导航:首页 > 净水问答 > 基于协同过滤算法的电影推荐

基于协同过滤算法的电影推荐

发布时间:2021-03-12 19:48:01

❶ 推荐算法有哪些

推荐算法大致可以分为三类:基于内容的推荐算法、协同过滤推荐算法和基于知识的推荐算法。 基于内容的推荐算法,原理是用户喜欢和自己关注过的Item在内容上类似的Item,比如你看了哈利波特I,基于内容的推荐算法发现哈利波特II-VI,与你以前观看的在内容上面(共有很多关键词)有很大关联性,就把后者推荐给你,这种方法可以避免Item的冷启动问题(冷启动:如果一个Item从没有被关注过,其他推荐算法则很少会去推荐,但是基于内容的推荐算法可以分析Item之间的关系,实现推荐),弊端在于推荐的Item可能会重复,典型的就是新闻推荐,如果你看了一则关于MH370的新闻,很可能推荐的新闻和你浏览过的,内容一致;另外一个弊端则是对于一些多媒体的推荐(比如音乐、电影、图片等)由于很难提内容特征,则很难进行推荐,一种解决方式则是人工给这些Item打标签。 协同过滤算法,原理是用户喜欢那些具有相似兴趣的用户喜欢过的商品,比如你的朋友喜欢电影哈利波特I,那么就会推荐给你,这是最简单的基于用户的协同过滤算法(user-based collaboratIve filtering),还有一种是基于Item的协同过滤算法(item-based collaborative filtering),这两种方法都是将用户的所有数据读入到内存中进行运算的,因此成为Memory-based Collaborative Filtering,另一种则是Model-based collaborative filtering,包括Aspect Model,pLSA,LDA,聚类,SVD,Matrix Factorization等,这种方法训练过程比较长,但是训练完成后,推荐过程比较快。 最后一种方法是基于知识的推荐算法,也有人将这种方法归为基于内容的推荐,这种方法比较典型的是构建领域本体,或者是建立一定的规则,进行推荐。 混合推荐算法,则会融合以上方法,以加权或者串联、并联等方式尽心融合。 当然,推荐系统还包括很多方法,其实机器学习或者数据挖掘里面的方法,很多都可以应用在推荐系统中,比如说LR、GBDT、RF(这三种方法在一些电商推荐里面经常用到),社交网络里面的图结构等,都可以说是推荐方法。

❷ 谁有基于用户的推荐系统或者协同过滤的算法和代码分析

个大数据的大神给个 基于用户的推荐系统或者协同过滤的算法和代码分析啊
我有部分代码但是不知道怎么在Eclipse上实现 求解答啊
1.public class AggregateAndRecommendRecer extends Recer<VarLongWritable,VectorWritable,VarLongWritable,RecommendedItemsWritable>{
...
public viod rece (VarLongWritable key,Iterable<VectorWritable>values,Context context)throws IOException,InterruptedException{
Vector recommendationVector=null;
for(VectorWritable vectorWritable:values){
recommendationVector=recommendationVector==null?
vectorWritable.get();
recommendationVector.plus(bectorWritable.get());
}
Queue<RecommendedItem> topItems=new PriorityQueue<RecommendedItem>(recommendationsPerUser+1,Collections.reverseOrder(.getInstance()));
Iterator<Vector.Element> recommendationVectorIterator=recommendationVector.iterateNonZero();
while(recommendationVectorIterator.hasNext()){
vector.Element element=recommendationVectorIterator.next();
int index=element.index();

❸ 协同过滤,基于内容推荐有什么区别

举个简单的小例子,我们已知道
用户u1喜欢的电影是A,B,C
用户u2喜欢的电影是A, C, E, F
用户u3喜欢的电影是B,D
我们需要解决的问题是:决定对u1是不是应该推荐F这部电影
基于内容的做法:要分析F的特征和u1所喜欢的A、B、C的特征,需要知道的信息是A(战争片),B(战争片),C(剧情片),如果F(战争片),那么F很大程度上可以推荐给u1,这是基于内容的做法,你需要对item进行特征建立和建模。
协同过滤的办法:那么你完全可以忽略item的建模,因为这种办法的决策是依赖user和item之间的关系,也就是这里的用户和电影之间的关系。我们不再需要知道ABCF哪些是战争片,哪些是剧情片,我们只需要知道用户u1和u2按照item向量表示,他们的相似度比较高,那么我们可以把u2所喜欢的F这部影片推荐给u1。
根据数据源的不同推荐引擎可以分为三类
1、基于人口的统计学推荐(Demographic-based Recommendation)
2、基于内容的推荐(Content-based Recommendation)
3、基于协同过滤的推荐(Collaborative Filtering-based Recommendation)
基于内容的推荐:
根据物品或内容的元数据,发现物品或内容的相关性,然后基于用户以前的喜好记录推荐给用户相似的物品
基于内容推荐的一个典型的例子,电影推荐系统,首先我们需要对电影的元数据有一个建模,这里只简单的描述了一下电影的类型;然后通过电影的元数据发现电影间的相似度,因为类型都是“爱情,浪漫”电影 A 和 C 被认为是相似的电影(当然,只根据类型是不够的,要得到更好的推荐,我们还可以考虑电影的导演,演员等等);最后实现推荐,对于用户 A,他喜欢看电影 A,那么系统就可以给他推荐类似的电影 C。

❹ Python实现协同过滤推荐算法,用的大一些的数据集就报错MemoryError

  1. python虽然易用,但是内存占用比较多;所以如果你有C/C++/Java基础,考虑用这些语专言来实现;

  2. CF算法属需要计算大量的相似度,如果能把中间结果存起来,或者简化计算过程(如,你可能会重复计算一个item的均值)可以省下不少内存;(个人试过计算1w个用户Pearson是没问题的)

  3. 如果内存实在不够用,那就用时间换空间,把中间计算结果分成小文件存到磁盘上,用的时候再读取。

    供参考。

❺ 我想用协同过滤的算法写了一个java语言的图书推荐系统.能跟我讲一下大概要怎么做吗.有点没头绪

针对完全没有编程经验的初学者,java入门没什么特别好的书,找点视频看看吧,跟着视频敲代码,慢慢就能看懂书了。

----------------------如果坚持要看书的话可以考虑以下----------------------
1. head first java
通俗易懂,重点突出的书,比较薄,适合初学者快速入门,缺点是编辑自以为幽默的加了很多不相干的段子在里面,废话太多。

2. Java A beginner's guide by Herbert Schildt
相比head first java,没有废话,语言精炼。

3. 官方的tutorial
免费的,在线阅读的,也不错。

4. 疯狂java讲义
如果英文不够好的话,可以考虑用这本书入门,中文世界里写的比较好的

5. Introction to java programming by Y. Daniel Liang
梁勇这本书比较厚,讲算法比较多,如果你时间充足的话可以用这本书入门。

----------------------!!一定要避开这两个大坑!!----------------------
很多人推荐的core java 和 Thinking in java 其实并不适合初学者(没有编程经验的)。
1. core java内容太多太杂,没有突出重点,并且结构组织的像本字典,适合入门了以后用来系统复习。
2. Thinking in java 没有编程经验根本看不懂,过几年再看吧,不看也没关系。

❻ 矩阵分解在协同过滤推荐算法中的应用

矩阵分解在协同过滤推荐算法中的应用
推荐系统是当下越来越热的一个研究问题,无论在学术界还是在工业界都有很多优秀的人才参与其中。近几年举办的推荐系统比赛更是一次又一次地把推荐系统的研究推向了高潮,比如几年前的Neflix百万大奖赛,KDD CUP 2011的音乐推荐比赛,去年的网络电影推荐竞赛,还有最近的阿里巴巴大数据竞赛。这些比赛对推荐系统的发展都起到了很大的推动作用,使我们有机会接触到真实的工业界数据。我们利用这些数据可以更好地学习掌握推荐系统,这些数据网上很多,大家可以到网上下载。
推荐系统在工业领域中取得了巨大的成功,尤其是在电子商务中。很多电子商务网站利用推荐系统来提高销售收入,推荐系统为Amazon网站每年带来30%的销售收入。推荐系统在不同网站上应用的方式不同,这个不是本文的重点,如果感兴趣可以阅读《推荐系统实践》(人民邮电出版社,项亮)第一章内容。下面进入主题。
为了方便介绍,假设推荐系统中有用户集合有6个用户,即U={u1,u2,u3,u4,u5,u6},项目(物品)集合有7个项目,即V={v1,v2,v3,v4,v5,v6,v7},用户对项目的评分结合为R,用户对项目的评分范围是[0, 5]。R具体表示如下:

推荐系统的目标就是预测出符号“?”对应位置的分值。推荐系统基于这样一个假设:用户对项目的打分越高,表明用户越喜欢。因此,预测出用户对未评分项目的评分后,根据分值大小排序,把分值高的项目推荐给用户。怎么预测这些评分呢,方法大体上可以分为基于内容的推荐、协同过滤推荐和混合推荐三类,协同过滤算法进一步划分又可分为基于基于内存的推荐(memory-based)和基于模型的推荐(model-based),本文介绍的矩阵分解算法属于基于模型的推荐。
矩阵分解算法的数学理论基础是矩阵的行列变换。在《线性代数》中,我们知道矩阵A进行行变换相当于A左乘一个矩阵,矩阵A进行列变换等价于矩阵A右乘一个矩阵,因此矩阵A可以表示为A=PEQ=PQ(E是标准阵)。
矩阵分解目标就是把用户-项目评分矩阵R分解成用户因子矩阵和项目因子矩阵乘的形式,即R=UV,这里R是n×m, n =6, m =7,U是n×k,V是k×m。直观地表示如下:

高维的用户-项目评分矩阵分解成为两个低维的用户因子矩阵和项目因子矩阵,因此矩阵分解和PCA不同,不是为了降维。用户i对项目j的评分r_ij =innerproct(u_i, v_j),更一般的情况是r_ij =f(U_i, V_j),这里为了介绍方便就是用u_i和v_j内积的形式。下面介绍评估低维矩阵乘积拟合评分矩阵的方法。
首先假设,用户对项目的真实评分和预测评分之间的差服从高斯分布,基于这一假设,可推导出目标函数如下:

最后得到矩阵分解的目标函数如下:

从最终得到得目标函数可以直观地理解,预测的分值就是尽量逼近真实的已知评分值。有了目标函数之后,下面就开始谈优化方法了,通常的优化方法分为两种:交叉最小二乘法(alternative least squares)和随机梯度下降法(stochastic gradient descent)。
首先介绍交叉最小二乘法,之所以交叉最小二乘法能够应用到这个目标函数主要是因为L对U和V都是凸函数。首先分别对用户因子向量和项目因子向量求偏导,令偏导等于0求驻点,具体解法如下:

上面就是用户因子向量和项目因子向量的更新公式,迭代更新公式即可找到可接受的局部最优解。迭代终止的条件下面会讲到。
接下来讲解随机梯度下降法,这个方法应用的最多。大致思想是让变量沿着目标函数负梯度的方向移动,直到移动到极小值点。直观的表示如下:

其实负梯度的负方向,当函数是凸函数时是函数值减小的方向走;当函数是凹函数时是往函数值增大的方向移动。而矩阵分解的目标函数L是凸函数,因此,通过梯度下降法我们能够得到目标函数L的极小值(理想情况是最小值)。
言归正传,通过上面的讲解,我们可以获取梯度下降算法的因子矩阵更新公式,具体如下:

(3)和(4)中的γ指的是步长,也即是学习速率,它是一个超参数,需要调参确定。对于梯度见(1)和(2)。
下面说下迭代终止的条件。迭代终止的条件有很多种,就目前我了解的主要有
1) 设置一个阈值,当L函数值小于阈值时就停止迭代,不常用
2) 设置一个阈值,当前后两次函数值变化绝对值小于阈值时,停止迭代
3) 设置固定迭代次数
另外还有一个问题,当用户-项目评分矩阵R非常稀疏时,就会出现过拟合(overfitting)的问题,过拟合问题的解决方法就是正则化(regularization)。正则化其实就是在目标函数中加上用户因子向量和项目因子向量的二范数,当然也可以加上一范数。至于加上一范数还是二范数要看具体情况,一范数会使很多因子为0,从而减小模型大小,而二范数则不会它只能使因子接近于0,而不能使其为0,关于这个的介绍可参考论文Regression Shrinkage and Selection via the Lasso。引入正则化项后目标函数变为:

(5)中λ_1和λ_2是指正则项的权重,这两个值可以取一样,具体取值也需要根据数据集调参得到。优化方法和前面一样,只是梯度公式需要更新一下。
矩阵分解算法目前在推荐系统中应用非常广泛,对于使用RMSE作为评价指标的系统尤为明显,因为矩阵分解的目标就是使RMSE取值最小。但矩阵分解有其弱点,就是解释性差,不能很好为推荐结果做出解释。
后面会继续介绍矩阵分解算法的扩展性问题,就是如何加入隐反馈信息,加入时间信息等。

❼ 协同过滤推荐算法产生推荐结果要多久

这种抄形式一般可以按袭推荐引擎的算法分,主要有基于协同过滤、基于内容推荐等算法。 “买过此商品的人,百分之多少还买过其他啥啥商品”:协同过滤item-based filtering “和你兴趣相似的人,还买过其他啥啥商品”:协同过滤 user-based filtering “相关商品推荐”:基于内容推荐content-based “猜你喜欢” 一般混合使用推荐算法。

❽ 基于用户的协同过滤推荐算法怎么实现

我手上恰好有这样的一份文档,

❾ 基于聚类的协同过滤算法都有哪些

自邀自答,不用谢。这是两种完全不同的算法思想。以二维空间为例,聚类是各个样本版往若干权个共同中心聚合的过程,计算的是样本点到聚类中心的二维空间距离;而协同过滤是尽量在样本中构造平行相似性,以弥合缺失的样本信息维度。聚类和协同过滤是可以而且应当在解决实际问题中混合使用的。但应该是在解决问题的不同阶段。比如用户兴趣,首先使用聚类方法对人群进行若干大类的划分,然后在一类人群中进行协同过滤。

❿ 推荐算法的基于协同过滤的推荐

基于协同过滤的推荐算法理论上可以推荐世界上的任何一种东西。图片、音乐、样样可以。 协同过滤算法主要是通过对未评分项进行评分 预测来实现的。不同的协同过滤之间也有很大的不同。
基于用户的协同过滤算法: 基于一个这样的假设“跟你喜好相似的人喜欢的东西你也很有可能喜欢。”所以基于用户的协同过滤主要的任务就是找出用户的最近邻居,从而根据最近邻 居的喜好做出未知项的评分预测。这种算法主要分为3个步骤:
一,用户评分。可以分为显性评分和隐形评分两种。显性评分就是直接给项目评分(例如给网络里的用户评分),隐形评分就是通过评价或是购买的行为给项目评分 (例如在有啊购买了什么东西)。
二,寻找最近邻居。这一步就是寻找与你距离最近的用户,测算距离一般采用以下三种算法:1.皮尔森相关系数。2.余弦相似性。3调整余弦相似性。调整余弦 相似性似乎效果会好一些。
三,推荐。产生了最近邻居集合后,就根据这个集合对未知项进行评分预测。把评分最高的N个项推荐给用户。 这种算法存在性能上的瓶颈,当用户数越来越多的时候,寻找最近邻居的复杂度也会大幅度的增长。
因而这种算法无法满足及时推荐的要求。基于项的协同过滤解决了这个问题。 基于项的协同过滤算法 根基于用户的算法相似,只不过第二步改为计算项之间的相似度。由于项之间的相似度比较稳定可以在线下进行,所以解决了基于用户的协同过滤算法存在的性能瓶颈。

阅读全文

与基于协同过滤算法的电影推荐相关的资料

热点内容
小米净化器为什么灯不亮 浏览:741
小米净化器的价格多少 浏览:962
废水站投诉管理 浏览:130
饮水机水反复烧开有什么坏处 浏览:494
超滤膜气密性试验压力 浏览:799
用半透膜把分子或离子从胶体 浏览:927
全国出名的污水处理厂家有哪些 浏览:864
污水处理站运行纪录单 浏览:409
提标改造污水 浏览:857
工业污水膜处理原理 浏览:635
青岛污水排水处理方案设计 浏览:766
什么叫饮水机抑菌 浏览:438
水果皮除水垢 浏览:932
净水器原装带码什么意思 浏览:244
四眼三箱polo怎么换机油滤芯 浏览:339
细胞膜是具有特殊结构和功能的半透膜对吗 浏览:323
为什么要控制污水mvr指标 浏览:722
好的水壶会出现水垢吗 浏览:298
净水器超滤膜和ro有什么区别 浏览:456
gz150e滤芯是什么型号 浏览:812