A. 炼金废水处理不当会有什么处罚
难处理的黄金冶炼厂废水的处理方法
发布时间:2018-4-28 17:58:30 中国污水处理工程网
摘要
本发明公开了一种对高盐、氨氮和难生物降解的黄金冶炼厂废水的处理方法,该方法主要采用了脱盐预处理、两段分置蒸发、生化处理等工艺流程。此工艺处理过程采用成熟可靠的技术,具有安全高效、无二次污染,兼具回收有价物料、资源综合利用、成本可控的特点,处理水质达到了一级排放标准与水回用标准。本发明将几种处理技术相结合具有显著的增益效果,突破了原有处理工艺与现有处理方法的技术瓶颈,有效解决了高盐复杂废水难降解的问题,具有良好的环保与经济效益。
权利要求书
1.一种含高盐、氨氮和难生物降解的黄金冶炼厂废水的处理方法,包括如下步骤:
1)原水混合:将冶炼生产过程产生的酸洗废液、电解贫液、开路输碳、洗碳废水混合, 使混合废水pH值控制在2-5,将混合后产生的沉淀过滤,滤渣压滤、干化后填埋, 滤液进入处理步骤2);
2)对步骤1)处理后液投加氢氧化钠,调节pH6~11,并投加生物絮凝剂20~500ppm与 碳酸钠500~2000ppm;搅拌反应10~90min、过滤,滤渣焚烧填埋或者回收有价金属, 滤液进入处理步骤3);
3)将步骤2)上清液输送至一段汽提环节,提供一初始加热源,将液相体系的温度提升 至60~80℃,同时投加少量NaOH控制初始pH值在11.5±0.5;汽提装置容器底部设 曝气装置,外接空压机,控制气液体积比为2000~4000:1;在上述条件下曝气1~4h;
4)将步骤3)处理后液进行二段蒸发,采用单效或者二效蒸发实现盐水分离;蒸发产生 的蒸汽返回至步骤3)作为热交换加热源,取代初始加热源;蒸汽通过热交换持续将 步骤3)的上清液液相体系的温度提升至60~80℃,通过热交换后的蒸汽冷凝进入步 骤5)生化处理环节;蒸发之后的浓缩液冷却,得到无机盐结晶,冷却上清液与步骤 3)处理后液混合循环返回二段蒸发;
5)根据氨氮的含量,按C:N:P=100:4-6:0.5-1.5的比例投加生物营养源,污泥浓度控制在 2000~4000mg·L-1,溶解氧DO=1~2mg·L-1;以成熟的硝化污泥作为菌源,对氨氮进行 同步硝化反硝化处理。
2.根据权利要求1所述的一种高盐、氨氮和难处理的黄金冶炼厂废水的处理方法,其特 征在于:所述的黄金冶炼厂废水,盐度TDS=5~30wt%、[NH3-N]=3000~30000mg·L-1, COD=100~1000mg·L-1。
3.根据权利要求1所述的一种含高盐、氨氮和难生物降解的黄金冶炼厂废水的处理方法, 其特征在于:步骤1)采用过滤精度为0.5μm的陶瓷滤板过滤。
4.根据权利要求1所述的一种高盐、氨氮和难处理的黄金冶炼厂废水的处理方法,其特 征在于:步骤5)的生化法处理过程以成熟的硝化污泥作为菌源,以葡萄糖作为微生物碳源, 采用序批式处理方法。
5.根据权利要求1所述的一种高盐、氨氮和难处理的黄金冶炼厂废水的处理方法,其特 征在于:步骤5)通过曝气装置的分布在反应容器内实现微生物对氨氮的同步硝化反硝化。
说明书
一种高盐、氨氮和难处理的黄金冶炼厂废水的处理方法
技术领域
本发明涉及了一种对含高盐、氨氮和难生物降解的黄金冶炼厂废水的处理方法,属于环 保水处理领域。
背景技术
在黄金精炼的解吸、电积、提纯的工艺过程中产生了以高盐度、污染物成分复杂、直接 生物降解可行性几乎等于零为特征的难处理废水,行业废水排放标准要求水回用率≥80%,在 循环回用的过程中盐度不断累积,其含盐量TDS≥8wt%。一方面,高盐度的存在,提高了废 水的渗透压与粘度,降低了氧化剂在废水中的扩散系数;另一方面,废水中含有稳定的金属 络合物,常规氧化剂的氧化电位无法对其进行直接分解,是此类废水难处理的主要原因。
某黄金冶炼厂原有处理工艺为“碱中和+硫化沉铜+碱氯法除氨氮”,该方法在初期可以降 解氨氮与COD,实现废水的达标排放,一段时间后随着盐度累积,处理效果不断下降,同时 产生了大量废气、废渣等二次污染。
经查新,现有文献与专利中针对高盐废水的主要处理方法有:(1)生化法:筛选、培养 嗜盐菌实现生化处理,同时施加各种生物强化方法;(2)高压膜分离组合工艺;(3)疏水性 膜蒸发工艺;(4)高级氧化方法,如电化学氧化法、催化氧化方法。但以上方法各有不足之 处。
发明内容
本发明的目的在于克服背景技术高盐废水难处理的缺陷,提供一种高盐、氨氮和难处理 的黄金冶炼厂废水的处理方法,本发明方法包括如下步骤:
一种高盐、氨氮和难处理的黄金冶炼厂废水的处理方法,包括如下步骤:
(1)原水混合:将冶炼生产过程产生的酸洗废液、电解贫液、开路输碳、洗碳等废水混 合,使废水水质稳定,并将pH值控制在2-5,将混合后产生的沉淀过滤,滤渣压滤、干化后 填埋,滤液进入步骤2);
(2)对步骤(1)处理后液投加氢氧化钠,调节pH6~11,并投加复合生物絮凝剂 20~500ppm与碳酸钠500~2000ppm;搅拌反应10~80min、过滤,滤渣焚烧填埋或者回收有价 金属,滤液进入步骤3);
(3)将步骤(2)上清液输送至一段汽提环节,提供一初始加热源,将液相体系的温度 提升至60~80℃,同时投加少量NaOH控制初始pH值在11.5±0.5;汽提装置容器底部设曝气 装置,外接空压机,控制气液体积比为(2000~4000):1;在上述条件下曝气1~4h;
(4)将步骤(3)处理后液进行二段蒸发,采用单效或者二效蒸发实现盐水分离;蒸发 产生的蒸汽返回至步骤3)作为热交换加热源,取代初始加热源;蒸汽通过热交换持续将步 骤3)的上清液液相体系的温度提升至60~80℃,通过热交换后的蒸汽冷凝进入步骤5)生化 处理环节;蒸发之后的浓缩液冷却结晶,冷却上清液与步骤(3)处理后液混合循环返回二段 蒸发;
(5)根据氨氮的含量,按C:N:P=100:4-6:0.5-1.5的比例投加生物营养源,污泥浓度控制 在2000~4000mg·L-1,溶解氧DO=1~2mg·L-1;以成熟的硝化污泥作为菌源,对氨氮进行同步 硝化反硝化处理。
所述的难降解的黄金冶炼厂废水,主要特征为高盐度(盐度TDS≥8wt%)、高氨氮 ([NH3-N]=3000~30000mg·L-1,)、COD=300~1000mg·L-1,难生物降解。
所述的混凝剂为下列之一:以各类表面具有絮凝活性的细菌、霉菌、放线菌、球菌、酵 母菌等微生物中的一种或多种为原料制得的两性生物絮凝剂,与现有的无机混凝剂、人工合 成的高分子絮凝剂相比,具有环保、可自然降解、无二次污染的优点。
步骤(5)生化处理优选以成熟的硝化污泥作为菌源,以液态葡萄糖作为微生物碳源,采 用序批式处理的方法。
步骤(5)优选采用SBR运行方式,通过曝气装置的合理分布在反应容器内实现微生物 对氨氮的同步硝化反硝化。
本发明针对高盐度、高难降解的黄金冶炼厂废水开发出一套工艺成熟可靠、过程简单、 成本可控、行之有效的工艺流程。
步骤(1)中,原水混合有调节水质的作用,在本发明中所针对的黄金冶炼厂废水尤其是 不可缺少的一环。其中提纯废液是pH≤1极端酸性废水;电解废水是pH≥12的极端碱性废水, 混合废水pH值为2-5(优选为3~4),采用优选采用滤精度为0.5μm的陶瓷滤板或者同等精 度其它过滤设备对沉淀渣进行分离,泥饼直接外运填埋或者制砖,滤液进入预处理环节。
步骤(2)中,对步骤(1)处理后液投加生物絮凝剂(20~500ppm)、氢氧化钠(调节pH6~11)。 按比例投加碳酸钠(500~2000ppm),可以利用原水中含有的钙离子,生成的CaCO3沉淀。一 方面可以脱除硬度,另一方面可以作为生物絮凝剂的助凝剂,在生物絮凝剂等电点附近实现 快速沉降。滤渣过滤后可焚烧填埋或者回收有价金属。经过此步骤的处理,原水硬度≤50mg/L, 重金属脱除率≥80%,对氨氮去除率为10~20%,COD的去除率为20~50%。
步骤(3)中,将步骤(2)上清液输送至一段汽提环节,此工艺步骤的热源除初始热源 外,之后都来至步骤(4)二段蒸发的蒸汽,通过热交换将液相体系的温度提升至60~80℃, 同时投加少量NaOH控制初始pH值在11.5±0.5左右。汽提装置容器底部设曝气装置,外接 空压机,控制气液体积比为(2000~4000):1。在上述条件下曝气1~4h,直至氨氮氮大部分挥 发,再通过外接吸收装置对挥发氨氮进行吸收,所使用的吸收液优选为20~50wt%的硫酸。在 此过程中,水分的损失率约为1~3wt%,但对盐分的析出基本无影响。步骤(3)对氨氮去除 率为95~98%。剩余的[NH3-H]为50~200mg/l。在氨氮的汽提过程中,pH不断下降至7~9。
步骤(4)中,将步骤(3)处理后液进行二段蒸发。采用单效或者二效蒸发实现盐水分 离。对于≥8wt%的高盐废水,蒸发分离的水回收率可达到90~95%,通过热交换后冷凝进入生 化处理环节。浓缩液冷却上清液与步骤(3)处理后液混合循环返回二段蒸发。步骤(3)与 步骤(4)实现了氨氮去除、盐水分离的分段处理,同时有效的提高了热能的利用效率。步骤 4)出水水质[NH3-H]为30~150mg/l,COD≤50mg/L,电导率≤100μs.cm-1,后续处理方法优选 常规生化法处理。
步骤(5)中,根据氨氮的含量,按C:N:P=100:5:1的比例投加生物营养源,污泥浓度控 制在2000~4000mg·L-1,溶解氧DO=1~2mg·L-1。根据原水量较小、间歇排放的特点,以成熟 的硝化污泥作为菌源,采用SBR运行方式,通过曝气装置的合理分布可以在反应容器内实现 微生物对氨氮的同步硝化反硝化。采用该方法微生物驯化、繁殖迅速,启动时间仅需16~24 小时。营养源无需每日投加,待系统稳定后,根据运行情况定期按比例投加少量葡萄糖作为 碳源即可。此步骤水力停留时间HRT仅需3~5小时。生化处理后液[NH3-N]≤5mg·L-1, COD≤20mg·L-1,出水水质达到污水综合排放一级标准与中水回用标准,投资省,运行费用低。
本发明技术方案与背景技术方法的主要区别在于:
(1)处理对象为TDS≥8wt%的超高盐度废水,水质含盐率变化较大,对微生物的生长抑 制较明显。有中试结果表明生化法处理短期可能有效,但水质一旦发生变化(盐度变化 ≥2wt%),微生物无法适应渗透压的变化而失去降解活性。另一方面,高浓度无机盐带来的渗 透压对污染物具有“包裹覆盖”作用,导致以各类形式发生的氧化剂出现传质受阻的现象。
(2)高压膜组合工艺不适用于TDS≥8wt%的情况,否则会出现产水回收率偏低,能耗偏 高的情况。
(3)疏水性膜蒸发工艺在一定的条件与前提下可以实现氨氮、盐的分离。例如专利CN 102295378采用内压式中空纤维膜,在酸性条件下,冷凝侧抽真空的方式实现无机盐的提浓、 冷却、结晶后回收。但从内容上看出该方法或仅适用于初始含盐≤5wt%以下的废水。这种方 式存在的主要问题是在更高的初始高盐度环境下,水分的渗透蒸发使废水局部过饱和而形成 结晶,导致中空纤维膜内侧堵塞,同时必须定期排浓来解决膜表面浓差极化带来的渗透通量 下降的问题,这也是该方法的处理量维持在一个较低水平的原因。本发明与该专利不同之处 在于:氨氮不是以直接在废水中形成结晶沉淀,而是先从废水中分离,然后在新的液相环境 中源源不断地形成不饱和溶质体系,具有更为连续的可操作性。再例如CN1546393A使用高 浓度硫酸铵吸收膜另一侧的废水中的氨,实现了废水中氨氮的达标排放,但该发明内容未考 虑到高盐度环境对氨氮传质系数的影响,也没有说明该方法在高盐环境下对氨氮的脱除效果。
(4)高盐度废水含有电解质,故采用电化学氧化的方法直接氧化与间接氧化是理论可行 的,直接氧化生成的OH·具有高氧化电位,可以氧化废水中几乎所有还原性污染物质,但是 OH·发生数量少、存在时间短、使用成本高成为了限制其推广的技术瓶颈,另外,Cl2逸出带 来一些安全问题。其余的高级氧化法也存在各种问题而仅限于实验室研究阶段,工业应用较 为少见。
综上所述,本发明提供的联合处理方法解决了现有技术瓶颈与不足之处,能够切实有效 的处理各类高含盐废水,尤其是针对含盐浓度范围为8~25wt%的超高盐度废水与无机盐饱和 废水,实现重金属、COD、NH3-N等污染物的提标处理。
与背景中所述几种技术相比较,本发明技术对废水水质限制要求低,对各类高盐废水更 具普遍适应性。例如,当废水中不含氨氮时,一段汽提可作为多效蒸发中的一环继续工作, 设备不闲置,使用率高。
本发明的优点还在于:与"前置生化法+蒸发”路线为代表的技术相比,本发明技术无需进 行启动时间长的嗜盐菌提取与培养,避免了运行条件复杂、维护要求严格的高盐生化处理, 仅通过低含泥量、低能耗、底成本的常规生化法即可实现废水达标处理。与“蒸发+后置生化 法”的类似技术相比较,本发明通过“一段汽提+二段蒸发”两段分置优化,提高了热能的利用 效率,去除了95%以上的氨氮并资源化,再进行盐水分离,大幅降低了后续生化法的投资与 处理成本。
B. 含铜电镀废水应该怎样处理
采用化学中和法、混凝沉淀法处理含铜综合电镀废水,在对废水中的酸、碱进行中和的同时,铜离子形成氢氧化铜沉淀,然后再经固液分离装置去除沉淀物。
C. 电镀厂污水是如何处理的
电镀废水分为预处理废水、含氰废水、含铬废水、混排废水、其它废水回。一般预处理废水含答油,采用气浮等进行处理后可以直接排放;含氰废水通过二级氧化达到去除氰化物的效果,处理后与其它废水进行混合;含铬废水通过加入还原剂进行还原,进行pH调整,将其污染物沉淀后与其它废水进行混合;混排废水先进行除氰,后进行除铬,然后与其它废水进行混合;最后的混合废水加入混凝剂、絮凝剂并进行pH调整或进入生化处理系统,达标排放。希望万川环保对你有所帮助。
D. 电镀废水含什么成分,一般怎么处理
电镀废水中主要含有铬、锌、铜、镉、铅、镍等重金属离子以及酸、碱,尤其是在氰化电镀工艺中,废水中含有大量的氰化物. 这些污染物具有很大的毒性,并存在致癌的危险。
电镀废水的水质、水量与电镀生产的工艺条件、生产负荷、操作管理与用水方式等因素有关。电镀废水的水质复杂,成分不易控制,其中含有铬、镉、镍、铜、锌、金、银等重金属离子和氰化物等,有些属于致癌、致畸、致突变的剧毒物质。
废水特性
前处理
对于金属基体材料,其电镀的可分为:
1、物理处理(包括磨光、抛光、喷砂、滚光、刷光等)
2、化学处理(包括除油、除锈和侵蚀等)
3、电化学处理(包括电化学除油和电化学侵蚀等)
除油过程中常用碱性化合物如NaOH、Na2CO3、Na3PO4、Na2SiO3等,对于油污特别严重的零件有时还用煤油、汽油、丙酮、甲苯、三氯乙烯、四氯化碳等有机溶剂除油,再进行化学碱性除油。为去除某些矿物油,通常在除油液中加一定量的乳化剂,如OP乳化剂、AE乳化剂、三乙醇胺油酸皂等。因此除油过程中产生的清洗废水以及更新废液都是碱性废水,常含有油类及其它有机化合物。
酸洗除锈常用的有盐酸、硫酸,为防止镀件基体的腐蚀,常加入某些缓蚀剂如硫脲、磺化煤焦油、乌洛托品联苯胺等。酸洗除锈过程产生的清洗水一般酸度都较高,含有重金属离子及少量有机添加剂。
前处理废水是电镀废水处理中的重要组成部分,约占电镀废水总量的50%,废水中含有一定的盐份、游离酸、有机化合物等,组分变化很大,随镀种、前处理工艺以及工厂管理水平等而变。
镀层漂洗
镀层漂洗水是电镀作业中重金属污染的主要来源。电镀液的主要成分是金属盐和络合剂,包括各种金属的硫酸盐、氯化物、氟硼酸盐等以及氰化物、氯化铵、氨三乙酸、焦磷酸盐、有机膦酸等。除此之外,为改善镀层性质,往往还在镀液中添加某些有机化合物,如作为整平剂的香豆素、丁炔二醇、硫脲,作为光亮剂的有糖精、香草醛、苄叉丙酮、对甲苯磺酰胺、苯磺酸等。因此镀件漂洗废水中除含有重金属离子外,还含有少量的有机物。漂洗废水的排放量以及重金属离子的种类与浓度随镀件的物理形状、电镀液的配方、漂洗方法以及电镀操作管理水平等诸多因素而变。特别是漂洗工艺对废水中重金属的浓度影响很大,直接影响到资源的回收和废水的处理效果。
镀层后
镀层后处理主要包括漂洗之后的钝化、不良镀层的退镀以及其他特殊的表面处理。后处理过程中同样产生大量的重金属废水。一般来说,常含有Cr6+ 、Cu2+、Ni2+、Zn2+、Fe2+等重金属;H2SO4、HCl、H3BO3、H3PO4、NaOH、Na2CO3等酸碱物质;甘油、氨三乙酸、六次甲基四胺、防染盐、醋酸等有机物质。总的来说,这类镀层后处理废水复杂多变,水量也不稳定,一般都与混合废水或酸碱废水合并处理。
电镀废液
电镀、钝化、退镀等电镀作业中常用的槽液经长期使用后或积累了许多其他的金属离子,或由于某些添加剂的破坏,或某些有效成分比例失调等原因而影响镀层或钝化层的质量。因此许多工厂为控制这些槽液中的杂质在工艺许可的范围内,将槽液废弃一部分,补充新溶液,也有的工厂将这些失效的槽液全部弃去。这些废弃的各种浓度液一般重金属离子浓度都很高,积累的杂质也很多,不仅污染物的种类不同,而且主要污染物的浓度、其他金属杂质离子的浓度以及溶液介质也都往往有较大的差异。这些差异决定了这些废水的处理技术上的多样性和工艺上的特殊性。
电镀废水处理
目前普遍采用的工艺一般是物化法处理。处理方法较多,有效的也不少,但可以做到整体达标的并不多。
电镀和金属加工业废水中锌的主要来源是电镀或酸洗的拖带液。污染物经金属漂洗过程又转移到漂洗水中。酸洗工序包括将金属(锌或铜)先浸在强酸中以去除表面的氧化物,随后再浸入含强铬酸的光亮剂中进行增光处理。该废水中含有大量的盐酸和锌、铜等重金属离子及有机光亮剂等,毒性较大,有些还含致癌、致畸、致突变的剧毒物质,对人类危害极大。因此,对电镀废水必须认真进行回收处理,做到消除或减少其对环境的污染。
电镀废水处理设备由调节池、加药箱、还原池、中和反应池、pH调节池、絮凝池、斜管沉淀池、厢式压滤机、清水池、气浮反应,活性炭过滤器等组成。
1.气浮法
气浮法是向水中通入空气,产生微小气泡,由于气泡与细小悬浮物之间黏附,形成浮选体,利用气泡的浮升作用,上浮到水面,形成泡沫或浮渣,从而使水中的悬浮物质得以分离。按照气泡产生方式的不同,可分为充气气浮、溶气气浮和电解气浮三类。
气浮法是代替沉淀法的新型固液分离手段,1978年上海同济大学首次应用气浮法处理电镀重金属废水处理获得成功。随后,因处理过程连续化,设备紧凑,占地少,便于自动化而得到了广泛的应用。
气浮法固液分离技术适应性强,可处理镀铬废水、含铬钝化废水以及混合废水。不仅可去除重金属氢氧化物,而且可以去除其他悬浮物、乳化油、表面活性剂等。气浮法用于处理镀铬废水的原理是:在酸性的条件下硫酸亚铁和六价铬进行氧化还原反应,然后在碱性条件下产生絮凝体,在无数微细气泡作用下使絮凝体浮出水面,使水质变清。
2.离子交换法
离子交换法主要是利用离子交换树脂中的交换离子同电镀废水中的某些离子进行交换而将其除去,使废水得到净化的方法。
国内用离子交换技术处理电镀废水是从20世纪60年代开始进行试验研究的,到70 年代末,因为迫切需要解决环境污染问题,这一技术得到了很大发展,当前已成为处理电镀废水和回收某些金属的有效手段之一,也是使某些镀种的电镀废水达到闭路循环的一个重要环节。但是采用离子交换法的投资费用很高,系统设计和操作管理较为复杂,一般的中小型企业难以适应,往往由于维修、管理等不善而达不到预期的效果,因此,在推广应用上受到了一定的限制。
当前,国内对含铬、含镍等电镀废水采用离子交换法处理较为普遍,在设计、运行和管理上已有较为成熟的经验。经处理后水能达到排放标准,且出水水质较好,一般能循环使用。树脂交换吸附饱和后的再生洗脱液经电镀工艺成分调整和净化后能回用于镀槽,基本实现闭路循环。另外,离子交换法也可用于处理含铜、含锌、含金等废水。
3.电解法
电解法主要是使废水中的有害物质通过电解过程在阳、阴两极上分别发生氧化和还原反应,转化成无害物质;或利用电极氧化和还原产物与废水中的有害物质发生化学反应,生成不溶于水的沉淀物,然后分离除去或通过电解反应回收金属。国内在20世纪60年代开始用电解法处理电镀含铬废水,70年代末对含银、铜等废水进行实验研究,回收银、铜等金属,取得了很好的效果。
电解法处理电镀废水一般用于中、小型厂,其主要特点是不需投加处理药剂,流程简单,操作方便,占生产场地少,同时由于回收的金属纯度高,用于回收贵重金属有很好的经济效益。但当处理水量较大时,电解法的耗电较大,消耗的铁极板量也较大,同时分离出来的污泥与化学处理法一样不易处置,所以已较少采用。
4.萃取法
萃取法是利用一种不溶于水而能溶解水中某种物质(称溶质或萃取物)的溶剂投加入废水中,使溶质充分溶解在溶剂内,从而从废水中分离除去或回收某种物质的方法。萃取操作过程包括混合、分离和回收三个主要工序。
几种典型的工艺流程
☆自来水----水泵----多介质过滤器----活性炭过滤器----自动加药装置----保安过滤器----高压泵----一级反渗透----中间水箱----高压泵----二级反渗透----纯水箱----纯水泵 新工艺
☆漂洗水----水箱----水泵----多介质过滤器----保安过滤器----超滤----电镀液回收桶
☆漂洗水----水箱----水泵----多介质过滤器----保安过滤器----超滤----电镀液回收桶----高压泵----反渗透----清洗水箱
E. 铜厂污水处理对人有危害吗
纯水一号水处理为你解答:
肯定对人体有危害,铜厂污水中含有部分微量重金属,另外也会散发一定的有害气味。主要是看防护措施怎么样?
F. 电镀废水怎么处理
电镀厂(或车间)排放的废水和废液,如镀件漂洗水、废槽液、设备冷却和地面冲洗水等,其水质随生产工艺的不同而不同,一种废水中往往含有不止一种有害成分,如氰化镀镉废水中既含氰又含镉。另外,一般的镀液中常含有有机添加剂。
在电镀和金属加工行业的废水中,锌的主要来源是电镀或酸洗拖泥带水。通过金属洗涤过程将污染物转移到洗涤水中。酸洗工序是先将金属(锌或铜)浸入强酸中,以除去表面的氧化物,然后将其浸入含有强铬酸的光亮剂中,使其增光。
污水中含有大量的盐酸、锌、铜等重金属离子和有机光亮剂等,其毒害程度较高,有些有毒物质具有致癌、致畸、致突变等作用,严重危害人类健康。对电镀废水必须认真回收利用,以达到消除或减少电镀废水对环境的污染。
化学反应过程
将一种化学药剂投入电镀废水中,使废水中的污染物氧化,还原化学反应或产生混凝,再与水中分离,使废水净化后排放,达到排放标准。针对含污染物的废水,可采用不同的处理工艺进行处理。例如:在含氰废水中投加氧化剂(氰化镀铜、镉、银、合金等)(可选择次氯酸钠、漂白粉、漂白精、液氯等);在含铬废水中投加还原剂(可选择亚硫酸氢钠、水合肼、硫酸亚铁等);在碱性锌酸盐镀锌废水中投加混凝剂(可选择亚硫酸氢钠、水合肼、硫酸亚铁等);在酸、碱废水中投加中和药剂等。
通过沉淀、气浮、过滤等固液分离措施,从废水中分离出金属氢氧化物,使废水达到排放标准,分离出的污泥可根据其特性,进行综合利用或无害化处理,防止二次污染。化学方法处理电镀废水属于传统的处理方法,处理效果稳定,成本较低(约每米3分水处理0.2——0.5元),操作管理方便,但处理后产生的污泥需妥善处置,对无回收利用价值的电镀废水,宜采用化学方法处理。
离子化交换法
电镀废水用离子交换法处理,需要根据水质的不同选择不同的处理工艺,废水中的金属离子通过阳树脂交换去除,阴离子通过阴树脂交换去除。经处理后的水为初级纯水回流到漂洗槽,树脂再生后的再生液再回流到镀槽,实现了电镀废水的闭路循环系统,无外排废水。当回收的金属溶液浓度或纯度达不到使用要求时,必须加入浓缩或净化装置,以确保回收的金属废液全部返回镀槽中使用。
在电镀含铬废水处理中,宜采用酸性阳柱与三阴柱串联循环全饱和初级纯水的基本工艺流程,以实现铬酸回收与水循环利用。镀镍厂废水采用双阳柱串联全饱和和一级纯水循环的基本工艺流程为宜。硫酸镍的回收与水的循环利用。对氰化镀铜、铜锡合金废水,宜采用除氰阴柱与除铜阳柱串联的基本工艺流程,使钢液中回收的氰化钠、氰化钠、水得到回收。碳酸钾镀锌废水宜采用双阳柱串联、全饱和和初纯水循环的基本工艺流程,实现回收氯化锌和水的循环。
电解法处理
含氰镀银、无氰镀银及酸性镀铜废水可采用电解法处理,在镀银生产线的一级漂洗槽旁设置回收利用的银电解槽,采用无隔膜单极式电解槽,在电解过程中,废水中的银离子沉积在阴极,定期回收金属银。对含氰镀银废水,在电解回收银的同时,还进行了电解破氰,处理后的水返回一级漂洗池,最后一级漂洗池用流动水进行漂洗,漂洗水可直接排出。金属铜也可通过同一工艺处理酸性镀铜废水。
本设备用于电解回收金属,阴极材料一般可采用不锈钢,阳极材料应采用不溶性阳极(如钛镀锌、钛镀二氧化钌、石墨等),电解槽电源可采用直流电源或脉冲电源。近年来有学者通过研究,提出了一系列电镀废水处理技术,按照统一的数学模型进行评价,综合考虑技术、经济、环境、资源、能源等多方面因素,使技术选择的依据和方法具有科学性,是一种可取的方法。
本工艺是对电镀厂废铁屑进行内部电解处理的工艺,主要是以活化后的工业废铁屑为原料对废水进行净化,当废水与填料接触后,会发生电化学反应,产生化学反应及物理作用,包括催化、氧化、还原、置换、共沉、絮凝、吸附等综合作用,去除废水中的各种金属离子,使废水得到净化。
对化工、电解等行业需要使用的中转储存容器,一般选用耐酸碱腐蚀材质的储罐储存和二次回收,电镀厂污水废液的储存基本上采用PE聚乙烯塑料储罐材料,经济实用,储存方便。
G. 电缆厂若是废气污水处理不当会有什么影响
(1)对人体健康的危害:人需要呼吸空气以维持生命。一个成年人每天呼吸大约2万多次,吸入空气达15~20立方米。因此,被污染了的空气对人体健康有直接的影响。 大气污染物对人体的危害是多方面的,主要表现是呼吸道疾病与生理机能障碍,以及眼鼻等粘膜组织受到刺激而患病。 (2)对植物的危害:大气污染物,尤其是二氧化硫、氟化物等对植物的危害是十分严重的。当污染物浓度很高时,会对植物产生急性危害,使植物叶表面产生伤斑,或者直接使叶枯萎脱落;当污染物浓度不高时,会对植物产生慢性危害,使植物叶片褪绿,或者表面上看不见什么危害症状,但植物的生理机能已受到了影响,造成植物产量下降,品质变坏。 (3)对天气和气候的影响:大气污染物对天气和气候的影响是十分显著的,可以从以下几个方面加以说明: ①减少到达地面的太阳辐射量:从工厂、发电站、汽车、家庭取暖设备向大气中排放的大量烟尘微粒,使空气变得非常浑浊,遮挡了阳光,使得到达地面的太阳辐射量减少。据观测统计,在大工业城市烟雾不散的日子里,太阳光直接照射到地面的量比没有烟雾的日子减少近40%。大气污染严重的城市,天天如此,就会导致人和动植物因缺乏阳光而生长发育不好。 ②增加大气降水量:从大工业城市排出来的微粒,其中有很多具有水气凝结核的作用。因此,当大气中有其他一些降水条件与之配合的时候,就会出现降水天气。在大工业城市的下风地区,降水量更多。 ③下酸雨:有时候,从天空落下的雨水中含有硫酸。这种酸雨是大气中的污染物二氧化硫经过氧化形成硫酸,随自然界的降水下落形成的。硫酸雨能使大片森林和农作物毁坏,能使纸品、纺织品、皮革制品等腐蚀破碎,能使金属的防锈涂料变质而降低保护作用,还会腐蚀、污染建筑物。 ④增高大气温度:在大工业城市上空,由于有大量废热排放到空中,因此,近地面空气的温度比四周郊区要高一些。这种现象在气象学中称做"热岛效应"。 针对这些问题,现在也有很多的方法来改善空气质量。你可以参考 http://www.huanbao.com/esite/newsDetails1871.htm ,希望对你有帮助
记得采纳啊
H. 未处理的污水的味道主要是什么味道味道的主要成分是什么
硫化氢,氮氧化物(二氧化氮等),微量臭氧,有机可挥发气体等。
I. 铜泥厂对于一旁居民是否有危害,井水是否会被污染
据你所说,正常情况下没有问题,但是在下雨天有可能造成微量铜泥中的杂质溶解后渗透到地下水或附近水源中。总体影响极小。
J. 工厂污水没有处理好被抓了,一般怎么样处理
罚款,停产整顿到符合排放标准了才能恢复生产