A. 移动平均滤波和平均滤波各自有什么优缺点
椒盐噪声是幅值近似相等但随机分布在不同位置上,图像中有干净点也有污染点。 中值滤波是选择适当的点来替代污染点的值,所以处理效果好。 因为噪声的均值不为0,所以均值滤波不能很好地去除噪声点。
B. 比较均值滤波和中值滤波的优缺点
椒盐噪声是幅值近似相等但随机分布在不同位置上,图像中有干净点也有污染点。
中值滤波是选择适当的点来替代污染点的值,所以处理效果好。
因为噪声的均值不为0,所以均值滤波不能很好地去除噪声点。
C. 请问中值滤波与均值滤波各自的优缺点
均值滤波和中值滤波的内容非常基础,均值滤波相当于低通滤波,有将图像模糊化的趋势,对椒盐噪声基本无能为力。中值滤波的优点是可以很好的过滤掉椒盐噪声,缺点是易造成图像的不连续性。通过下面三张图可以清楚看到以上两种滤波方法的差异。
利用均值滤波处理后,椒盐噪声被处理成了小的气泡,但与此同时图像开始变得模糊。
拓展资料:
中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是用某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。二维中值滤波输出为g(x,y)=med{f(x-k,y-l),(k,l∈W)} ,其中,f(x,y),g(x,y)分别为原始图像和处理后图像。W为二维模板,通常为3*3,5*5区域,也可以是不同的的形状,如线状,圆形,十字形,圆环形等。
均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度g(x,y),即g(x,y)=1/m ∑f(x,y) m为该模板中包含当前像素在内的像素总个数。
D. 滤除图像中的椒盐噪声采用中值滤波还是邻域均值滤波,为什么
均值滤波器是一种最常用的线性低通平滑滤波器,可抑制图像中的加性噪声,但同时也使图像变得模糊;中值滤波器是一种最常用的非线性平滑滤波器,可消除图像中孤立的噪声点,又可产生较少的模糊。一般情况下中值滤波的效果要比邻域平均处理的低通滤波效果好,主要特点是滤波后图像中的轮廓比较清晰。因此,滤除图像中的椒盐噪声采用中值滤波。
E. 为什么均值滤波器滤除高斯噪声效果比滤除脉冲噪声效果好
奥
F. 去除尖锐噪声是用中值滤波还是均值滤波
均值滤波是对窗口所覆盖的像素求取均值,这种滤波方法是将噪声平均到邻域像素里面,所以会模糊图像;
中值滤波是对窗口下的像素值进行排序,将中间位置的像素值赋给窗口中心像素,对于滤除诸如椒盐噪声等有很好的效果。
对于你说的尖锐噪声,建议使用中值滤波。
以上。
G. 为什么均值滤波可以有新效去除高斯噪声
高斯噪声是幅值近似正态分布,但分布在每个像素上,而且,你要知道,正态分布的均值为0,但均值为0时,均值滤波就会用均值来代替那个像素点,从而噪声就没有了,这样说你明白了吗?
H. 比较均值滤波和中值滤波的优缺点,这是大学数字图像处理的简答题
貌似是实时性和周期性的区别,大二的时候学过,忘差不多了
I. 对于椒盐噪声,为什么中值滤波效果比均值滤波效果好
在去除椒盐噪声方面均值滤波会模糊图像,并且去除效果较差。相比之下,中值滤波能够较好地去除椒盐噪声。
中值滤波器在图像上,对待处理的像素给定一个模板,该模板包括了其周围的邻近像素。取模板中排在中间位置上的像素的灰度值替代待处理像素的值,就可以达到滤除噪声的目的。中值滤波器对椒盐噪声的滤波效果较好。
(9)均值滤波最好是过滤什么噪声扩展阅读:
注意事项:
噪声类型是‘salt & pepper’ 一定注意空格的位置 这里比较严格。
当噪声类型是’salt & pepper’的时候,第三个参数的意思是噪声密度,比如0.1,那么总像素个数的10%为黑白点,当然是黑点还是白点都是随机的。
在图像处理领域,影响图像质量的噪声主要有指数噪声、均匀噪声、椒盐噪声等。其中椒盐噪声的去除是图像处理里面一个研究很久的课题,出现最早的有效方法是中值滤波,是一种非线性滤波方法,对图像的所有像素点均进行处理,改变了图像中真实的像素点,这是传统中值滤波的一个重大缺点。