1. 等离子体技术在生活生产中的应用
等离子切割机,有些灯也是等离子原理,还有某些电视
2. 等离子体是如何制造的
★【等离子体】是由部分电子被剥夺后的原子及原子被电离后产生的正负电子组成的离子化气体状物质,它是除去固、液、气外,物质存在的第四态。等离子体是一种很好的导电体,利用经过巧妙设计的磁场可以捕捉、移动和加速等离子体。等离子体物理的发展为材料、能源、信息、环境空间,空间物理,地球物理等科学的进一步发展提新的技术和工艺。
★看似“神秘”的等离子体,其实是宇宙中一种常见的物质,在太阳、恒星、闪电中都存在等离子体,它占了整个宇宙的99%。现在人们已经掌握利用电场和磁场产生来控制等离子体。例如焊工们用高温等离子体焊接金属。
★等离子体可分为两种:高温和低温等离子体。现在低温等离子体广泛运用于多种生产领域。例如:等离子电视,婴儿尿布表面防水涂层,增加啤酒瓶阻隔性。更重要的是在电脑芯片中的蚀刻运用,让网络时代成为现实。
★高温等离子体只有在温度足够高时发生的。太阳和恒星不断地发出这种等离子体,组成了宇宙的99%。低温等离子体是在 常温下发生的等离子体(虽然电子的温度很高)。低温等离子体体可以被用于氧化、变性等表面处理或者在有机物和无机物上进行沉淀涂层处理。
★等离子体是物质的第四态,即电离了的“气体”,它呈现出高度激发的不稳定态,其中包括离子(具有不同符号和电荷)、电子、原子和分子。其实,人们对等离子体现象并不生疏。在自然界里,炽热烁烁的火焰、光辉夺目的闪电、以及绚烂壮丽的极光等都是等离子体作用的结果。对于整个宇宙来讲,几乎99.9%以上的物质都是以等离子体态存在的,如恒星和行星际空间等都是由等离子体组成的。用人工方法,如核聚变、核裂变、辉光放电及各种放电都可产生等离子体。 分子或原子的内部结构主要由电子和原子核组成。在通常情况下,即上述物质前三种形态,电子与核之间的关系比较固定,即电子以不同的能级存在于核场的周围,其势能或动能不大。
由离子、电子以及未电离的中性粒子的集合组成,整体呈中性的物质状态.
普通气体温度升高时,气体粒子的热运动加剧,使粒子之间发生强烈碰撞,大量原子或分子中的电子被撞掉,当温度高达百万开到1亿开,所有气体原子全部电离.电离出的自由电子总的负电量与正离子总的正电量相等.这种高度电离的、宏观上呈中性的气体叫等离子体.
等离子体和普通气体性质不同,普通气体由分子构成,分子之间相互作用力是短程力,仅当分子碰撞时,分子之间的相互作用力才有明显效果,理论上用分子运动论描述.在等离子体中,带电粒子之间的库仑力是长程力,库仑力的作用效果远远超过带电粒子可能发生的局部短程碰撞效果,等离子体中的带电粒子运动时,能引起正电荷或负电荷局部集中,产生电场;电荷定向运动引起电流,产生磁场.电场和磁场要影响其他带电粒子的运动,并伴随着极强的热辐射和热传导;等离子体能被磁场约束作回旋运动等.等离子体的这些特性使它区别于普通气体被称为物质的第四态
3. 请问渗氮热处理的优缺点
渗氮的意思将氮渗入钢铁零件表面,从而得到具有良好理化性能的渗氮层,具体表现在高硬度、耐磨性、抗咬合性能、红硬件和良好疲劳强度等方面。虽然有时候淬火也能达到提高强度的目的,但渗氮主要的特点是变形很小。要说缺点嘛,渗氮工艺的缺点是生产周期长(一般要数十到数百小时)、成本较高、渗氮层较薄(一般为0.5mm左右)、且脆性较大,因此,渗氮零件不能承受太大的接触应力和高的冲击载荷。希望可以帮到你。顺便做个广告我公司出售微脉冲等离子体渗氮炉。
4. 等离子体发生器的应用
高频等离子体炬在工业中已有多方面的应用,特别是在等离子体化工、冶金和光学材料提纯等方面。它还可制备超导材料,如用氢高频等离子体还原钒-硅(或钒-锗),铌-铝(或铌-锗)的氯化物蒸气以制备超导材料。中国冶金、采矿企业中需处理的钛矿石、含钒矿渣、磷矿石以及工业难熔废料含稀有材料的矿渣很多,采用高频等离子体炬是颇有前途的冶炼手段,可从中炼出有用的金属和稀有元素。
高频等离子体发生器的功率输出范围为0.5~1兆瓦,效率为50%~75%,放电室中心温度一般约高达7000~10000开。
低气压等离子体发生器 一种低气压气体放电装置,一般由三部分组成:产生等离子体的电源、放电室、抽真空系统和工作气(或反应气)供给系统。通常有四类:静态放电装置(图5之a)、高压电晕放电装置(图5之b)、高频(射频)放电装置(有3种类型,图5之c)和微波放电装置(图5之d)。把被处理的固体表面或需要聚合膜层的基体表面置于放电环境中,由等离子体处理。由于低气压等离子体为冷等离子体,当气压为 133~13.3帕左右时,电子温度高达10000开,而气体温度只有300开,既不致烧坏基体,又有足够能量进行表面处理。 低气压等离子体发生器已日益广泛应用于等离子体聚合、制备薄膜、刻蚀、清洗等表面处理工艺中。成功的例子如:在半导体制作工艺中,采用氟里昂等离子体干腐蚀,用离子镀法在金属表面生成氮化钛膜等。70年代以来,低气压等离子体对非金属固体(如玻璃、纺织品、塑料等)的表面处理及改性技术也有迅速发展。
5. 等离子体技术的两个显著特征是
利用等离子体获得高温热源的一项技术。在化学工业中,利用等离子技术能实现一系列的反应过程。等离子体是指处于电离状态的气态物质,其中带负电荷的粒子(电子、负离子)数等于带正电荷的粒子(正离子)数。通常与物质固态、液态和气态并列,称为物质第四态。通过气体放电或加热的办法,从外界获得足够能量,使气体分子或原子中轨道所束缚的电子变为自由电子,便可形成等离子体。
主要特点为:
①等离子体中具有正、负离子,可作为中间反应介质。特别是处于激发状态的高能离子或原子,可促使很多化学反应发生。
②由于任何气态物质均能形成等离子体,所以很容易调整反应系统气氛,通过对等离子介质的选择可获得氧化气氛、还原气氛或中性气氛。
③等离子体本身是一种良导体,所以能利用磁场来控制等离子体的分布和它的运动,这有利于化工过程的控制。
④热等离子体提供了一个能量集中、温度很高的反应环境。温度为104~105℃的热等离子体是目前地球上温度最高的可用热源。它不仅可以用来大幅度地提高反应速率,而且还可借以产生常温条件下不可能发生的化学反应。此外,热等离子体中的高温辐射能引起某些光电反应。
应用
①以热等离子体制备乙炔、硝酸、联氨和炭黑等产品。
②用热等离子技术合成高温碳化物、氮化物和硼化物,如碳化钨、氮化钛等。
③用热等离子技术制备超细粉末,如0.01~1μm的三氧化二铝、二氧化硅和氮化硅粉末。
④冷等离子体中的聚合薄膜的形成或清洗,如半导体工业中的氧化硅膜。
⑤在冷等离子体中实现材料表面改性,如离子氮化、渗碳等工艺。
6. 钛阳极化处理工艺和酸洗钝化
耐磨性表面处理耐磨性是钛金属最大缺点,容易产生麻面等缺陷。钛表面处理方法有镀Cr、镀Ni的湿式镀膜法、溅射法、堆焊法、热扩散法等,此外较先进的如CVD、PVD、PVCD表面强化法。
1、 湿式镀膜是一种有效的耐磨表面处理方法,先镀Ni,再镀Cr。电解法成膜速度快,厚度几微米。
2、 溅射法是利用等离子流高速空气射流,使滴下的熔融金属喷洒在被处理材料表面,无须真空,效率快。
3、 堆焊法是利用等离子转移弧对钛表面进行堆焊硬化从而具有耐磨性。适合处理较大较厚的大型工件,方法简单,无须在高温下暴露防止力学性能下降。
4、 热扩散法主要用于钢铁材料的硬化处理如渗碳、氮化、硼化等热扩散工艺。离子氮化法与气体氮化不同,离子氮化采用辉光放电等离子体破坏钛表面氧化膜,效率高。近年来用于钛,温度达到850摄氏度,氮化膜厚度从0.7微米增到5.0微米,表面硬度达1200-1600Hv,耐磨性良好。
二、耐蚀性表面处理通常对钛金属及钛合金进行耐蚀性表面处理是为了防止钛在腐蚀性强的硫酸、盐酸等非氧化性酸水溶液中被腐蚀。故采用表面处理方法如下:
5、 大气氧化处理 钛金属及合金放置在高温大气中,氧化膜会增厚,且随时间延长及温度升高而厚度增加,从而放置钛的全面腐蚀及间隙腐蚀,方法简单,但耐久性不高。且有大气氧化处理条件,温度和时间的保障。
6、 贵金属涂覆 钛的氧化膜能保护钛被腐蚀,氧化膜的生成反应公式为:Ti +2H2O枣→TiO2 +4H+ +4e?/P> 该反应为阳极反应,可通过提高钛的电位使此反应进行,提高钛的氧化膜稳定性和耐腐蚀性。面积较大时,施加均一电压比较困难故而不适用此方法。贵金属在苛刻环境下也不容易被腐蚀,而且显高电位。因此在钛金属表面涂覆贵金属,有效提高其腐蚀性。通常使用钯(Pd)和钌(Ru)及他们的氧化物进行涂覆,耐腐蚀性非常好。
7、 干式工艺涂覆TiC、TiN膜(CVD、PVD、PCVD) TiC、TiN及TiCN耐腐蚀比Ti更好,方法有气体法、CVD、PVD、PCVD,须在远高于钛相变点温度下加热,使其组织、形状发生变化造成制品不能满足使用要求,CVD、PVD、PCVD法需要特殊设备,成本高,通常此类方法不用于提高耐腐蚀性,偶尔用于提高耐磨性。
三、匠性表面处理所以进行匠性表面处理,主要是因为钛金属广泛应用于建材、手表、眼镜等装饰品,使用钛金属主要是利用其优良的耐蚀性,然饰品需要表面鲜艳、光泽、时髦,故需要进行匠性加工。
1、表面精加工①研磨;②退火加酸洗,表面失去光泽,呈灰色;③真空退火+酸洗,表面呈深灰色;④喷丸(50-500微米玻璃珠),表面呈梨皮状;⑤密条纹加工,150-240#砂带研磨,使其具有长且连续的研磨条纹;⑥花纹压印加工,即凹凸加工,加工表面有凹凸的浮雕图案;⑦化学刻蚀图案。
2、镜面精加工
对于钛材料来说,镜面精加工较难。①软带抛光,表面有硬化层则效率低;②化学抛光,由温度、时间、抛光液因素影响;③电解抛光,无水有机电解液对钛有较好的电抛光作用。
3、着色钛表面本为银白色,着色处理通常有大气氧化法、阳极氧化法、化学处理法。
7. 镀钛工艺流程是怎样的工件镀氮化钛前用什么方法清洗,达到什么要求
摘要 本发明提供如下技术方案:一种氮化钛涂层不锈钢刀制备工艺,所述制备工艺具体包括以下步骤:
8. 等离子体发生器的类型
通常指低频放电,在气压和电流范围不同时,由于气体中电子数、碰撞频率、粒子扩散和热量传递速度不同,会出现暗电流区、辉光放电区和弧光放电区(图 1)。电流的大小是根据电源负载特性曲线(图 1)中两条相应于电阻R1、R2的下降直线和放电特性曲线的交点(工作点A、B、C)确定的。
①暗电流区电子在电场加速的情况下,获得足够能量,通过与中性分子碰撞,新产生的电子数迅速增加,电流增大到10~10-安时,在阳极附近才出现很薄的发光层。
②辉光放电区电流再增大(10~10安)时,在较低的气压条件下,阴极受到快速离子的轰击而发射电子,这些电子在电场作用下向阳极方向加速运动。阴极附近有一个电位差很大的阴极位降区。电极之间的中间部分是电位梯度不很大的正柱区,其中的介质是非平衡等离子体。正柱区的电子和离子以同一速度向壁面扩散,并在壁面复合,放出能量(这是没有气体对流时的情况)。经典理论中电子密度在横截面上的分布是贝塞耳函数的形式。在阳极附近有一个几毫米厚的阳极位降区,其中的电位差与气体电离电位的数值大致相等。
③弧光放电区当电流超过 10安且气体压力也较高时,正柱区产生的焦耳热大于粒子扩散带到壁面的热量,使正柱区中心部分温度升高,气体电导率增加,以致电流向正柱区中心集中,形成不稳定的收缩现象。最后,导电正柱缩成一根温度很高、电流密度很大的电弧,这就是弧光放电。在阴极,电流密度达10~10安/厘米,形成阴极斑点,根据热电子发射(热阴极)或场致发射(冷阴极)的机理,发出电子。在阳极也有阳极斑点。由于电子带着本身的动能进入阳极,进入时又放出相当于逸出功的能量,再加上阳极位降区的发热量,使阳极加热比阴极大得多。弧光放电的阴极和阳极位降区电位降总共不过一二十伏,中间是正柱区。
弧柱中热量的散失主要依靠热传导、对流和辐射。在定常、轴对称、洛伦兹力和轴向热传导可忽略,以及气体压力和轴向电场在横截面上呈均匀分布的条件下,根据气体性质参数和管道的几何形状对磁流体力学基本方程组进行简化,可以算出管道中气流速度和温度分布以及电弧各参量。
电弧中电流密度高,往往存在着磁流体力学效应。外加磁场或自身磁场较强时,电弧受到洛伦兹力J×B(J是电流密度,B是磁感应强度)的作用。电弧在垂直磁场作用下所作的旋转运动,可使气体加热得更为均匀,并使弧根在电极上高速运动,从而减少电极烧损,还对电弧的稳定有明显影响。自身磁场对电弧有箍缩作用,产生的磁压(Pm=B/2μe,式中μe为磁导率)梯度能导致气体的宏观流动。在阴极附近,由于电流密度很大,相应的磁压较高。离开阴极后,电弧截面加大,磁压沿轴向降低,引起气体由阴极区向正柱区流动,形成阴极射流,其流速可达到100米/秒左右。在阳极斑点附近也存在着同样机理的阳极射流。 通常指工频和高频放电。工频放电时,阴、阳极以工频交替变化,其放电特性与直流放电有类似之处。高频放电时,电子仍是从电场取得能量的主要粒子。高频电场使电子往复运动,在此过程中,电子与分子碰撞并把能量传给分子,使气体温度升高,或产生激发、离解与电离现象。碰撞后的电子运动变为无规律的,在电场作用下又按照电场力的方向加速,这样不断地把能量从电场传给气体。在高频放电中,每单位体积气体中输入功率的平均值圴为:
式中n为电子密度;e为电子电荷;Ee为高频电场强度的幅值;m为电子质量;vo为碰撞频率;ω为外加电场的频率。 在科学技术和工业领域应用较多的发生器有电弧等离子体发生器(又称等离子体喷枪、电弧加热器)、工频电弧等离子体发生器、高频感应等离子体发生器、低气压等离子体发生器、燃烧等离子体发生器五类。最典型的为电弧、高频感应、低气压等离子体发生器三类。它们的放电特性分别属于弧光放电、高频感应弧光放电和辉光放电等类型。
电弧等离子体发生器 又称电弧等离子体炬,或称等离子体喷枪,有时也称电弧加热器。它是一种能够产生定向低温(约2000~20000开)等离子体射流的放电装置,已在等离子体化工、冶金、喷涂、喷焊、机械加工和气动热模拟实验等领域中得到广泛应用。通过阴、阳极之间的弧光放电,可产生自由燃烧、不受约束的电弧,称为自由电弧,它的温度较低(约5000~6000开),弧柱较粗。当电极间的电弧受到外界气流、发生器器壁、外磁场或水流的压缩,分别造成气稳定弧(图2a)、壁稳定弧(图2b)、磁稳定弧(图2c)或水稳定弧(图2d),这时弧柱变细,温度增高(约10000开),这类电弧称为压缩电弧。无论哪种压缩方式,其物理本质都是设法冷却弧柱边界,使被冷却部分导电性降低,迫使电弧只能通过中心狭窄通道,形成压缩弧。
电弧等离子体炬主要由一个阴极(阳极用工件代替)或阴、阳两极,一个放电室以及等离子体工作气供给系统三部分组成。等离子体炬按电弧等离子体的形式可分成非转移弧炬和转移弧炬。非转移弧炬(图3a)中,阳极兼作炬的喷嘴;而在转移弧炬(图3b)中,阳极是指电弧离开炬转移到的被加工工件。当然也有兼备转移弧和非转移弧的联合式等离子体炬(图3c)。
电弧等离子体炬由于阴极损耗,必然使等离子体中混入阴极材料。根据不同的工程需要,可选用损耗程度不同的材料作阴极。如要阴极损耗尽可能小,一般采用难熔材料,但具体选择材料时应考虑到所使用的工作气种类。如工作气为氩、 氮、氢-氮、氢-氩时,常用铈-钨或钍-钨作阴极;工作气为空气或纯氧时,可用锆或水冷铜作阴极。
工业上应用的电弧等离子体炬的主要技术指标是功率、效率和连续使用寿命。一般其输出功率范围为10~10瓦,效率较高(约为50%~90%),使用寿命受电极寿命限制。由于电极受活性工作气(氧、氯、空气)的侵蚀,炬的连续寿命一般不超过200小时;备有补充电极的电弧等离子体炬,寿命可达数百小时。目前制造新型的、可在高压强(≤1.01×10帕)和低压强 (≤1.33帕)下工作的电弧等离子体炬以及三相大功率电弧等离子体炬的条件已基本成熟。等离子体射流温度范围约在3700~25000开(取决于工作气种类和功率等因素),射流速度范围为1~10米/秒。
高频感应等离子体发生器 又称高频等离子体炬,或称射频等离子体炬。它利用无电极的感应耦合,把高频电源的能量输入到连续的气流中进行高频放电。高频等离子体发生器及其应用工艺有以下新特点:
①只有线圈,没有电极,故无电极损耗问题。发生器能产生极纯净的等离子体,连续使用寿命取决于高频电源的电真空器件寿命,一般较长,约为2000~3000小时。在等离子体高温下,由于参加反应的物质不存在被电极材料污染的问题,故可用来炼制高纯度难熔材料,如熔制蓝宝石、无水石英,拉制单晶、光导纤维、炼制铌、钽、海绵钛等。
②高频等离子体流速较低(约0~10米/秒),弧柱直径较大。近年来,已广泛应用于实验室,便于作大量等离子体过程试验。工业上制备金属氧化物、氮化物、碳化物或冶炼金属时,反应物在高温区停留时间长,使气相反应很充分。
根据电源与等离子体耦合的方式不同,高频等离子体炬可分为:电感耦合型(图4a)、电容耦合型(图4b)、微波耦合型(图4c)和火焰型(图4d)。高频等离子体炬由三部分组成:高频电源、放电室、等离子体工作气供给系统。后者除了供轴向工作气外,还像电弧等离子体炬气稳弧一样,切向供入旋转气流以冷却并保护放电室壁(通常用石英或耐热性较差的材料)。
9. 急问氮化铝的制备、性质及用途
中文名称:氮化铝
拼音:danhualv
英文名称:alumin(i)um nitride
分子式:AlN
分子量:40.99
密度:3.235g/cm3
说明:AlN属类金刚石氮化物,最高可稳定到2200℃。室温强度高,且强度随温度的升高下降较慢。导热性好,热膨胀系数小,是良好的耐热冲击材料。抗熔融金属侵蚀的能力强,是熔铸纯铁、铝或铝合金理想的坩埚材料。氮化铝还是电绝缘体,介电性能良好,用作电器元件也很有希望。砷化镓表面的氮化铝涂层,能保护它在退火时免受离子的注入。氮化铝还是由六方氮化硼转变为立方氮化硼的催化剂。室温下与水缓慢反应.可由铝粉在氨或氮气氛中800~1000℃合成,产物为白色到灰蓝色粉末。或由Al2O3-C-N2体系在1600~1750℃反应合成,产物为灰白色粉末。或氯化铝与氨经气相反应制得.涂层可由AlCl3-NH3体系通过气相沉积法合成。
1.氮化铝粉末纯度高,粒径小,活性大,是制造高导热氮化铝陶瓷基片的主要原料。
2.氮化铝陶瓷基片,热导率高,膨胀系数低,强度高,耐高温,耐化学腐蚀,电阻率高,介电损耗小,是理想的大规模集成电路散热基板和封装材料。
工艺路线:氮化铝粉末采用碳热还原氮化法;高导热氮化铝陶瓷基片采用氛常压烧结法。