导航:首页 > 净水问答 > 噪声过滤算法

噪声过滤算法

发布时间:2022-04-01 18:48:18

⑴ 怎样用卡尔曼滤波器来滤除单频噪声

这个用FIR滤波器就好了,用卡尔曼运算量又大。
如果这个单频噪声的频率是变化的,选择自适应的LMS算法去自适应陷波,滤除噪声。

⑵ 卡尔曼滤波算法中的系统噪声,测量噪声,协方差三个数据怎么设置

按系统的噪声来设置
其实协方差这个概念是不对的
QR都设置需要调试才能达到最佳效果

⑶ 高斯滤波的算法原理

高斯滤波实质上是一种信号的滤波器,其用途是信号的平滑处理,人们知道数字图像用于后期应用,其噪声是最大的问题,由于误差会累计传递等原因,很多图像处理教材会在很早的时候介绍Gauss滤波器,用于得到信噪比SNR较高的图像(反应真实信号)。与此相关的有Gauss-Laplace变换,其实就是为了得到较好的图像边缘,先对图像做Gauss平滑滤波,剔除噪声,然后求二阶导矢,用二阶导的过零点确定边缘,在计算时也是频域乘积=>空域卷积。
滤波器就是建立的一个数学模型,通过这个模型来将图像数据进行能量转化,能量低的就排除掉,噪声就是属于低能量部分。
若使用理想滤波器,会在图像中产生振铃现象。采用高斯滤波器的话,系统函数是平滑的,避免了振铃现象。

⑷ 图像去噪自适应中值滤波算法中,如何实现对噪声点的标记

另外开2个新的向量组,一个初始对所有点标记,一个初始空向量,像打点一样,合适的点就放到空向量里去。

⑸ 减少噪声的匹配滤波算法

(1)传统匹配滤波算法

Rickett et al.(2001)给出了匹配滤波简要的公式及算子长度设计标准,本节给出了更为详细的匹配 滤波公式,并给出推导公式基本条件和结果。

设同一地区不同时期Y1,Y2得到的地震数据分别为GY1(t),GY2(t),取Y1年份的地震记录为参

考地震道,使Y2年份相应的地震记录与之匹配。选取归一化算子p使得目标泛函:

海上时移地震油藏监测技术

极小。最终得到关于求解匹配滤波器{P(m),m=1,2,…,L}的L个方程的方程组:

海上时移地震油藏监测技术

为意义更明确,对上面的公式进一步简化,令

海上时移地震油藏监测技术

上两式中:RY2Y2(m-n)为时间延迟为m-n的时期Y2地震记录在设计窗口中的自相关;RY1Y2(n)为时间延迟为n的时期Y1与时期Y2地震记录在设计窗口中的互相关,于是方程(4.8)可以进一步写成:

海上时移地震油藏监测技术

求解方程组(4.11)得到匹配滤波器算子{P(m),m=1,2,…,L},用

海上时移地震油藏监测技术

校正相应的地震剖面。通过实际数据处理结果验证了上述推导的正确性和方法的有效性。

方程(4.11)写成矩阵形式:

海上时移地震油藏监测技术

式中:M为时期Y2地震记录在设计窗口中的自相关序列组成的Toeplitz矩阵,R为时期Y1与时期Y2地 震记录在设计窗口中的互相关序列向量。求解方程(4.13)可采用Levinson递推算法,计算效率高。

为了减少噪音的影响,通常引入阻尼项,方程(4.13)变为

海上时移地震油藏监测技术

式中:μ为很小的数,通常为可设为0.01或0.001。

实际应用中,可以发现式(4.13)受噪声的影响很大,不稳定。虽然加入阻尼项后结果有所改善,但 如何选取合适阻尼因子又是一个难题。为此推导新的匹配滤波表达形式,寻求更稳健的求解方法。

(2)新匹配滤波公式

同样设同一地区不同时期Y1,Y2得到的地震数据分别为GY1(t),GY2(t),取Y1年份的地震记录 为参考地震道,使Y2年份相应的地震记录与之匹配。则匹配过程可描述为

海上时移地震油藏监测技术

其中M为GY2组成的褶积矩阵。如果设地震道的采样点数为n,设计滤波器f长度为m,M则为(2×n-1)×m矩阵,为保持矩阵维数相同,一种方法是将GY1后面补零为(2×n-1)×1向量,另一种方法是取 矩阵M的前n×m项。如果采用第一种方法,可以验证得到的公式与(4.13)式相同。在此采用后一种方 法,得到新的匹配滤波方程。只要设计滤波器f足够长,总能满足能量差e(f)最小,根据范数定义:

海上时移地震油藏监测技术

求解能量差e(f)最小问题可转化为

海上时移地震油藏监测技术

即对滤波因子向量求导,最终可归结为求解线性方程:

海上时移地震油藏监测技术

如果记A=MTM,b=MTGY1,方程(4.18)转化为

海上时移地震油藏监测技术

(4.19)式形式上与(4.13)式类似,内容不同,不再是Toeplitz矩阵,因此不能应用Levinson递推算法求解。因此,引入奇异值分解方法求解方程(4.19)。

(3)基于奇异值分解的匹配滤波算法

矩阵的奇异值分解,是矩阵计算中一套很有用的技术。它可以有效地处理系数矩阵是奇异的或者接 近奇异的方程组。对于矩阵A,如果A∈Rm×n,并且A的秩为r,总有

海上时移地震油藏监测技术

其中, V为正交阵。 ,并且 为A 的奇异值。

公式(4.20)即为矩阵A的奇异值分解,根据正交矩阵的性质:

海上时移地震油藏监测技术

很容易表示出矩阵A的逆矩阵

海上时移地震油藏监测技术

将式(4.22)带入式(4.19)中,得到滤波因子的表达式为

海上时移地震油藏监测技术

实际计算中,当A是奇异阵出现奇异值,或A接近奇异或病态矩阵时,(4.23)式的计算过程就无法进行。这时可将出现的奇异项 (σk是零,或者数值很小)简单地替换成零或很小的常数,通过这种方法能得 到方程稳定的解。

对于实际含有噪声的信号,信号能量主要分布在奇异值大的分量上,因此去除小奇异值同时能消除 噪声影响。通常可选取某一能量百分比的奇异值作为去除的阈值,以这种方式既能克服A接近奇异或病 态矩阵的影响,又能减小噪声的影响,使滤波因子稳健。

(4)模拟数据验证

模拟得到一组存在时间、振幅、频率、相位差异的信号,作为基测线与监测测线地震道,对监测测 线地震道加入不同比例的随机噪声,组成验正算法有效性的数据体,如图4.10所示。分别用传统的匹配 滤波方法和重新推导的基于奇异值分解的匹配滤波方法进行匹配处理,比较匹配后基测线与监测测线振 幅差异,结果见图4.11和图4.12。可以看出,传统匹配滤波公式的计算结果受噪声的影响很大,而基于 奇异值分解的匹配滤波方法具有很好的抗噪声能力。

图4.10 模拟地震记录(从上至下依次为加入0%,10%,20%,30%噪声的信号)

图4.11 传统方法匹配结果

图4.12 基于奇异值分解方法匹配结果

(5)实际数据验证

选择一块同一地区两次不同时间测得的两条二维测线;选取油藏上方时间长度为300ms的窗口作为 滤波因子设计窗口,并以抽取其中139道构成验证互均衡算法的数据体(图4.13,图4.14)。分别采用 传统匹配滤波公式与基于奇异值分解的匹配滤波两种方法进行校正。比较差异剖面的平均能量,结果见 图4.15。从图中可知基于奇异值分解的匹配滤波方法具有更好的抗噪声能力,匹配误差远小于传统匹配 滤波。

图4.13 某地区时间1地震记录

图4.14 某地区时间2地震记录

图4.15 两种匹配方法结果误差能量对比图

本节推导了新的匹配滤波方程,提出基于奇异值分解的匹配滤波算法,理论和实际数据都验证了该 方法有效性。这里从计算精度上比较两种匹配滤波算法,实际处理时移地震数据时还要考虑计算时间,此时寻求快速的奇异值分解算法是一种提高处理效率的方式,另外针对不同信噪比,将传统匹配滤波算 法与基于奇异值分解的匹配滤波算法结合应用同样是一种很好的方式。总之,基于奇异值分解的匹配滤 波提高了匹配精度,有利于为时移地震解释提供一致性更好的地震资料。

⑹ 什么是滤波算法

卡尔曼滤波器(Kalman Filter)是一个最优化自回归数据处理算法(optimal recursive data processing algorithm)。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。

现设线性时变系统的离散状态防城和观测方程为:

X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)

Y(k) = H(k)·X(k)+N(k)

其中

X(k)和Y(k)分别是k时刻的状态矢量和观测矢量

F(k,k-1)为状态转移矩阵

U(k)为k时刻动态噪声

T(k,k-1)为系统控制矩阵

H(k)为k时刻观测矩阵

N(k)为k时刻观测噪声

则卡尔曼滤波的算法流程为:

预估计X(k)^= F(k,k-1)·X(k-1)

计算预估计协方差矩阵
C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'
Q(k) = U(k)×U(k)'

计算卡尔曼增益矩阵
K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)
R(k) = N(k)×N(k)'

更新估计
X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]

计算更新后估计协防差矩阵
C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'

X(k+1) = X(k)~
C(k+1) = C(k)~

⑺ 怎样比较滤波算法的好坏

对含噪声信号去噪,然后和不含噪声的原始信号比较,求均方差或者其他指标。就可以比较不同去噪算法的优劣了。

⑻ 用matlab滤除随机噪声的算法

% Denoising.m
%
% by Brigitte Forster,
% Centre of Mathematical Sciences
% Munich University of Technology, Germany
%
% Version: March 17 2005
%
% This File shows an example for denoising
% via hard thresholding of Fourier coefficients.
% It is part of the summer term lecture on
% Fourier- and Laplace transform at TUM.

% Threshold festlegen

thresholdstep = 0.01;

% Varianz des normalverteilten Rauschens festlegen

sigma = 3;

% Signal erzeugen

M = 400;
x = -pi:(2*pi/(M-1)):pi;

forig = sin(6*x);
f = forig + sigma*(rand(size(x))-0.5);
figure(1)
subplot(2,2,1)
hold on
plot(x,f)
plot(x, forig,'r-')
axis tight;
hold off

% Fourier-Koeffizienten berechnen
ff = fft(f)/M;
ff = fftshift(ff);
x0 = x/(2*pi)*M;
subplot(2,2,2)
plot(x0,abs(ff),'.','LineWidth', 3)

% Schleife uber verschiedene Thresholds
threshold = 0;
for k = 1:15

threshold = threshold + thresholdstep;

%Fourier-Koeffizienten Thresholden
y = find(abs(ff) < threshold);
ff(y) = 0;
subplot(2,2,3)
plot(x0,abs(ff),'.','LineWidth', 3)

%Inverse Fourier-Transformation
rff = fftshift(ff)*M;
rf = ifft(rff);
subplot(2,2,4)
plot(x, real(rf))
hold on
plot(x, imag(rf),'k')
plot(x, forig,'r')
hold off
axis tight

pause;

end;

⑼ 给个正弦波,加个白噪声,通过matlab仿真把噪声滤掉。这句话怎么理解,具体怎么操作

需要加算法吧?比如自适应LMS算法 通过算法然后仿真滤掉噪声

阅读全文

与噪声过滤算法相关的资料

热点内容
液相用溶剂过滤器 浏览:674
纳滤水导电率 浏览:128
反渗透每小时2吨 浏览:162
做一个纯净水工厂需要多少钱 浏览:381
最终幻想4回忆技能有什么用 浏览:487
污水提升器采通 浏览:397
反渗透和不发渗透净水器有什么区别 浏览:757
提升泵的扬程 浏览:294
泽德提升泵合肥经销商 浏览:929
饮水机后盖漏水了怎么办 浏览:953
小型电动提升器 浏览:246
半透膜和细胞膜区别 浏览:187
废水拖把池 浏览:859
十四五期间城镇污水处理如何提质增效 浏览:915
怎么测试空气净化器的好坏 浏览:519
提升泵是干嘛的 浏览:744
布油做蒸馏起沫咋办 浏览:252
广州工业油烟净化器一般多少钱 浏览:204
喜哆哆空气净化器效果怎么样 浏览:424
油烟净化器油盒在什么位置 浏览:582