A. 如何解释spark mllib中ALS算法的原理
整理一下自己的理解。
对于一个users-procts-rating的评分数据集,ALS会建立一个user*proct的m*n的矩阵
其中,m为users的数量,n为procts的数量
但是在这个数据集中,并不是每个用户都对每个产品进行过评分,所以这个矩阵往往是稀疏的,用户i对产品j的评分往往是空的
ALS所做的事情就是将这个稀疏矩阵通过一定的规律填满,这样就可以从矩阵中得到任意一个user对任意一个proct的评分,ALS填充的评分项也称为用户i对产品j的预测得分
所以说,ALS算法的核心就是通过什么样子的规律来填满(预测)这个稀疏矩阵
它是这么做的:
假设m*n的评分矩阵R,可以被近似分解成U*(V)T
U为m*d的用户特征向量矩阵
V为n*d的产品特征向量矩阵((V)T代表V的转置,原谅我不会打转置这个符号。。)
d为user/proct的特征值的数量
关于d这个值的理解,大概可以是这样的
对于每个产品,可以从d个角度进行评价,以电影为例,可以从主演,导演,特效,剧情4个角度来评价一部电影,那么d就等于4
可以认为,每部电影在这4个角度上都有一个固定的基准评分值
例如《末日崩塌》这部电影是一个产品,它的特征向量是由d个特征值组成的
d=4,有4个特征值,分别是主演,导演,特效,剧情
每个特征值的基准评分值分别为(满分为1.0):
主演:0.9(大光头还是那么霸气)
导演:0.7
特效:0.8
剧情:0.6
矩阵V由n个proct*d个特征值组成
对于矩阵U,假设对于任意的用户A,该用户对一部电影的综合评分和电影的特征值存在一定的线性关系,即电影的综合评分=(a1*d1+a2*d2+a3*d3+a4*d4)
其中a1-4为用户A的特征值,d1-4为之前所说的电影的特征值
参考:
协同过滤中的矩阵分解算法研究
那么对于之前ALS算法的这个假设
m*n的评分矩阵R,可以被近似分解成U*(V)T
就是成立的,某个用户对某个产品的评分可以通过矩阵U某行和矩阵V(转置)的某列相乘得到
那么现在的问题是,如何确定用户和产品的特征值?(之前仅仅是举例子,实际中这两个都是未知的变量)
采用的是交替的最小二乘法
在上面的公式中,a表示评分数据集中用户i对产品j的真实评分,另外一部分表示用户i的特征向量(转置)*产品j的特征向量(这里可以得到预测的i对j的评分)在上面的公式中,a表示评分数据集中用户i对产品j的真实评分,另外一部分表示用户i的特征向量(转置)*产品j的特征向量(这里可以得到预测的i对j的评分)
用真实评分减去预测评分然后求平方,对下一个用户,下一个产品进行相同的计算,将所有结果累加起来(其中,数据集构成的矩阵是存在大量的空打分,并没有实际的评分,解决的方法是就只看对已知打分的项)
参考:
ALS 在 Spark MLlib 中的实现
但是这里之前问题还是存在,就是用户和产品的特征向量都是未知的,这个式子存在两个未知变量
解决的办法是交替的最小二乘法
首先对于上面的公式,以下面的形式显示:
为了防止过度拟合,加上正则化参数为了防止过度拟合,加上正则化参数
首先用一个小于1的随机数初始化V首先用一个小于1的随机数初始化V
根据公式(4)求U
此时就可以得到初始的UV矩阵了,计算上面说过的差平方和
根据计算得到的U和公式(5),重新计算并覆盖V,计算差平方和
反复进行以上两步的计算,直到差平方和小于一个预设的数,或者迭代次数满足要求则停止
取得最新的UV矩阵
则原本的稀疏矩阵R就可以用R=U(V)T来表示了
以上公式内容截图来自:
基于矩阵分解的协同过滤算法
总结一下:
ALS算法的核心就是将稀疏评分矩阵分解为用户特征向量矩阵和产品特征向量矩阵的乘积
交替使用最小二乘法逐步计算用户/产品特征向量,使得差平方和最小
通过用户/产品特征向量的矩阵来预测某个用户对某个产品的评分
不知道是不是理解正确了
有几个问题想请教一下~
(1)在第一个公式中加入正则化参数是啥意思?为什么是那种形态的?
(2)固定一个矩阵U,求偏导数之后可以得到求解V的公式,为什么?
B. itemCF算法如果没有用户评分该怎么计算评分矩阵
整理一下自己的理解。对于一个users-procts-rating的评分数据集,ALS会建立一个user*proct的m*n的矩阵其中,m为users的数量,n为procts的数量但是在这个数据集中,并不是每个用户都对每个产品进行过评分,所以这个矩阵往往是稀疏的,用户i对产品j的评分往往是空的ALS所做的事情就是将这个稀疏矩阵通过一定的规律填满,这样就可以从矩阵中得到任意一个user对任意一个proct的评分,ALS填充的评分项也称为用户i对产品j的预测得分所以说,ALS算法的核心就是通过什么样子的规律来填满(预测)这个稀疏矩阵它是这么做的:假设m*n的评分矩阵R,可以被近似分解成U*(V)TU为m*d的用户特征向量矩阵V为n*d的产品特征向量矩阵((V)T代表V的转置,原谅我不会打转置这个符号。。)d为user/proct的特征值的数量关于d这个值的理解,大概可以是这样的对于每个产品,可以从d个角度进行评价,以电影为例,可以从主演,导演,特效,剧情4个角度来评价一部电影,那么d就等于4可以认为,每部电影在这4个角度上都有一个固定的基准评分值例如《末日崩塌》这部电影是一个产品,它的特征向量是由d个特征值组成的d=4,有4个特征值,分别是主演,导演,特效,剧情每个特征值的基准评分值分别为(满分为1.0):主演:0.9(大光头还是那么霸气)导演:0.7特效:0.8剧情:0.6矩阵V由n个proct*d个特征值组成对于矩阵U,假设对于任意的用户A,该用户对一部电影的综合评分和电影的特征值存在一定的线性关系,即电影的综合评分=(a1*d1+a2*d2+a3*d3+a4*d4)其中a1-4为用户A的特征值,d1-4为之前所说的电影的特征值参考:协同过滤中的矩阵分解算法研究那么对于之前ALS算法的这个假设m*n的评分矩阵R,可以被近似分解成U*(V)T就是成立的,某个用户对某个产品的评分可以通过矩阵U某行和矩阵V(转置)的某列相乘得到那么现在的问题是,如何确定用户和产品的特征值?(之前仅仅是举例子,实际中这两个都是未知的变量)采用的是交替的最小二乘法在上面的公式中,a表示评分数据集中用户i对产品j的真实评分,另外一部分表示用户i的特征向量(转置)*产品j的特征向量(这里可以得到预测的i对j的评分)在上面的公式中,a表示评分数据集中用户i对产品j的真实评分,另外一部分表示用户i的特征向量(转置)*产品j的特征向量(这里可以得到预测的i对j的评分)用真实评分减去预测评分然后求平方,对下一个用户,下一个产品进行相同的计算,将所有结果累加起来(其中,数据集构成的矩阵是存在大量的空打分,并没有实际的评分,解决的方法是就只看对已知打分的项)参考:ALS在SparkMLlib中的实现但是这里之前问题还是存在,就是用户和产品的特征向量都是未知的,这个式子存在两个未知变量解决的法是交替的最小二乘法首先对于上面的公式,以下面的形式显示:为了防止过度拟合,加上正则化参数为了防止过度拟合,加上正则化参数首先用一个小于1的随机数初始化V首先用一个小于1的随机数初始化V根据公式(4)求U此时就可以得到初始的UV矩阵了,计算上面说过的差平方和根据计算得到的U和公式(5),重新计算并覆盖V,计算差平方和反复进行以上两步的计算,直到差平方和小于一个预设的数,或者迭代次数满足要求则停止取得最新的UV矩阵则原本的稀疏矩阵R就可以用R=U(V)T来表示了以上公式内容截图来自:基于矩阵分解的协同过滤算法总结一下:ALS算法的核心就是将稀疏评分矩阵分解为用户特征向量矩阵和产品特征向量矩阵的乘积交替使用最小二乘法逐步计算用户/产品特征向量,使得差平方和最小通过用户/产品特征向量的矩阵来预测某个用户对某个产品的评分不知道是不是理解正确了有几个问题想请教一下~(1)在第一个公式中加入正则化参数是啥意思?为什么是那种形态的?(2)固定一个矩阵U,求偏导数之后可以得到求解V的公式,为什么?
C. 矩阵分解在协同过滤推荐算法中的应用
矩阵分解在协同过滤推荐算法中的应用
推荐系统是当下越来越热的一个研究问题,无论在学术界还是在工业界都有很多优秀的人才参与其中。近几年举办的推荐系统比赛更是一次又一次地把推荐系统的研究推向了高潮,比如几年前的Neflix百万大奖赛,KDD CUP 2011的音乐推荐比赛,去年的网络电影推荐竞赛,还有最近的阿里巴巴大数据竞赛。这些比赛对推荐系统的发展都起到了很大的推动作用,使我们有机会接触到真实的工业界数据。我们利用这些数据可以更好地学习掌握推荐系统,这些数据网上很多,大家可以到网上下载。
推荐系统在工业领域中取得了巨大的成功,尤其是在电子商务中。很多电子商务网站利用推荐系统来提高销售收入,推荐系统为Amazon网站每年带来30%的销售收入。推荐系统在不同网站上应用的方式不同,这个不是本文的重点,如果感兴趣可以阅读《推荐系统实践》(人民邮电出版社,项亮)第一章内容。下面进入主题。
为了方便介绍,假设推荐系统中有用户集合有6个用户,即U={u1,u2,u3,u4,u5,u6},项目(物品)集合有7个项目,即V={v1,v2,v3,v4,v5,v6,v7},用户对项目的评分结合为R,用户对项目的评分范围是[0, 5]。R具体表示如下:
推荐系统的目标就是预测出符号“?”对应位置的分值。推荐系统基于这样一个假设:用户对项目的打分越高,表明用户越喜欢。因此,预测出用户对未评分项目的评分后,根据分值大小排序,把分值高的项目推荐给用户。怎么预测这些评分呢,方法大体上可以分为基于内容的推荐、协同过滤推荐和混合推荐三类,协同过滤算法进一步划分又可分为基于基于内存的推荐(memory-based)和基于模型的推荐(model-based),本文介绍的矩阵分解算法属于基于模型的推荐。
矩阵分解算法的数学理论基础是矩阵的行列变换。在《线性代数》中,我们知道矩阵A进行行变换相当于A左乘一个矩阵,矩阵A进行列变换等价于矩阵A右乘一个矩阵,因此矩阵A可以表示为A=PEQ=PQ(E是标准阵)。
矩阵分解目标就是把用户-项目评分矩阵R分解成用户因子矩阵和项目因子矩阵乘的形式,即R=UV,这里R是n×m, n =6, m =7,U是n×k,V是k×m。直观地表示如下:
高维的用户-项目评分矩阵分解成为两个低维的用户因子矩阵和项目因子矩阵,因此矩阵分解和PCA不同,不是为了降维。用户i对项目j的评分r_ij =innerproct(u_i, v_j),更一般的情况是r_ij =f(U_i, V_j),这里为了介绍方便就是用u_i和v_j内积的形式。下面介绍评估低维矩阵乘积拟合评分矩阵的方法。
首先假设,用户对项目的真实评分和预测评分之间的差服从高斯分布,基于这一假设,可推导出目标函数如下:
最后得到矩阵分解的目标函数如下:
从最终得到得目标函数可以直观地理解,预测的分值就是尽量逼近真实的已知评分值。有了目标函数之后,下面就开始谈优化方法了,通常的优化方法分为两种:交叉最小二乘法(alternative least squares)和随机梯度下降法(stochastic gradient descent)。
首先介绍交叉最小二乘法,之所以交叉最小二乘法能够应用到这个目标函数主要是因为L对U和V都是凸函数。首先分别对用户因子向量和项目因子向量求偏导,令偏导等于0求驻点,具体解法如下:
上面就是用户因子向量和项目因子向量的更新公式,迭代更新公式即可找到可接受的局部最优解。迭代终止的条件下面会讲到。
接下来讲解随机梯度下降法,这个方法应用的最多。大致思想是让变量沿着目标函数负梯度的方向移动,直到移动到极小值点。直观的表示如下:
其实负梯度的负方向,当函数是凸函数时是函数值减小的方向走;当函数是凹函数时是往函数值增大的方向移动。而矩阵分解的目标函数L是凸函数,因此,通过梯度下降法我们能够得到目标函数L的极小值(理想情况是最小值)。
言归正传,通过上面的讲解,我们可以获取梯度下降算法的因子矩阵更新公式,具体如下:
(3)和(4)中的γ指的是步长,也即是学习速率,它是一个超参数,需要调参确定。对于梯度见(1)和(2)。
下面说下迭代终止的条件。迭代终止的条件有很多种,就目前我了解的主要有
1) 设置一个阈值,当L函数值小于阈值时就停止迭代,不常用
2) 设置一个阈值,当前后两次函数值变化绝对值小于阈值时,停止迭代
3) 设置固定迭代次数
另外还有一个问题,当用户-项目评分矩阵R非常稀疏时,就会出现过拟合(overfitting)的问题,过拟合问题的解决方法就是正则化(regularization)。正则化其实就是在目标函数中加上用户因子向量和项目因子向量的二范数,当然也可以加上一范数。至于加上一范数还是二范数要看具体情况,一范数会使很多因子为0,从而减小模型大小,而二范数则不会它只能使因子接近于0,而不能使其为0,关于这个的介绍可参考论文Regression Shrinkage and Selection via the Lasso。引入正则化项后目标函数变为:
(5)中λ_1和λ_2是指正则项的权重,这两个值可以取一样,具体取值也需要根据数据集调参得到。优化方法和前面一样,只是梯度公式需要更新一下。
矩阵分解算法目前在推荐系统中应用非常广泛,对于使用RMSE作为评价指标的系统尤为明显,因为矩阵分解的目标就是使RMSE取值最小。但矩阵分解有其弱点,就是解释性差,不能很好为推荐结果做出解释。
后面会继续介绍矩阵分解算法的扩展性问题,就是如何加入隐反馈信息,加入时间信息等。
D. 在推荐系统中矩阵分解是协同过滤的一种吗
解:∵y=√(x-1)与y=x/2的交点为(2,1)、且y=√(x-1)的定义域为x≥1,
∴原式=∫回(0,2)dx∫(0,x/2)ydy-∫(1,2)dx∫[0,√(x-1)]ydy=(1/2)∫(0,2)x^2dx-(1/2)∫(1,2)(x-1)dx=(1/6)x^3丨(x=0,2)-(1/2)[(1/2)x^2-x]丨(x=1,2)=13/12。答
供参考。
E. https://.baidu.com/question/2270990967816553188.html
整理一下自己的理解。
对于一个users-procts-rating的评分数据集,ALS会建立一个user*proct的m*n的矩阵
其中,m为users的数量,n为procts的数量
但是在这个数据集中,并不是每个用户都对每个产品进行过评分,所以这个矩阵往往是稀疏的,用户i对产品j的评分往往是空的
ALS所做的事情就是将这个稀疏矩阵通过一定的规律填满,这样就可以从矩阵中得到任意一个user对任意一个proct的评分,ALS填充的评分项也称为用户i对产品j的预测得分
所以说,ALS算法的核心就是通过什么样子的规律来填满(预测)这个稀疏矩阵
它是这么做的:
假设m*n的评分矩阵R,可以被近似分解成U*(V)T
U为m*d的用户特征向量矩阵
V为n*d的产品特征向量矩阵((V)T代表V的转置,原谅我不会打转置这个符号。。)
d为user/proct的特征值的数量
关于d这个值的理解,大概可以是这样的
对于每个产品,可以从d个角度进行评价,以电影为例,可以从主演,导演,特效,剧情4个角度来评价一部电影,那么d就等于4
可以认为,每部电影在这4个角度上都有一个固定的基准评分值
例如《末日崩塌》这部电影是一个产品,它的特征向量是由d个特征值组成的
d=4,有4个特征值,分别是主演,导演,特效,剧情
每个特征值的基准评分值分别为(满分为1.0):
主演:0.9(大光头还是那么霸气)
导演:0.7
特效:0.8
剧情:0.6
矩阵V由n个proct*d个特征值组成
对于矩阵U,假设对于任意的用户A,该用户对一部电影的综合评分和电影的特征值存在一定的线性关系,即电影的综合评分=(a1*d1+a2*d2+a3*d3+a4*d4)
其中a1-4为用户A的特征值,d1-4为之前所说的电影的特征值
参考:
协同过滤中的矩阵分解算法研究
那么对于之前ALS算法的这个假设
m*n的评分矩阵R,可以被近似分解成U*(V)T
就是成立的,某个用户对某个产品的评分可以通过矩阵U某行和矩阵V(转置)的某列相乘得到
那么现在的问题是,如何确定用户和产品的特征值?(之前仅仅是举例子,实际中这两个都是未知的变量)
采用的是交替的最小二乘法
在上面的公式中,a表示评分数据集中用户i对产品j的真实评分,另外一部分表示用户i的特征向量(转置)*产品j的特征向量(这里可以得到预测的i对j的评分)在上面的公式中,a表示评分数据集中用户i对产品j的真实评分,另外一部分表示用户i的特征向量(转置)*产品j的特征向量(这里可以得到预测的i对j的评分)
用真实评分减去预测评分然后求平方,对下一个用户,下一个产品进行相同的计算,将所有结果累加起来(其中,数据集构成的矩阵是存在大量的空打分,并没有实际的评分,解决的方法是就只看对已知打分的项)
参考:
ALS 在 Spark MLlib 中的实现
但是这里之前问题还是存在,就是用户和产品的特征向量都是未知的,这个式子存在两个未知变量
解决的办法是交替的最小二乘法
首先对于上面的公式,以下面的形式显示:
为了防止过度拟合,加上正则化参数为了防止过度拟合,加上正则化参数
首先用一个小于1的随机数初始化V首先用一个小于1的随机数初始化V
根据公式(4)求U
此时就可以得到初始的UV矩阵了,计算上面说过的差平方和
根据计算得到的U和公式(5),重新计算并覆盖V,计算差平方和
反复进行以上两步的计算,直到差平方和小于一个预设的数,或者迭代次数满足要求则停止
取得最新的UV矩阵
则原本的稀疏矩阵R就可以用R=U(V)T来表示了
以上公式内容截图来自:
基于矩阵分解的协同过滤算法
总结一下:
ALS算法的核心就是将稀疏评分矩阵分解为用户特征向量矩阵和产品特征向量矩阵的乘积
交替使用最小二乘法逐步计算用户/产品特征向量,使得差平方和最小
通过用户/产品特征向量的矩阵来预测某个用户对某个产品的评分
不知道是不是理解正确了
有几个问题想请教一下~
F. mahout包括哪些算法
一、分类算法
(一)Logistic 回归(SGD)
(二)Bayesian
(三)SVM
(四)Perceptron 和Winnow
(五)神经网络
(六)随机森林
(七)受限玻尔兹曼机
(八)Boosting
(九)HMM
(十)Online Passive Aggressive
二、聚类算法
(一)Canopy
(二)K-Means
(三)Fuzzy K-means
(四)EM
(五)Mean shift
(六)层次聚类
(七)Dirichlet process
(八)LDA
(九)Spectral
(十)MinHash
(十一)Top Down
三、推荐算法
Mahout包括简单的非并行的推荐和基于Hadoop的并行推荐的实现。
(一)非并行推荐
(二)分布式的基于Item的协同过滤
(三)并行矩阵分解的协同过滤
四、关联规则挖掘算法
并行FP-Growth
五、回归
Locally Weighted Linear Regression
六、降维
(一)SVD
(二)SSVD
(三)PCA
(四)ICA
(五)GDA
七、进化算法
八、向量相似性计算
G. 文本主题模型之潜在语义索引(LSI)
文本主题模型之潜在语义索引(LSI)
在文本挖掘中,主题模型是比较特殊的一块,它的思想不同于我们常用的机器学习算法,因此这里我们需要专门来总结文本主题模型的算法。本文关注于潜在语义索引算法(LSI)的原理。
1. 文本主题模型的问题特点
在数据分析中,我们经常会进行非监督学习的聚类算法,它可以对我们的特征数据进行非监督的聚类。而主题模型也是非监督的算法,目的是得到文本按照主题的概率分布。从这个方面来说,主题模型和普通的聚类算法非常的类似。但是两者其实还是有区别的。
聚类算法关注于从样本特征的相似度方面将数据聚类。比如通过数据样本之间的欧式距离,曼哈顿距离的大小聚类等。而主题模型,顾名思义,就是对文字中隐含主题的一种建模方法。比如从“人民的名义”和“达康书记”这两个词我们很容易发现对应的文本有很大的主题相关度,但是如果通过词特征来聚类的话则很难找出,因为聚类方法不能考虑到到隐含的主题这一块。
那么如何找到隐含的主题呢?这个一个大问题。常用的方法一般都是基于统计学的生成方法。即假设以一定的概率选择了一个主题,然后以一定的概率选择当前主题的词。最后这些词组成了我们当前的文本。所有词的统计概率分布可以从语料库获得,具体如何以“一定的概率选择”,这就是各种具体的主题模型算法的任务了。
当然还有一些不是基于统计的方法,比如我们下面讲到的LSI。
2. 潜在语义索引(LSI)概述
潜在语义索引(Latent Semantic Indexing,以下简称LSI),有的文章也叫Latent Semantic Analysis(LSA)。其实是一个东西,后面我们统称LSI,它是一种简单实用的主题模型。LSI是基于奇异值分解(SVD)的方法来得到文本的主题的。而SVD及其应用我们在前面的文章也多次讲到,比如:奇异值分解(SVD)原理与在降维中的应用和矩阵分解在协同过滤推荐算法中的应用。如果大家对SVD还不熟悉,建议复习奇异值分解(SVD)原理与在降维中的应用后再读下面的内容。
这里我们简要回顾下SVD:对于一个m×n的矩阵A,可以分解为下面三个矩阵:
Am×n=Um×mΣm×nVn×nT
有时为了降低矩阵的维度到k,SVD的分解可以近似的写为:
Am×n≈Um×kΣk×kVk×nT
如果把上式用到我们的主题模型,则SVD可以这样解释:我们输入的有m个文本,每个文本有n个词。而Aij则对应第i个文本的第j个词的特征值,这里最常用的是基于预处理后的标准化TF-IDF值。k是我们假设的主题数,一般要比文本数少。SVD分解后,Uil对应第i个文本和第l个主题的相关度。Vjm对应第j个词和第m个词义的相关度。Σlm对应第l个主题和第m个词义的相关度。
也可以反过来解释:我们输入的有m个词,对应n个文本。而Aij则对应第i个词档的第j个文本的特征值,这里最常用的是基于预处理后的标准化TF-IDF值。k是我们假设的主题数,一般要比文本数少。SVD分解后,Uil对应第i个词和第l个词义的相关度。Vjm对应第j个文本和第m个主题的相关度。Σlm对应第l个词义和第m个主题的相关度。
这样我们通过一次SVD,就可以得到文档和主题的相关度,词和词义的相关度以及词义和主题的相关度。
3. LSI简单实例
这里举一个简单的LSI实例,假设我们有下面这个有10个词三个文本的词频TF对应矩阵如下:
这里我们没有使用预处理,也没有使用TF-IDF,在实际应用中最好使用预处理后的TF-IDF值矩阵作为输入。
我们假定对应的主题数为2,则通过SVD降维后得到的三矩阵为:
从矩阵Uk我们可以看到词和词义之间的相关性。而从Vk可以看到3个文本和两个主题的相关性。大家可以看到里面有负数,所以这样得到的相关度比较难解释。
4. LSI用于文本相似度计算
在上面我们通过LSI得到的文本主题矩阵可以用于文本相似度计算。而计算方法一般是通过余弦相似度。比如对于上面的三文档两主题的例子。我们可以计算第一个文本和第二个文本的余弦相似度如下 :
sim(d1,d2)=(?0.4945)?(?0.6458)+(0.6492)?(?0.7194)(?0.4945)2+0.64922(?0.6458)2+(?0.7194)2
5. LSI主题模型总结
LSI是最早出现的主题模型了,它的算法原理很简单,一次奇异值分解就可以得到主题模型,同时解决词义的问题,非常漂亮。但是LSI有很多不足,导致它在当前实际的主题模型中已基本不再使用。
主要的问题有:
1) SVD计算非常的耗时,尤其是我们的文本处理,词和文本数都是非常大的,对于这样的高维度矩阵做奇异值分解是非常难的。
2) 主题值的选取对结果的影响非常大,很难选择合适的k值。
3) LSI得到的不是一个概率模型,缺乏统计基础,结果难以直观的解释。
对于问题1),主题模型非负矩阵分解(NMF)可以解决矩阵分解的速度问题。对于问题2),这是老大难了,大部分主题模型的主题的个数选取一般都是凭经验的,较新的层次狄利克雷过程(HDP)可以自动选择主题个数。对于问题3),牛人们整出了pLSI(也叫pLSA)和隐含狄利克雷分布(LDA)这类基于概率分布的主题模型来替代基于矩阵分解的主题模型。
回到LSI本身,对于一些规模较小的问题,如果想快速粗粒度的找出一些主题分布的关系,则LSI是比较好的一个选择,其他时候,如果你需要使用主题模型,推荐使用LDA和HDP。
H. Amazon推荐系统是如何做到的
亚马逊使用了哪些信息进行推荐:
1)当前浏览品类
2)与当前商品经常一同购买的商品
3)用户最近浏览记录
4)用户浏览历史(长期)中的商品
5)用户浏览历史(长期)相关的商品
6)购买相同商品的其它用户购买的物品
7)已购商品的新版本
8)用户购买历史(如近期购买商品的互补品)
9)畅销商品
2、推荐系统模型:U x S → R
1)U是用户矩阵
2)S是物品矩阵
3)R是用户对物品的喜爱程度,推荐系统就是基于现有的信息填补R矩阵
3、常用推荐算法
1)基于内容:易实现,效果好,但是如何获得一个物品的内容、相似度如何定义等有些情况下会较难把握
2)协同过滤:基于物的协同过滤与基于人的协同过滤
3)矩阵分解(SVD):用户-物品评分矩阵A很大且稀疏,将A分解为用户矩阵(用户潜在因子)和物品矩阵(物品潜在因子),目标是这两个矩阵的乘积尽可能接近R。缺点是只利用了评分信息,忽略了用户属性和物品属性
4)因子分解机(FM):将SVD推广到多类潜因子的情况,如分解为 用户、物品、用户性别、用户年龄、物品价格 等多个因子,允许因子之间有相关关系(如下图,方程前半部分是线性回归,后半部分加入了两两因子间关系)
5)深度学习:训练深度神经网络,输入用户id,输出层做softmax,得到对每个物品id的权重
6)机器学习排序
7)探索与利用:先对用户聚类(如分为abcde五类),随机对a中的用户1和b中的用户2推荐电影,如果用户1没点击,2点击了,说明b类用户可能对该电影更感兴趣。
8)集成:对上述多种方法的ensemble
I. 协同过滤中als算法输出两个分解矩阵u*v什么意思
在本文中矩阵来用斜体大自写字母表示(如:R),标量用小写字母表示(如:i,j)。给定一个矩阵R,
Rij表示它的一个元素,Ri.表示矩阵R的第i行,R.j表示矩阵R的第j列,RT
表示矩阵R的转置。R-1
表示矩阵R的逆。在本文中给定的矩阵R表示具有m个用户、n个对象的评分矩阵,矩阵U、
V分别表示用户和推荐对象的特征矩阵