A. 离子交换膜基本原理及应用的目录
基本原理卷
第章离子交换膜的制备方法
1.1离子交换膜的发明
1.2夹层法
1.3胶乳法
1.4块状聚合法
1.5涂浆法
1.6辐照接枝聚合法
1.7非均相膜
参考文献
第2章膜性能的测定
2.1膜的取样和预处理
2.2电阻
2.3离子交换容量和含水量
2.4迁移数
2.5溶质透过系数
2.6电渗透系数
2.7水透过系数
2.8溶胀比
2.9机械强度
2.10电渗析
参考文献
第3章膜的特性和迁移现象
3.1具有不同电荷符号离子之间的选择透过性
3.2具有相同电荷符号离子之间的选择透过性
3.3电导
3.4膜电位
3.5浓差扩散
3.6降低两价离子透过性的机理
3.7关于膜处理对降低两价离子透过性的研究
参考文献
第4章Teorell、Meyer和Sievers理论(TMS理论)
4.1膜电位
4.2扩散系数
4.3电导
4.4迁移数
参考文献
第5章不可逆过程热力学
5.1唯象方程和唯象系数
5.2反射系数
5.3电渗析现象
5.4电渗析法分离盐和水
参考文献
第6章总传质过程
6.1总膜对的特性和通过膜对的传质
6.2总传质方程和唯象方程
6.3反射系数σ、水力传导度LP和溶质透过率ω
6.4压力反射系数和浓度反射系数:切断电流概念
6.5不可逆过程热力学的膜对特性
参考文献
第7章浓差极化现象
7.1电流?电压关系
7.2浓差极化电位
7.3计时电位法
7.4折射率
7.5自然对流
7.6波动
7.7超极限电流
7.8边界层的传质
7.9在离子交换膜浓缩表面上的浓差极化
参考文献
第8章水解离
8.1电流?pH关系
8.2扩散模型
8.3排斥区
8.4膜表面电位
8.5Wien效应
8.6质子化和去质子化反应
8.7镁离子的水解
8.8关于水解离的实验研究
8.9在海水电渗析中出现的水解离
8.10水解离的机理
参考文献
第9章电流密度分布
9.1在电渗析器中电流密度的分布
9.2环绕绝缘体和电流屏蔽的电流密度分布
参考文献
第10章水力学
10.1溶液流动和I-V曲线
10.2隔板对溶液流动的影响(理论的)
10.3隔板对溶液流动的影响(实验的)
10.4在流道内的局部流动分布
10.5溶液流动对极限电流密度和在流道内静压头损失的影响
10.6空气泡清洁法
10.7隔板的摩擦因子和每个脱盐室的溶液分布
10.8电渗析器中管道内的压力分布
参考文献
第11章极限电流密度
11.1浓差极化、水解离和极限电流密度
11.2扩散层和边界层
11.3由Nernst-Planck方程推得的极限电流密度方程
11.4极限电流密度对电解质浓度和溶液速度的依赖性
11.5基于脱盐室中传质的极限电流密度分析
11.6在膜堆中脱盐室之间溶液速度分布
11.7电渗析器的极限电流密度
参考文献
第12章泄漏
12.1漏电
12.2漏液
参考文献
第13章能耗
13.1在电渗析系统中的能量要求
13.2在膜堆中的能耗
参考文献
第14章膜恶化
14.1膜的性能随着运行时间而变化
14.2表面污染
14.3有机污染
参考文献
应用卷
第15章电渗析
15.1技术概览
15.2电渗析器
15.3电渗析流程
15.4能耗和最佳电流密度
15.5周边的技术
15.6实践
参考文献
第16章倒极电渗析
16.1技术概览
16.2隔板
16.3水的回收率
16.4垢形成的防止
16.5抗有机污染
16.6在膜面上胶体沉积的形成及其除去
16.7硝酸盐和亚硝酸盐的除去
16.8实践
参考文献
第17章双极膜电渗析
17.1技术概览
17.2双极膜的制备
17.3双极膜的性能
17.4实践
参考文献
第18章电去离子
18.1技术概览
18.2EDI系统中的传质
18.3EDI装置的结构和能耗
18.4在EDI过程中的水解离
18.5在EDI过程中弱电离组分的除去
18.6实践
参考文献
第19章电解
19.1技术概览
19.2离子交换膜
19.3在电解系统中的物料流动和电极反应
19.4电解器及其性能
19.5在电解过程中盐水的纯化
参考文献
第20章扩散渗析
20.1技术概览
20.2在扩散渗析中的迁移现象
20.3扩散渗析器及其运行
20.4实践
参考文献
第21章Donnan渗析
21.1技术概览
21.2在Donnan渗析中的质量迁移
21.3实践
参考文献
第22章能量转换
22.1渗析电池
22.2氧化还原流动电池
22.3燃料电池
参考文献
B. 水分子能通过阳离子交换膜吗(不懂别复制别人的答案)
交换膜的作用实际上起到一个阴阳离子相对来说隔绝的一个作用,对于交换膜版来讲,允许通过的粒子的权最大直径不能超过1纳米,,对于水分子来讲,其整体分子直径小于1个纳米,所以水分子可以通过交换膜,阳离子交换膜实际上是将某一边的阳离子渗透到另一面内,而阴离子无法通过,所以答案是肯定的,水分子可以通过阳离子交换膜,一般情况下,所有溶液都可以透过交换膜,胶体不行,交换膜性质和你们高中所学的胶体的半透膜差不多,只不过阳离子交换膜提供的是更多的条件,就是允许所有的阳离子和小于1纳米的溶质透过,而阴离子因为在电场的作用下无法通过交换膜
C. 离子交换膜与反渗透膜的区别,它们各自的机理是什么
反渗透膜是在压力的作用下,将溶剂和溶质分离的一种方法,该方法类似于过滤
由于反渗透膜孔专径只有0.1纳米,所以一属般只有水分子才能通过
离子交换膜分阴膜和阳膜,是在电压的作用下,分别将水里的阴阳离子聚集在膜上,通过电化学反应,最后通过浓水室排出
总之,反渗透膜是纯物理方式处理水,而离子交换膜则是通过电化学方法处理
D. 超滤,反渗透,电渗析的工作原理
超滤:
采用的是一种超滤膜技术。超滤是一种筛分的过程,以膜两侧的压力差为驱动力,以超滤膜为过滤介质,在一定的压力下,当原水流过膜表面时,超滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原水中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原水的净化、分离和浓缩的目的。
反渗透:
采用的是反渗透膜技术。其工作原理是对水施加一定的压力,使水分子和离子态的矿物质元素通过反渗透膜,而溶解在水中的绝大部分无机盐,包括重金属在内,有机物以及病菌等无法通过反渗透膜,达到渗透过的纯净水和无法渗透过的浓缩水分开。
电渗析:
利用半透膜的选择透过性来分离不同的溶质粒子(如离子)的方法称为渗析。在电场作用下进行渗析时,溶液中的带电的溶质粒子(如离子)通过膜而迁移的现象称为电渗析。
电渗析的推动力是电场力,电渗析一般和离子交换膜联合使用。在外加电场作用下,水中离子在溶液中进行定向移动,借助于离子交换膜的选择透过性,实现溶液的浓缩、淡化和提纯,离子交换膜的污染是最关键的。
E. 离子交换膜与反渗透膜的区别,它们各自的机理是什么
反渗透膜是在压力的作用下,将溶剂和溶质分离的一种方法,该方版法类似于过滤
由于反渗透膜权孔径只有0.1纳米,所以一般只有水分子才能通过
离子交换膜分阴膜和阳膜,是在电压的作用下,分别将水里的阴阳离子聚集在膜上,通过电化学反应,最后通过浓水室排出
总之,反渗透膜是纯物理方式处理水,而离子交换膜则是通过电化学方法处理
F. 电解池离子交换膜到底有什么用
离子交换膜是具有离子交换性能的、由高分子材料制成的薄膜(也有无机离子交换股,但其使用尚不普通)。它与离子交换树脂相似,都是在高分子骨架上连接一个活性基团,但作用机理和方式、效果都有不同之处。当前市场上离子交换膜种类繁多,也没有统一的分类方法。一般按膜的宏观结构分为三大类:
1. 非均相离子交换膜 由粉末状的离子交换树脂加黏合剂混炼、拉片、加网热压而成。树脂分散在黏合剂中,因而其化学结构是不均匀的。
2. 均相离子交换膜 均相离子交换膜系将活性基团引入一惰性支持物中制成。它没有异相结构,本身是均匀的。其化学结构均匀,孔隙小,膜电阻小,不易渗漏,电化学性能优良,在生产中应用广泛。但制作复杂,机械强度较低。
3. 半均相离子交换膜 也是将活性基团引入高分子支持物制成的。但两者不形成化学结合,其性能介于均相离子交换膜和非均相离子交换膜之间。
此外,离子交换膜按功能及结构的不同,可分为阳离子交换膜、阴离子交换膜、两性交换膜、镶嵌离子交换膜、聚电解质复合物膜五种类型。离子交换膜的构造和离子交换树脂相同,但为膜的形式。
离子交换膜可装配成电渗析器而用于苦咸水的淡化和盐溶液的浓缩。电渗析装置的淡化程度可达一次蒸馏水纯度。也可应用于甘油、聚乙二醇的除盐,分离各种离子与放射性元素、同位素,分级分离氨基酸等。此外,在有机和无机化合物的纯化、原子能工业中放射性废液的处理与核燃料的制备,以及燃料电池隔膜与离子选择性电极中,也都采用离子交换膜。离子交换膜在膜技术领域中占有重要的地位,它对仿生膜研究也将起重要作用。
G. 水分子能通过阳离子交换膜吗(不懂别复制别人的答案)
交换膜来的作用实际上起到一个阴自阳离子相对来说隔绝的一个作用,对于交换膜来讲,允许通过的粒子的最大直径不能超过1纳米,对于水分子来讲,其整体分子直径小于1个纳米,所以水分子可以通过交换膜,阳离子交换膜实际上是将某一边的阳离子渗透到另一面内,而阴离子无法通过,所以答案是肯定的,水分子可以通过阳离子交换膜,一般情况下,所有溶液都可以透过交换膜,胶体不行,交换膜性质和你们高中所学的胶体的半透膜差不多,只不过阳离子交换膜提供的是更多的条件,就是允许所有的阳离子和小于1纳米的溶质透过,而阴离子因为在电场的作用下无法通过交换膜
H. 水能透过离子交换膜吗
离子交换膜是一种含离子基团的、对溶液里的离子具有选择透过能力的高分专子膜。因为一般在应用时主属要是利用它的离子选择透过性,所以也称为离子选择透过性膜。水在膜中的渗透率就是离子在透过膜时带过去的水量。实用上水渗透率是膜的一个性能,其值愈大,在电渗析时水损失愈大,通常疏水性高分子材料膜中水渗透率远低于亲水性高分子材料膜
I. 离子交换膜
一种含离子基团的、对溶液里的离子具有选择透过能力的高分子膜。因为一般在应用时主要是利用它的离子选择透过性,所以也称为离子选择透过性膜。1950年W.朱达首先合成了离子交换膜。1956年首次成功地用于电渗析脱盐工艺上。
离子交换膜是具有离子交换性能的、由高分子材料制成的薄膜(也有无机离子交换股,但其使用尚不普通)。它与离子交换树脂相似,都是在高分子骨架上连接一个活性基团,但作用机理和方式、效果都有不同之处。当前市场上离子交换膜种类繁多,也没有统一的分类方法。一般按膜的宏观结构分为三大类:
1. 非均相离子交换膜 由粉末状的离子交换树脂加黏合剂混炼、拉片、加网热压而成。树脂分散在黏合剂中,因而其化学结构是不均匀的。
2. 均相离子交换膜 均相离子交换膜系将活性基团引入一惰性支持物中制成。它没有异相结构,本身是均匀的。其化学结构均匀,孔隙小,膜电阻小,不易渗漏,电化学性能优良,在生产中应用广泛。但制作复杂,机械强度较低。
3. 半均相离子交换膜 也是将活性基团引入高分子支持物制成的。但两者不形成化学结合,其性能介于均相离子交换膜和非均相离子交换膜之间。
此外,离子交换膜按功能及结构的不同,可分为阳离子交换膜、阴离子交换膜、两性交换膜、镶嵌离子交换膜、聚电解质复合物膜五种类型。离子交换膜的构造和离子交换树脂相同,但为膜的形式。