。聚乙二醇分级沉淀法与氯化铯-溴化乙锭梯度平衡离心法有一点不同,那就是不能有效地把带切口的环状分子同闭环质粒DNA分开,因此, 纯化容易带上切口的极大质粒(大于15kb)。用于生物物理学测定的闭环质粒时,平衡离心仍是首选的方法。 然而, 两种纯化方法都可得到足以胜任分子克隆中各种复杂工作的质粒DNA,包括用于哺乳动物细胞的转染以及利用外切核酸酶产生成套的缺失突变体。
氯化铯-溴化乙锭梯度平衡离心法纯化闭环DNA。

F. 氯化铯梯度离心纯化质粒dna能不能去除内毒素

大量提取的质粒DNA一般需进一步纯化,常用柱层析法和氯化铯梯度离心法。常使用的所有纯化方法都利用了质粒DNA 相对较小及共价闭合环状这样两个性质。例如,用氯化铯-溴化乙锭梯度平衡离心分离质粒和染色体DNA 就取决于溴化乙锭与线状以及与闭环DNA分子的结合量有所不同。溴化乙锭通过嵌入碱基之间而与DNA结合,进而使双螺旋解旋。由此导致线状DNA的长度有所增加,作为补偿,将在闭环质粒DNA中引入超螺旋单位。最后, 超螺旋度大为增加, 从而阻止了溴化乙锭分子的继续嵌入。但线状分子不受此限,可继续结合更多溴化乙锭,直至达到饱和( 每2个碱基对大约结合1个溴化乙锭分子) 。由于染料的结合量有所差别,线状和闭环DNA分了在含有饱和量溴化乙锭的氯化铯度中的浮力密度也有所不同。多年来,氯化铯-溴化乙锭梯度平衡离心已成为制备大量质粒DNA 的首选方法。然而该过程既昂贵又费时,为此发展了许多替代方法。其中主要包括利用离子交换层析、凝胶过滤层析、分级沉淀等分离质粒DNA和宿主DNA的方法。尽管这些方法大多数均被束之高阁,但其中最好的方法,也应是聚乙二醇分级沉淀法,最近已得到改进(R.Treisman,个人通讯)并达到较高境界, 使用该方法可得到极高纯度的质粒。聚乙二醇分级沉淀法与氯化铯-溴化乙锭梯度平衡离心法有一点不同,那就是不能有效地把带切口的环状分子同闭环质粒DNA 分开,因此, 纯化容易带上切口的极大质粒(大于15kb)及用于生物物理学测定的闭环质粒时、平衡离心仍是首选的方法。 然而, 两种纯化方法都可得到足可胜任分子克隆中各种复杂工作的质粒DNA,包括用于哺乳动物细胞的转染以及利用外切核酸酶产生成套的缺失突变体。

G. 简述采用离子交换法制备纯化水的过程

离子交换法制备纯化水的过程分下列几种:
1、纯化水的制取的最早方法就是离子交换,他起源于60年代左右,一般采取阳离子交换树脂+阴离子交换树脂+混合离子交换树脂(阴树脂和阳树脂2:1),这种方法需要浪费大量的酸和碱再生树脂现在被淘汰了。
2、电渗析(ED)+阳离子交换树脂+阴离子交换树脂+混合离子交换树脂(阴树脂和阳树脂2:1),这是80年代制造纯化水的方法,原理就是通过电渗析预脱盐来减少树脂转型再生的酸碱使用量。
3、反渗透(RO)+混合离子交换树脂(阴树脂和阳树脂2:1),这是90年代流行的制造纯化水的方法,反渗透与电渗析相比脱盐率更高,操作更简便。
总结:离子交换法来制备纯化水应该是老工艺了,他的优点就是出水水质好,投资较少。缺点就是由污染,运行费用高。由于树脂本身就是有机物化学合成,他的破碎率较难控制或者一般厂家难以设计高标准的工艺,在新版GMP对TOC要求越来越严格的情况下,慢慢被双级反渗透工艺所淘汰。

H. 如何鉴定提取质粒DNA的质量和含量

用琼脂糖凝胶电泳鉴定质粒DNA。

琼脂糖凝胶电泳是分离鉴定和纯化DNA片段的常用方法。DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应,DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。

由于糖磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速度向正极方向移动。

不同浓度琼脂糖凝胶可以分离从200bp至50kb的DNA片段。在琼脂糖溶液中加入低浓度的溴化乙锭(ethim bromide ,EB),在紫外光下可以检出 10ng的DNA条带,在电场中,pH8.0条件下,凝胶中带负电荷的DNA向阳极迁移。

(8)离子交换纯化质粒扩展阅读:

质粒DNA提取方法

1,碱裂解法

2,煮沸裂解

3,羟基磷灰石柱层析法

4,质粒DNA释放法

5,酸酚法等。

选择哪一种方法取决于以下几个因素

1,质粒的大小

2,大肠杆菌菌株

3,裂解后用于纯化的技术和实验要求

I. SDS碱裂解法制备质粒DNA的具体操作步骤是怎么样的那位大侠给力点,帮下忙

细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。
质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。
碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。
纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。
一、试剂准备
1. 溶液Ⅰ: 50mM葡萄糖,25mM Tris-HCl(pH 8.0),10mM EDTA(pH 8.0)。1M Tris-HCl(pH 8.0)12.5ml,0.5M EDTA(pH 8.0)10ml,葡萄糖4.730g,加ddH2O至500ml。在10 lbf/in2高压灭菌15min ,贮存于4℃。
2. 溶液Ⅱ:0.2N NaOH,1% SDS。2N NaOH 1ml,10%SDS 1ml,加ddH2O至10ml。使用前临时配置。
3. 溶液Ⅲ:醋酸钾(KAc)缓冲液,pH 4.8。5M KAc 300ml,冰醋酸 57.5ml,加ddH2O至500ml。4℃保存备用。
4. TE:10mM Tris-HCl(pH 8.0),1mM EDTA(pH 8.0)。1M Tris-HCl(pH 8.0)1ml,0.5M EDTA(pH 8.0)0.2ml,加ddH2O至100ml。15 lbf/in2高压湿热灭菌20min,4℃保存备用。
5.苯酚/氯仿/异戊醇(25:24:1)
6.乙醇(无水乙醇、70%乙醇)
7. 5×TBE:Tris 碱54g,硼酸27.5g,EDTA-Na2·2H2O 4.65g,加ddH2O 至1000ml。15 lbf/in2高压湿热灭菌20min,4℃保存备用。
8.溴化乙锭(EB):10mg/ml
9.RNase A(RNA酶A):不含DNA酶(DNase-free) RNase A的10mg/ml,TE配制,沸水加热15min,分装后贮存于-20℃。
10. 6×loading buffer(上样缓冲液):0.25%溴酚蓝,0.25%二甲苯青FF,40%(W/V)蔗糖水溶液。
11. 1% 琼脂糖凝胶:称取1g琼脂糖于三角烧瓶中,加100ml 0.5×TBE,微波炉加热至完全溶化,冷却至60℃左右,加EB母液(10mg/ml)至终浓度0.5μg/ml(注意:EB为强诱变剂,操作时带手套),轻轻摇匀。缓缓倒入架有梳子的电泳胶板中,勿使有气泡,静置冷却30min以上,轻轻拔出梳子,放入电泳槽中(电泳缓冲液0.5×TBE),即可上样。
二、操作步骤
1. 挑取LB固体培养基上生长的单菌落,接种于2.0ml LB(含相应抗生素)液体培养基中,37℃、250g振荡培养过夜(约12-14hr)。
2.取1.5ml培养物入微量离心管中,室温离心8000g×1min,弃上清,将离心管倒置,使液体尽可能流尽。
3.将细菌沉淀重悬于100μl预冷的溶液Ⅰ中,剧烈振荡,使菌体分散混匀。
4.加200μl新鲜配制的溶液Ⅱ,颠倒数次混匀(不要剧烈振荡),并将离心管放置于冰上2-3min,使细胞膜裂解(溶液Ⅱ为裂解液,故离心管中菌液逐渐变清)。
5.加入150μl预冷的溶液Ⅲ,将管温和颠倒数次混匀,见白色絮状沉淀,可在冰上放置3-5min。溶液Ⅲ为中和溶液,此时质粒DNA复性,染色体和蛋白质不可逆变性,形成不可溶复合物,同时K+使SDS-蛋白复合物沉淀。
6.加入450μl的苯酚/氯仿/异戊醇,振荡混匀,4℃离心12000g × 10min。
7.小心移出上清于一新微量离心管中,加入2.5倍体积预冷的无水乙醇,混匀,室温放置2-5min,4℃离心12000g×15min。
8.1ml预冷的70%乙醇洗涤沉淀1-2次,4℃离心8000g×7min,弃上清,将沉淀在室温下晾干。
9.沉淀溶于20μl TE(含RNase A 20μg/ml),37℃水浴30min以降解RNA分子,-20℃保存备用。
三、质粒DNA的电泳检测
观察琼脂凝胶中DNA的最简单方法是利用荧光染料溴化乙锭进行染色。该物质含有一个可以嵌入DNA的堆积碱基之间的一个平面基团,这个基团的固定位置及其与碱基的密切接近,导致染料与DNA结合并呈现荧光,其荧光产率比游离染料溶液有所增加。DNA吸收254nm处的紫外辐射并传递给染料,而被结合的染料本身则在302nm和366nm有光吸收。这两种情况下,被吸收的能量可在可见光谱红橙区的590nm处重新发射出来。因此,当凝胶中含有游离溴化乙锭时即可以检测到少量的DNA。
取制备的质粒DNA 1-2μl,加适当loading buffer混匀上样,采用 1-5V/cm的电压,使DNA分子从负极向正极移动至合适位置,取出凝胶置紫外灯下检测,摄片。
四、注意事项
本裂解法小量制备质粒 DNA重复性好,一般无麻烦。若所提取质粒 DNA不能被限制性内切酶切割,可通过酚/氯仿再次抽提,以清除杂质来解决问题。

J. 染色体dna为什么需要对dna进行纯化

作为补偿.58g/, 将溶液加温至30℃助溶, 上部区带材料通常较少。如出现超负荷。【溴化乙锭贮存液应贮存于避光容器内(如用锡箔完全包裹的瓶子)。用巴斯德吸管或带大号针头的一次性注射器将浮渣下的清亮红色溶液转移到离心管中,因此选用吕华铯密度超高离心法抽提DNA,用CsCl溶液(ρ=1,也应是聚乙二醇分级沉淀法,由线状的细菌(染色体)DNA和带切口的环状质粒DNA组成.3860)溴化乙锭浓度大约740μg/。 穿过Soctch 胶带插入第3根皮下注射针头(18号)。Beckman Quick-Seal离心管中的CsCl-溴化乙锭梯度可容纳4mg 闭环质粒DNA而不至超负荷,线状和闭环DNA分子在含有饱和量溴化乙锭的氯化铯度中的浮力密度也有所不同。每10mlDNA溶液加入0;ml、分级沉淀等分离质粒DNA和宿主DNA的方法。以20℃对所得的密度梯度以45 000rpm离心16h(VTi65 转头)。对于高拷贝数质粒,只要将该质粒提取物分为2个梯度即可解决,直至达到饱和( 每2个碱基对大约结合1个溴化乙锭分子) 。对于分子量较大拷贝较少对的质粒DNA,其分离的依据可利用分子大小不同, 从而阻止了溴化乙锭分子的继续嵌入为什么需要对DNA进行纯化质粒DNA纯化的试验原理、方法稳定且获得的质量DNA是超螺旋构型等特点。普通光照下, 溶液的终密度应为1。多年来,然后将一块Soctch胶带贴于管外壁,碱基组成的差异以及质粒DNA的超螺旋共价闭合环状结构的特点来进行。将21 号皮下注射针头插入管的顶端以使空气进入,但其中最好的方法,于室温保存、 以45 000rpm离心48h(Ti50转头),氯化铯-溴化乙锭梯度平衡离心已成为制备大量质粒DNA 的首选方法,将扩展为一条宽带、凝胶过滤层析。然而该过程既昂贵又费时,首先用18号皮下注射针头按下述方法收集上部的区带(杂色体DNA),使DNA达到平衡。 质粒DNA纯化的试验步骤。管底部深红色的沉淀是溴化乙锭RNA复合物。最后,在两个离心管中再度离心。用轻石蜡油加满管的其余部分并封口,按lg/:溴化乙锭通过嵌入碱基之间而与DNA结合、连接和转化,超螺旋度大为增加。如有更大量的质粒存在。由于染料的结合量有所差别,以便使针头的斜面开口恰好位于染色体DNA区带之下并与该区带相平行、步骤少,由于DNA片段较大易于损伤断裂;ml)将体积调到15ml。穿过Soctch胶带将18号皮下注身针头(其斜面向上)插入管中。由此导致线状DNA的长度有所增加.1转头),且具有纯度高。碱基性法抽提效果良好。如出现负荷:用乙醇小心擦拭管外壁以除去任何油脂,位于CsCl溶液和石蜡油之间的是蛋白质,用造型粘土块封住皮下注射针头的末端并将第2根针头留于原处:下部区带则由闭环质粒DNA组成;立即将溴化乙锭溶液(漂浮在表层)与DNA-氯化铯溶液混匀;ml的用量精确地加入固体CsCl;ml溶于水),将在闭环质粒DNA中引入超螺旋单位。收集DNA带。尽管这些方法大多数均被束之高阁。将粘稠状DNA收集到一次性使用的管内。室温下用Sorvall SS34头(或与其相当的转头)以8000rpm离心5min,用少量制备法抽提质粒DNA就有足够量可用于基因操作,只要将该质粒提取物分为2个梯度即可解决;ml(溶液的折射率为1,可收集整个DNA区高产水平时才会出现。其中主要包括利用离子交换层析。温和地混匀溶液直到盐溶解。这种问题只有在质粒复制达到极高水平时才会出现,为尽量减少污染的机会,进而使双螺旋解旋。但线状分子不受此限.8ml溴化乙锭溶液(10mg/, 浮在溶液上面的水垢状浮渣是溴化乙锭和细菌蛋白所形成的复合物。从大肠杆菌细胞中分离质粒DNA的方法众多,可继续结合更多溴化乙锭,为此发展了许多替代方法,在梯中心可见两条DNA区带,既经济且得率较高.55g/,可收集整个DNA区带。抽提到的质量DNA可用于酶切,并与染色体DNA相重叠:测量DNA溶液的体积,将下部的质粒DNA区带收集到玻璃或塑料管中、以60 000rpm离心24h(Ti65转头)或者以60 000rpm离心24h(Ti70

阅读全文

与离子交换纯化质粒相关的资料

热点内容
液相用溶剂过滤器 浏览:674
纳滤水导电率 浏览:128
反渗透每小时2吨 浏览:162
做一个纯净水工厂需要多少钱 浏览:381
最终幻想4回忆技能有什么用 浏览:487
污水提升器采通 浏览:397
反渗透和不发渗透净水器有什么区别 浏览:757
提升泵的扬程 浏览:294
泽德提升泵合肥经销商 浏览:929
饮水机后盖漏水了怎么办 浏览:953
小型电动提升器 浏览:246
半透膜和细胞膜区别 浏览:187
废水拖把池 浏览:859
十四五期间城镇污水处理如何提质增效 浏览:915
怎么测试空气净化器的好坏 浏览:519
提升泵是干嘛的 浏览:744
布油做蒸馏起沫咋办 浏览:252
广州工业油烟净化器一般多少钱 浏览:204
喜哆哆空气净化器效果怎么样 浏览:424
油烟净化器油盒在什么位置 浏览:582