1. 胶水厂废水如何有效处理
接触抄到化工厂,胶水厂家废水采用宽宝溶剂回收机,集中分批回收再利用。由于环保意识加强有规模的在前几年都强制要求上设备技术更新了。目前小作坊式的化工厂家也开始规范化经营。化工废料、废水再利用这个趋势利好。
2. 酸中和法制备硅溶胶,用硫酸加硅酸钠中和,用乙醇洗去钠离子,中和过程的最适温度是多少啊, 在线等,急求
离子交换一般用强酸型阳离子交换树脂与稀释后的水玻璃进行离子交换,以除去水玻璃中的钠离子和其他阳离子杂质制得聚硅酸溶液。再用阴离子交换树脂进行离子交换,除去溶液中的阴离子杂质,制得高纯的聚硅酸溶液。此时得到的聚硅酸溶液稳定性较差,溶液偏弱酸性,可用少量的NaOH或其他试剂作为稳定剂,将溶液的pH值调节在8.5-10.5的碱性范围内,该范围是制得溶胶溶液的稳定区域,必要时在低温(4-10℃)下保存。
1.酸性硅溶胶的制备工艺
1.1.离子交换法
该法是目前研究最多、技术最成熟的制备工艺。该种方法采用水玻璃为原料,通常可分为三个步骤:制备活性硅酸,制备碱性硅溶胶和阳离子交换。常用制备工艺如下:将市售水玻璃通过稀释并与阳离子交换树脂进行交换,得到活性硅酸;将硅酸用碱液处理至碱性;再将该碱性的硅酸溶液进行加热缩合反应并浓缩,制得碱性硅溶胶;最后将碱性硅溶胶经过阳离子树脂进行阳离子交换,同时加入适量的酸进行调节,得到相应酸值下的酸性硅溶胶。
早在1941年,美国人Bird在其专利发明中提到利用离子交换法制备酸性硅溶胶,即将水玻璃溶液经过氢型的阳离子交换柱,使水玻璃中的碱金属同氢发生交换,其产品是高纯度酸性硅溶胶,pH 为2.0~4.0。此后Albrecht和William L改进了Bird 制备酸性硅溶胶的工艺,提出采用混合树脂床来生产更适合使用的酸性硅溶胶。
上世纪80年代,多数硅溶胶生产厂家均沿袭离子交换法制备酸性硅溶胶。如国内的湖北美华日用化工厂从1985年7月就开始着手研制酸性硅溶胶,他们采用离子交换法用自产碱性硅溶胶制备出酸性硅溶胶,其具体工艺是:将所需碱性硅溶胶稀释、过滤后,向其中投入氢型阳离子交换树脂,边投入边搅拌,当pH到达2~3时,停止投入树脂,静置让其彻底交换。用上述方法制得的酸性硅溶胶中二氧化硅的含量为大于10 %,粒径为10~20 nm,pH达2~3,稳定期为3~6个月。
许念强等将制得的活性硅酸陈化24~48h后再制成碱性硅溶胶,然后与强酸型阳离子树脂得到酸性硅溶胶。他们分析了pH、二氧化硅粒径、电解质盐浓度对酸性硅溶胶稳定性的影响,强调要制备高浓度、高稳定性、低黏度的酸性硅溶胶,首先要提高二氧化硅颗粒的粒径。
离子交换法的优点是根据不同的工艺组合可合成不同性能的硅溶胶,缺点是起始原料水玻璃的浓度不能很高,致使后面浓缩过程时间长,能耗大,而且再生离子交换树脂时产生的大量废水需加以处理。
1.2 电解电渗析法
该法制备硅溶胶是一种电化学方法。其原理是硅酸钠在水溶液中发生水解反应:
Na2H2SiO4 + H2O→2Na+ + H3SiO4– + OH–
随着反应的进行,在电场的作用下槽内的离子会定向迁移,由离子交换膜滤出杂质离子;当阳极室内生成的硅酸浓度大于其溶解度时就会发生缩聚反应,生成硅溶胶。通过调节槽内pH即可得到相应的硅溶胶。该方法制备硅溶胶时,要注意控制电渗析反应的电流密度、温度等反应条件。
日本的OKETA YUTAKA在其专利中提到利用离子交换膜电渗析法来制备脱盐酸性硅溶胶。在制备过程中,电渗析器内会交替形成一个脱盐室和一个浓缩室;用阴、阳离子交换膜将阳极和阴极分开,然后进行电渗析。脱盐室中水溶液的温度保持在5~20 ℃。
电解电渗析法是用酸中和硅酸钠水溶液,经陈化后,再通过半透膜渗析钠离子。该方法缺点是渗析所需时间太长,不适于工业化生产。
1.3.分散法
该法是利用机械将SiO2微粒分散在水中制备硅溶胶的物理方法。具体步骤如下:量取定量的去离子水加入到塑料杯中,将其固定于高速分散机上。开动高速分散机,将定量的气相SiO2粉末连续加到杯中。SiO2 粉末加完后,补加定量的去离子水,调节高速分散速度,经过一定时间制得SiO2水分散液。将SiO2水分散液陈化过夜后,高速分散并加入添加剂,继续高速分散数小时,用300目滤网过滤得到性能良好的硅溶胶。
傅朝春利用该方法制备的酸性硅溶胶能够有效替代微生物用于人、禽畜粪便、垃圾处理,可祛除恶臭、制备高效有机肥料。其具体工艺是:将一定浓度的硫酸和 200 目以下的分散剂SiO2置于一个塑料容器内进行搅拌;用NaOH调节pH为2~4;采用金属板做电极,联结一整流电源,置于上述塑料容器中通电;施以100 V电压,通电 450 mA的电流2~5 min;切断整流电源后,搅拌一段时间,等反应物呈胶状就停止搅拌。利用该方法制得的酸性硅溶胶中SiO2 的含量为25 %~35 %,粒径为1~12 nm。
由于该方法所制的酸性硅溶胶是用作特殊用途的,因而没有考虑某些杂质离子如Na+、SO42–等对其纯度的影响,故该方法对于酸性硅溶胶的制备不具有普遍适应性。
1.4.单质硅热氧化法
有研究表明,硅的热氧化物的生长通常是在900~1200℃之间的石英管中进行,或是在干燥氧气条件下,或是在含有水蒸气的湿氧条件下,或是让干燥的氧气和氮气通过接近沸腾的水所形成的蒸汽中。资料介绍,单质硅在湿氧或是水蒸汽氛围中的氧化比干燥氧气中进行得快。热氧化的总反应是:
Si + O2(gas) → SiO2 Si + 2H2O(gas) → SiO2 + 2H2(gas)
在干燥的氧化过程中第一个反应占主要地位,而在湿的氧化过程中第二个反应占主要地位。
2.酸性硅溶胶的胶团结构及其稳定性研究
我国早在1958年就开始了硅溶胶的研制和生产,如南京大学配位化学研究所、兰州化学工业公司化工研究院、青岛海洋化工厂等都从事了相关的研究和开发,但品种和产量都与国外有很大差距,尤其是酸、碱性硅溶胶的比例不合理,这样的局面到20世纪80年代才有所改善。酸性硅溶胶处于亚稳状态,在放置过程中会逐渐发生胶凝作用,稳定期一般为3~6个月,较碱性硅溶胶的稳定期短。因此,如何提高酸性硅溶胶的稳定性就成为众多研究者关心的问题。
2.1.酸性硅溶胶的胶团结构
酸性硅溶胶又称硅酸水溶胶,是高分子SiO2微粒分散于水中的胶体溶液,无臭、无毒,分子式可表示为mSiO2·nH2O(式中:m,n很大,且m<<n),外观为乳白色半透明液体。硅溶胶粒子的内部结构为硅氧烷键(-Si-O-Si),表面层由许多硅氧醇基(-SiOH)和羟基(-OH)所覆盖。由于硅溶胶中SiO2颗粒表面含大量羟基,具有较大的反应活性,因此被广泛用于纺织、橡胶、陶瓷、涂料、精密铸造、耐火材料、造纸、石油化工、电子等行业。
胶团结构如图1所示:当A+为Na+等金属离子时,表示碱性硅溶胶;当A+为H+时,表示酸性硅溶胶。在运动过程中,由胶核和吸附层组成的胶粒作为一个整体运动,这样扩散层与周围的电解质可以形成一种动态平衡来维持硅溶胶的稳定。
2.2 酸性硅溶胶稳定性的影响因素
2.2.1.pH对酸性硅溶胶稳定性的影响
硅溶胶的稳定性与pH之间的密切关系如图2所示。从图2可以看出,在低pH(<2.0)区域内,溶胶稳定性随pH的升高略有上升;在中部pH(2<pH<4)区域内,酸性硅溶胶具有一个较为宽阔的亚稳定区域,为制备酸性硅溶胶的可能性提供现实依据;在pH接近5~6的区域范围内时,硅溶胶的稳定性迅速下降。
王少明等认为pH与硅溶胶的稳定性有直接关系。经测定硅溶胶 pH 在2~10之间时,粒子的ξ电位为负值;pH 在2以下时,粒子的ξ电位为正值;pH=2 时为“0”电位;pH 在8.5~10范围内,为稳定区;pH>10时,硅溶胶粒子溶解为硅酸盐;pH 在4以下时为介稳区;pH=2 时,为最高介稳态。根据制备的高纯硅溶胶的特点,调节硅溶胶的pH在2.5左右,可以保持溶胶处于高介稳态,在室温下可存放2年而不凝胶。硅溶胶不稳定的主要表现之一就是发生凝胶化。
贾光耀等提到溶胶凝胶动力学可以人为控制。他们通过研究发现,硅溶胶的黏度、ξ电位以及凝胶化过程与pH有密切的关系,凝胶化过程发生在pH 为4~7之间。
2.2.2 电解质对酸性硅溶胶稳定性的影响
电解质对硅溶胶的稳定性也有一定的影响,且与pH有密切关系。因为盐类放出离子,与硅溶胶的表面电荷结合,进入紧密层的反离子增加,使分散层变薄;当电解质浓度增加到一定程度时,分散层厚度为零,引起粒子的集合而凝胶化。凝胶化的程度与使用的电解质种类、浓度、温度等因素有关。有资料报导,在pH<3.5时,电解质对硅溶胶的稳定性影响相对较小。
J. L. Trompette等提出当存在两种不同的补偿离子时,经浓缩的硅溶胶在pH为9.8时极易发生凝胶,并对凝胶动力学进行了研究。研究结果表明,离子特征对聚合动力学和溶胶—凝胶转化过程中凝胶显微结构有显著的影响。这归因于不同电解质的影响下临界凝结浓度不同。
而许念强等则认为,只有当SiO2粒子的粒径相对较小时,硅溶胶的稳定性才受到电解质盐浓度较大的影响,随着SiO2粒径增大,电解质盐浓度对硅溶胶的稳定性影响减弱。当硅溶胶中的含盐量降低到一定值时,电解质盐浓度在一定程度上不会构成制备酸性硅溶胶的主要影响因素。
杨靖等在研究了催化剂的种类、反应温度、反应时间、添加剂等因素对硅溶胶性能的影响时分析了电解质种类的影响效果:在[H+]相同的条件下,酸催化剂对溶胶粘度的影响为:
HF>HCl>HNO3>H2SO4>HAc ,对凝胶时间的影响为:HAc>H2SO4>HCl>HNO3>HF,几种溶胶固含量的大小为:H2SO4>HNO3>HCl>HAc,制备 SiO2 膜用硅溶胶较适合采用盐酸或硝酸作为催化剂。
2.2.3.粒径对酸性硅溶胶的影响
粒径是影响硅溶胶稳定的另一重要因素。硅溶胶粒子直径在一定范围内,粒径越均匀、分布范围越窄,稳定性越好。
许念强等在研究粒径对酸性硅溶胶的影响时提到,一定浓度下的酸性硅溶胶稳定性与SiO2粒径大小的关系呈现出一个斜“S”形,即在小粒径下,硅溶胶的稳定性相对很低,而随着粒径的增加,硅溶胶的稳定性迅速增强,并且粒径在10~20 nm内,硅溶胶稳定性近似与粒径大小成正比。
有学者经试验研究发现,将硅溶胶粒径控制在10~15nm范围内,既可简化工艺过程,又可保持高纯硅溶胶的稳定。
另外,SiO2粒子半径的增加,将使其粒子表面羟基基团的反应活性降低,胶粒比表面积减小,胶粒吸附能降低,从而大颗粒对小颗粒的吸附作用力降低,也是大粒径酸性硅溶胶相对于小粒径硅溶胶具有较高稳定性的原因。
此外,Janne Puputti 等在制备硅溶胶时,用乙醇取代一部分水,使其稳定性增加 3 倍。Anna Schantz Zackrisson 等通过干扰法及时间分辨小角X射线散射对硅溶胶分散体系中的聚合和凝胶化过程进行了研究,分析了离子强度对凝胶临界点的影响。
3. 如何进行胶水生产废水的处理
处理这类废水一般都是物理化学处理法+生物处理法组合处理,在生物处理法前进行胶水废水破乳剂的投加,实现废水的预处理,降低废水的有机污染物含量并提高废水的可生化性。
胶水废水主要分为带水剂回收分层废水、洗锅废水、裂解真空泵废水三大类,其中带水剂回收分层废水属于高浓度有机物废水,其他两种分别为中低浓度废水,建议将三种废水进行混合处理。由于洗锅废水和裂解真空泵废水中含有大量石油类污染物,需要增设隔油池,进行预处理。隔去浮油后与来自预处理后的废水在调节池内借助空气预曝混合均匀后,进入A/O系统,混合废水首先在A池内依靠兼氧、厌氧菌将废水的大分子分解为小分子,使废水的可生化性提高并去除部分CODcr,然后进入O池,废水在O池内再由好氧菌进一步大幅削减污染物含量。
4. 橡胶制造业废水怎么处理
一、合成橡胶废水特点:
合成橡胶废水中约85%是来自乳液聚合生产过程,以乳液聚合生产中产生的工业废水为例,简述其来源及特性。
苛性钠洗涤器;污染源为废苛性钠溶液。废水特性是高PH值,呈碱性,有色。
单体回收和凝聚工序;污染源为分离出的水层和溢出的絮凝液,内有悬浮物和溶解的有机物,呈酸性。
胶粒脱水工序;污染源为胶粒漂洗水,内有不溶性有机物和可溶性固体物。
单体回收槽和反应器;污染源为汽提塔和反应器的清洗水,内有各种有机物,不溶性和可溶性固体,大量未凝聚的胶液。
车距地面水;污染源为地面和设备的清洗水,内有溶解的和可分离的有机物,悬浮的和溶解的固体。
二、天然橡胶加工废水特点
天然橡胶加工废水,主要是以天然胶乳或胶园凝胶为原料生产天然生胶,以及以天然胶乳为原料,生产浓缩胶乳和胶清橡胶所排放的废水。橡胶废水的成份复杂,除主要含橡胶乳清外,还有蛋白质,脂类,糖类和无机盐类。天然生胶加工废水又细分为凝固废水、洗胶废水、冲洗水等。天然橡胶(标准胶)加工过程中,鲜胶乳凝固自然流出的乳清为凝固废水的主要部分,凝块经压薄、压绉后还需洗涤,这就产生了主要包括凝块通过压薄、压绉脱出的乳清,压薄(绉)后凝块在洗涤浸泡过程中又脱出的乳清等的洗胶废水。冲洗水为后续的清水冲洗过程中产生的。这3类废水水质和污染物组成基本相同,但浓度依次降低。
三、常用处理方法:
1、氧化塘-活性污泥机械强制曝气法,占地面积大,处理时间长,连续曝气效率较高但缺少后续脱氮环节,致使NH3—N处理效果差。
2、氧化塘自然曝气氧化法,占地面积大,不充分曝气时有恶臭产生。有的胶厂生产车间的占地面积甚至不及一个单一氧化塘的面积。氧化塘以延长HRT降解污染物的方式与规模化胶厂产胶的较短生产时间很不协调。涉及厌氧处理的,若要回收沼气,须进行较大投资选择适宜的工艺参数和路线来完善沼气工程的设计和沼气的利用,才能创造出较高的环境效益和经济效益。
3、厌氧-氧化塘自然曝气法的优点是结构简单,但占地面积大,处理时间长,厌氧段有恶臭产生。厌氧-活性污泥机械强制曝气氧化法虽省去氧化塘,占地面积小,但厌氧段增加了后续负荷(不论厌氧发酵还是UASB等其他工艺),还产生恶臭,处理时间长。
4、厌氧+好氧生物接触氧化工艺,接触氧化池中使用LW立体填料,能达到更高的有机物去除能力和对氨氮去除效率。降低运行费用。通常情况下,不需要投加任何化学药剂即可保证废水达标排放,处理工程的主要运行费用是工艺所需的电耗。优势高效菌及配套工艺技术的优势,确保了生物处理工程的电耗非常低。
5. 含粘合剂废水怎么处理
如果是泄露先用沙土掩盖吸收,然后装入袋中,然后再转运到垃圾填埋场填埋,剩余的废水少量可以进入污水管道;
如果是生产中含有粘合剂的废水可以进入沉淀池,然后进行初步处理吸收其中的漂浮物单体等,然后排入污水处理厂。
6. 塑料加工行业废水都是怎么处理的
1. 物理处理抄法:通过物理袭作用分离、回收废水中不溶解的呈悬浮状态的污染物(包括油膜和油珠)的废水处理法。通常采用沉淀、过滤、离心分离、气浮、蒸发结晶、反渗透等方法。将废水中悬浮物、胶体物和油类等污染物分离出来,从而使废水得到初步净化。
2. 化学处理法:通过化学反应和传质作用来分离、去除废水中呈溶解、胶体状态的污染物或将其转化为无害物质的废水处理法。通常采用方法有:中和、混凝、氧化还原、萃取、汽提、吹脱、吸附、离子交换以及电渗透等方法。
3. 生物处理法:通过微生物的代谢作用,使废水溶液、胶体以及微细悬浮状态的有机物、有毒物等污染物质,转化为稳定、无害的物质的废水处理方法。生物处理法又分为需氧处理和厌氧处理两种方法。需氧处理法目前常用的有活性污泥法、生物滤池和氧化塘等。厌氧处理法,又名生物还原处理法,主要用于处理高浓度有机废水和污泥,使用处理设备,主要为消化池等。
7. 硅油废水是如何处理的
添加碱后,然后硅油会絮凝,其次过滤出硅油,然后他们使用酸中和水,然后直接将其排出。在有机硅生产过程中,会产生大量含硅油的废水。该装置年产量为240,000吨,每年将产生120,000吨硅油废水。废水中硅油的沸点大于75℃,主要是硅烷,硅氧烷,还有悬浮硅粉,铜粉,锡粉和其他金属的粒径为10-100微米。
然后通过螺旋折弯机进行离心分离,将进料流量控制在额定处理能力的 50%,除去废水中间聚集的硅油,用滤油器沉淀 48 小时,使用水平螺丝机分离顶部的浮渣和底部的硅灰等物质,分离后,废水进入气浮装置进行气浮和除杂,以去除废水中的悬浮杂质和硅油。
关于以上的问题今天就讲解到这里,如果各位朋友们有其他不同的想法跟看法,可以在下面的评论区分享你们个人看法,喜欢我的话可以关注一下,最后祝你们事事顺心。
8. 橡胶加工生产废水怎么处理,关键在污水处理技术
橡胶废水常用处理方法:
1、氧化塘-活性污泥机械强制曝气法,占地面积大,专处理时间长,连续曝属气效率较高但缺少后续脱氮环节,致使NH3—N处理效果差。
2、氧化塘自然曝气氧化法,占地面积大,不充分曝气时有恶臭产生。有的胶厂生产车间的占地面积甚至不及一个单一氧化塘的面积。氧化塘以延长HRT降解污染物的方式与规模化胶厂产胶的较短生产时间很不协调。涉及厌氧处理的,若要回收沼气,须进行较大投资选择适宜的工艺参数和路线来完善沼气工程的设计和沼气的利用,才能创造出较高的环境效益和经济效益。
3、厌氧-氧化塘自然曝气法的优点是结构简单,但占地面积大,处理时间长,厌氧段有恶臭产生。厌氧-活性污泥机械强制曝气氧化法虽省去氧化塘,占地面积小,但厌氧段增加了后续负荷(不论厌氧发酵还是UASB等其他工艺),还产生恶臭,处理时间长。
4、厌氧+好氧生物接触氧化工艺,接触氧化池中使用LW立体填料,能达到更高的有机物去除能力和对氨氮去除效率。降低运行费用。通常情况下,不需要投加任何化学药剂即可保证废水达标排放,处理工程的主要运行费用是工艺所需的电耗。优势高效菌及配套工艺技术的优势,确保了生物处理工程的电耗非常低。
9. 胶水废水怎么处理,求救
1、采用絮凝一加压气浮一煤请、黄砂吸附过滤
硫酸铝絮凝剂水解后能形成多棱络合物。它具有在悬浮粒子表面进行电中和及吸附作用,可除去悬浮粒子。
2、PX药剂破乳—絮凝
PX药剂破乳—絮凝一步法处理乳胶漆废水,具有设备简单、占地小、操作简便、效果好等优点。
10. 化工废水如何处理
化工废水的基本特征为极高的COD、高盐度、对微生物有毒性,是典型的难降解废水,是目前水处理技术方面的研究重点和热点。化工废水的特征分析如下:
(1)水质成分复杂,副产物多,反应原料常为溶剂类物质或环状结构的化合物,增加了废水的处理难度;
(2)废水中污染物含量高,这是由于原料反应不完全和原料、或生产中使用的大量溶剂介质进入了废水体系所引起的;
(3)有毒有害物质多,精细化工废水中有许多有机污染物对微生物是有毒有害的,如卤素化合物、硝基化合物、具有杀菌作用的分散剂或表面活性剂等;
(4)生物难降解物质多,B比C低,可生化性差;
(5)废水色度高。
化工废水处理方法:
废水处理技术已经经过了100多年的发展,污水中的污染物种类、污水量是随着社会经济发展、生活水平的提高而不断增加,污水处理技术也随着科学技术的发展而发生了日新月异的变化,同时,旧的污水处理技术也不断被革新和发展着。尤其现在的化工废水中的污染物是多种多样的,往往用一种工艺是不能将废水中所有的污染物去除殆尽的。用物化工艺将化工废水处理到排放标准难度很大,而且运行成本较高;化工废水含较多的难降解有机物,可生化性差,而且化工废水的废水水量水质变化大,故直接用生化方法处理化工废水效果不是很理想。
针对化工废水处理的这种特点,我们认为对其处理宜根据实际废水的水质采取适当的预处理方法,如絮凝、内电解、电解、吸附、光催化氧化等工艺,破坏废水中难降解有机物、改善废水的可生化性;再联用生化方法,如SBR、接触氧化工艺,A/O工艺等,对化工废水进行深度处理。
目前,国内对处理化工废水工艺的研究也趋向于采用多种方法的组合工艺。例如,采取内电饵混凝沉淀—厌氧—好氧工艺处理医药废水、采用大孔吸附树脂吸附和厌氧—好氧生物处理—絮凝沉淀法处理有机化工废水、采用絮凝—电饵法联用处理麻黄素废水、采取臭氧一生物活性碳工艺去除水中有机污染物、采用的光催化氧化—内电饵—sBR组合方法处理高浓化工废水都取得了比较好的结果。