⑴ 工业废水排放标准gb
第一类污染物,不分行业和污水排放方式,也不分受纳水体的功能类别,一律在车间或专车间处理设施排属放口采样,其最高允许排放浓度必须达到本标准要求(采矿行业的尾矿坝出水口不得视为车间排放口)。
2 第二类污染物,在排污单位排放口采样,其最高允许排放浓度必须达到本标准要求。
2 本标准按年限规定了第一类污染物和第二类污染物最高允许排放浓度及部分行业最高允许排水量,分别为:
1 1997年12月31日之前建设(包括改、扩建)的单位,水污染物的排放必须同时执行表1、表2、表3的规定。
2 1998年1月1日起建设(包括改、扩建)的单位,水污染物的排放必须同时执行表1、表4、表5的规定。
3 建设(包括改、扩建)单位的建设时间,以环境影响评价报告书(表)批准日期为准划分。3 其他规定
1 同一排放口排放两种或两种以上不同类别的污水,且每种污水的排放标准又不同时,其混合污水的排放标准按附录A计算。
2 工业污水污染物的最高允许排放负荷量按附录B计算。
3 污染物最高允许年排放总量按附录C计算。
⑵ 中国 污水排放量是多少
二、水污染状况
1.水资源的污染:人口数量的几何增长、现代工业废水的乱排乱放、城市垃圾、农村农药喷洒等等,造成本来已是极少的淡水资源加剧短缺,无法为人所用。据统计,目前水中污染物已达2千多种(2221)主要为有机化学物、碳化物、金属物,其中自来水里有765种(190种对人体有害,20种致癌,23种疑癌,18种促癌,56种致突变:肿瘤)。在我国,只有不到11%的人饮用符合我国卫生标准的水,而高达65%的人饮用浑浊、苦碱、含氟、含砷、工业污染、传染病的水。2亿人饮用自来水,7000万人饮用高氟水,3000万人饮用高硝酸盐水,5000万人饮用高氟化物水,1.1亿人饮用高硬度水。
2.水污染的严重性:污染水的70%——80%直接排放,我国污水的处理能力只占20%左右。全国每年排污量约300亿吨。全国各大城市地下水不同程度受到污染。全国78条主要河流有54条遭污染.我国七大水系:长江,珠江,松花江,黄河,淮河,海河,辽河。七大水系中有一半河段受到污染,86%城市河段污染超标,比较严重的有:黄河,淮河,辽河,太湖,巢湖,滇池等河流湖泊。
3.水中的有害物质:有机物:三氯甲烷、四氯化碳、农药、氨氮等;重金属:铅、汞、锰、镉等;微生物:细菌、致病菌。
联合国指出,每年全世界约500万人死于同水有关的疾病。世界卫生组织于该年10月公布了威协人类健康的十大杀手,不洁饮水位列其中。
⑶ 中国石油消耗量是多少
中国石油消耗量是64965万吨。2020年中国石油消费量为64965万吨,交2019年69609万吨,较少4644万吨。目前中国油气资源需求对外依存度较高,2020年国内原油消费量为64965万吨,其中进口原油45630万吨。对外依存度从2011年的百分之55,增长至2020年的百分之70。天然气,2020年全年进口10166万吨,国内消费23744万吨,进口依赖度为百分之42.8。
中国石油的主要来源
首先我们自己也出产石油,像大庆,胜利,中原诸多油田,以及渤海,南海海上油田,为国家的经济发展开采了大量的石油。其次我们北方的邻居,西方的邻居都是石油天然气的输出大国,他们的石油天然气,是我们获取石油天然气的另一条重要途径,再次就是中东地区,特别是波斯湾沿岸国家,是我们重要的石油天然气来源地。另外我们也曾从美国,委瑞内拉,印尼等国家进口国石油天然气。
⑷ 有关水资源情况
水是人类发展不可缺少的自然资源,是人类和一切生物赖以生存的物质基础。当今世界,水资源不足和污染构成的水源危机成为任何一个国家在政策、经济和技术上所面临的复杂问题和社会经济发展的主要制约因素。1992年1月联合国在冰岛举行了水和环境国际会议,呼吁寻找新的途径,对淡水资源作出评价、发展和管理。1993年,世界银行提出了有关水资源的新课题。粮农组织最近成立了一个关于水和持续农业发展的国际项目(LAP-WASAD),这些信息表明,水资源问题已引起全世界的关注。
人类对水资源的开发利用分两大类:一类是从水资源取走所需的水量,满足人民生活和工农业生产的需要后,数量有所消耗,质量有所变化,在另外地点回归水源。另一类是取用水能(水力发电)、发展水运、水产和水上游乐,维持生态平衡等,这种利用不需要从水源引走水量,但是需要河流、湖泊、河口保持一定的水位、流量和水质。本节所讨论的水资源利用情况主要是第一类用水形式。
3、水资源的重要作用
1) 调节气候。水是大气的重要成分。虽然大气中仅含全球水量的百万分之一,然而,大气和水之间的循环相互作用,确定了地球水循环运动,形成支持生物的气候。大气中的水帮助调节全球能量平衡,水循环运动起着不同地区的能量传输作用。
2) 水磨塑造地球表面的形态。流动的水开创和推动土地地貌的形成,重排地表景观以及三角洲形成等。水是形成土壤的关键因素,也在岩石的物理风化中起着重要作用。
3)水具有物质运输的功能。水可以输送多种多样材料和营养物质。水输送物质的形式有两种:溶解的矿物质和整体物质。大气中的各种颗粒物质可以沉降到水体,然后由水输送。从这一方面可以看到,水可以把环境污染物输送、扩散到更远、更广泛的区域。
4) 水是一切生物必不可少的物质。生命的形成离不开水,水是生物的主体,生物体内含水量占体重的60~80%,甚至90%以上。水是生命原生质的组成部分,并参与细胞的新陈代谢,还是生物体内外生物化学发生的介质。因此,一切生命都离不开水。水与生物以各种方式相互作用。在一个区域范围内,水是决定植被群落和生产力的关键因素之—,还可以决定动物群落的类型、动物行为等。
5) 水是人类赖以生存和生产的最基本的物质基础。水与人类的关系非常密切,不论是生活或是生产活动都离不开水这一宝贵的自然资源,水既是人体的重要组成,又是人体新陈代谢的介质,人体的水含量占体重的2/3,维持人类正常的生理代谢,每天每人至少需要2~3L水。工业生产、农田灌溉、城市生活都需要消耗大量的水。但是,随着人口和经济活动的加剧,全球的水循环已大大偏离了它的自然状态,水的流动已发生了显著的变化。人口迅速增长,加快了对水资源的消耗,工农业生产发展严重污染了水体,森林破坏改变了蒸发和径流方向等,这些人类活动造成了水资源的严重破坏,使世界面临着水危机。
1、世界水资源概况
世界各地自然条件不同,降水和径流相差也很大。年降水量以大洋洲(不包括澳大利亚)的诸岛最多;其次是南美洲,那里大部分地区位于赤道气候区内,水循环十分活跃,降水量和径流量均为全球平均值的两倍以上。欧洲、亚洲和北美洲与世界平均水平相接近,而非洲大陆是世界上最为干燥地区之一,虽然其降水量与世界平均值相接近,但由于沙漠面积大,蒸发强烈,径流量仅为151mm。相比之下大洋洲的澳大利亚最为干燥,与降水量761mm相对其径流量仅为39mm,这是由于澳大利亚的有2/3地区为荒漠、半荒漠所致
2、世界水资源的供给与利用
通常人们将全球陆地入海径流总量作为理论上的水资源总量,即全球水资源总量为47000km3,而这一水资源数量在全球分布又是不均匀的,各国水资源丰缺程度相差很大。人类在早期对水资源的开发利用,主要是在农业、航运、水产养殖等方面,而用于工业和城市生活的水量很少,直到本世纪初,工业和城市生活用水仍只占总用水量的12%左右。随着世界人口的高速增长以及工农业生产的发展,水资源的消耗量越来越大。世界用水量逐年增长,1900~1975年间,每年以3~5%的速度递增,即每20年左右增长一倍。到2000年,世界总用水量将达到6000亿m3,占世界总径流量的15%。
随着人类文明的进步,对水资源的需要量越来越大,1985年用水量为1950年的3.5倍。其中农业用水占总水量的比例由1950年的78.2%下降到1985年的61. %5;而工业用水与城市用水占总用水量的比例由1950年的22.7%,增加到1985年的34.6%。但可供人类使用的水资源却不会增加;甚至会因人为的污染等因素而使其质量变差,可利用数量减少。加之,世界淡水资源的分布极不均匀,人们居住的地理位置与水的分布又不相称,使水资源的供应与需求之间的矛盾很大,尤其是在工业和人口集中的城市,这个矛盾更加突出。据统计,近40年来,全世界农业用水量仅增加了2倍、工业用水增加了7倍,而生活用水增加的更多。
3、水危机产生的原因
从总的水储量和循环量来看,地球上的水资源是丰富的,如能妥善保护与利用,可以供应200亿人的使用。但由于消耗量不断的增长和可利用水域的污染等原因,造成可利用水资源的短缺和危机,主要有以下几个方面的原因:
1) 自然条件影响:地球上淡水资源在时间和空间上的极不均匀分布,并受到气候变化的影响,致使许多国家或地区的可用水量甚缺。例如我国长江、珠江、浙、闽、台及西南诸河流域的水量占总水量的81.0%,而这些地区的耕地仅占全国的35.9%;而华北和西北地处于干早或半干旱气候区,其降雨和径流都很少,季节性缺水很严重。北非和南撒哈拉地区、阿拉伯半岛、伊朗南部、巴基斯坦和西印度是年降雨长期平均变化最大的区域,其变化幅度超过40%。美国西南部、墨西哥西北部、非洲西南部、巴西最东端以及智利部分地区也是如此。因此,世界许多地区会出现区域性的供水危机。
1、概况:我国江河众多,流域面积在100km2以上的河流有5万多条,1000km2以上的约有1500多条。但受气候和地形的影响,河流分布很不均匀,绝大部分河流分布在我国东部湿润、多雨的季风区,西北内陆气候干燥、少雨,河流很少。
我国有1 km2以上的湖泊2300多个,总面积7187 km2,约占国土面积的0.8%;湖水总储量约为7088亿m3,其中淡水量占32%。
我国还有丰富的冰川资源,共有冰川43000余条,集中分布在西部地区。总面积58700km2,占亚洲冰川总量的一半以上,总贮量约52000亿m3。
我国平均年降水量为61889亿m3,平均降水深648.4mm,年均河川径流量27115亿m3,合径流深284.1mm。河川径流主要靠降水补给,由冰川补给的只有500亿m3左右。我国年平均地下水资源为8287.6亿m3。
根据分析计算,我国地表水和地下水的量分别为27115和8288亿m3,扣除二者间的重复量7279亿m3后,则我国多年平均水资源总量28124亿m3。
2、我国水资源特点
我国水资源的时空分布特点,可通过降水、蒸发、径流等水平衡要素的分布反映如下:
1) 水资源总量较丰富,人均和地均拥有量少
我国多年平均年水资源总量为28124亿m3,其中河川径流约占94%,低于巴西、前苏联、加拿大、美国和印度尼西亚,约占全球径流总量的5.8%,居世界第6位。平均径流深为284mm,为世界平均值的90%,居世界第7位。可见,我国的水资源量还是比较丰富的。然而,我国人口众多,按12亿人口计算,平均每人每年占有的河川径流量2260m3,不足世界平均值的1/4,分别是美国人均占有量的1/6,前苏联的1/8,巴西的1/19和加拿大的1/58。我国地域辽阔,平均每公顷耕地的河川径流占有量约28320m3,为世界平均值的80%。所以,人我国水资源量与需要不适应的矛盾十分突出,以占世界7的耕地和6%的淡水资源养活着世界上22%的人口。
随着人口的增长,城市化、工业化以及灌溉对水的需求日益增加,21世纪将出现许多用水紧缺问题。在可供淡水有限的情况下,应积极采取措施保护宝贵的资源。一般采取以下几种措施。
1、提高水的利用效率,开辟第二水源
这是目前解决水资源紧张的重要途径,主要方法有:
1) 降低工业用水量,提高水的重复利用率
降低工业用水量的主要途径是改革生产用水工艺,争取少用水,提高循环用水率。如炼钢厂用氧气转炉代替老式平炉,不但提高了钢的质量,而且用水量降低了86~90%。
现在世界上许多工业发达的国家都把提高工业重复用水率作为解决城市用水困难的主要手段。有的国家还辅设了专门供工业循环用水的管道,效果很好。我国近几年来,对水的重复利用也逐步开展起来。在一些水源特别紧张的城市,水的重复利用率已达到较高水平,如大连市为79.5%,青岛为77.3%,太原为83.8%,但整体水平还比较低,平均工业用水重复利用率仅为20~30%。
如果把全国工业用水的平均重复利用率从目前的20%提高到40%。每天可节水1300万t,相应地节省供水工程投资26亿元,节水量和经济效益都是相当可观的。
提高工业用水重复利用率,不仅是合理利用水资源的重要措施,而且减少了工业废水量,减轻了废水处理量和对水体的污染。
2) 实行科学灌溉,减少农业用水浪费
全世界用水的70%为农业灌溉用水,但其利用率很低,浪费严重。据估计,全世界有37%的灌溉水用于作物生长,其余63%都被浪费掉了。因此,改革灌溉方法是提高用水效率的最大潜力所在。
渠道渗漏是世界各国在发展灌溉事业时遇到的共同问题。据国际灌溉排水委员会的统计,灌溉水渗漏损失量一般为15~30%,高的甚至达到50~60%。我国渗漏损失一般为40~50%,高的甚至达到70~80%。由于大部分灌区的渠道没有防渗措施,我国南方长江、珠江、东南沿海等地渠道水利用系数平均为0.6,其它各片为0.5。估计全国渠道渗漏损失的水量可达到1700多亿m3。因此,防渗渠道和暗管输水等工程技术的应用可以得到明显的节水效果。
灌溉方式的改进,是农业节水的重要途径。60年代在以色列发展起来的滴灌系统,可将水直接送到紧靠植物根部的地方,以使蒸发和渗漏水量减到最小。当前,国外灌溉节水技术的发展趋向是采用完整的灌溉排水管道系统,它具有能源消耗少,输水快,配水均匀、水量损失小,不影响机耕等优点。此外,一些国家还研究了新的灌溉技术,如涌流灌溉、水平畦田灌溉、采用自动升降竖管等。内布拉斯加农业和自然资源研究所设计了一种灌溉计算机程序,利用各小型气象站收集来的数据计算各地区生长的不同作物的蒸发蒸腾率,指导农民调整灌溉日期。自动灌溉技术,利用计算机控制流量、监测渗漏、调节不同风速和土壤湿度条件下的用水量,并使肥料用量最佳化。我国最新的研究表明,覆盖滴灌对水的利用效率更高,是适合干旱半干旱地区的新型灌溉技术。
3) 回收利用城市污水、开辟第二水源
回收和重新使用废水,使其变为可用的资源是另一种提高水使用效率的方法。在东京,城市水回收中心通过三级水处理厂慢沙过滤回收废水,氯化消毒后用于冲洗高层建筑的厕所。北京也曾修建过类似的“中水道”系统。
2、调节水源流量,增加可靠供水
前述水资源紧张的第一个原因是自然条件的影响,如气候、地理位置,淡水分布不均匀等问题。人们试图通过调节水源流量、开发新水源的方式加以解决。
1) 建造水库: 建造水库调节流量,可以将丰水期多余水量储存在库内,补充枯水期的流量不足。不仅可以提高水源供水能力,还可以为防洪、发电、发展水产等多种用途服务。目前,各国在江河上建造的库容超过1亿m3的水库共有1350个,总蓄水量达到4100km3。
然而,在很多工业发达国家,随着建库地址的选择日益困难,增加新蓄水设施的成本迅速提高,水库发展的速度明显减慢了。发展中国家的水库建造仍处于全盛时期。在建库时,还必须研究对流域和水库周围生态系统的影响,否则会引起不良后果。
2) 跨流域调水: 跨流域调水是一项耗资昂贵的增加供水工程,是从丰水流域向缺水流域调节。由于其耗资大、对环境破坏严重,许多国家已不再进行大规模的流域间调水。巴基斯坦的西水东调工程和澳大利亚的雪山河调水工程以及我国近年来相继完成的引黄济青、引滦入津和引滦入唐等工程都是从丰水流域向缺水流域供水的大工程,我国的南水北调工程也已开始动工。
3) 地下蓄水: 目前,已有20多个国家在积极筹划人工补充地下水。在美国,加利福尼亚的地方水利机构每年将25亿m3左右的水贮存地下。到1980年,该州已有3450万m3的水贮存在两个水利工程项目的示范区内;其单位成本平均至少比新建地表水水库低35~40%。美国国会于1984年秋通过立法,批准西部17个州兴建蓄水层回灌示范工程。在荷兰,实现人工补给地下水后,解决了枯水季节的供水问题,每年增加含水层储量200~300万m3。
4) 海水淡化: 海水淡化可解决海滨城市的淡水紧缺问题。目前,世界海水淡化的总能力为2.7km3/a,不到全球用水量的1‰。沙特阿拉伯、伊朗等国家海水淡化设备能力占世界的60%,在沙特阿拉伯还建造了世界上最大的淡化海水管道引水工程。
5) 拖移冰山: 此工程在近期内还不可能实现,仍处于计划阶段。据估计,南极的一小块浮冰就可获得10亿m3的淡水,可供400万人一年的用量。
6) 恢复河、湖水质: 采用综合防治水污染的方法恢复河湖水质。即采用系统分析的方法,研究水体自净、污水处理规模、污水处理效率与水质目标及其费用之间的相互关系,应用水质模拟预测及评价技术,寻求优化治理方案,制订水污染控制规划。采用这种方法治理的河流,如美国的特拉华河、英国的泰晤士河、加拿大的圣约翰河等水质都得到恢复,增加了淡水供应。
7) 合理利用地下水: 地下水是极重要的水资源之一,其储量仅次于极地冰川,比河水、湖水和大气水分的总和还多。但由于其补给速度慢,过量开采将引起许多问题。在开发利用地下水资源时,应采取以下保护措施:
(1) 加强地下水源勘察工作,掌握水文地质资料,全面规划,合理布局,统一考虑地表水和地下水的综合利用,避免过量开采和滥用水源;
(2) 采取人工补给的方法,但必须注意防止地下水的污染;
(3) 立监测网,随时了解地下水的动态和水质变化情况,以便及时采取防治措施。
⑸ 中国的工业含油废水排放量有多少
中国的工业含复油废水排放制量:2014年,全国废水排放量716.2亿吨,比2013年增加3.0%。工业废水排放量205.3亿吨,比2013年减少2.1%;占废水排放总量的28.7%,比2013年减少1.5个百分点。城镇生活污水排放量510.3亿吨,比2013年增加5.2%;占废水排放总量的71.3%,比2013年增加1.5个百分点。集中式污染治理设施废水(不含城镇污水处理厂,下同)排放量0.6亿吨。毅砺节能 公司治理工业含油废水,回收再利用,减少污染。
⑹ 请告诉我我国水、煤炭、石油等资源状况
资源:中国的矿产资源十分丰富。现已探明储量的矿产136种,是世界上已知矿种配套较全的少数国家之一。水力资源居世界首位。
耕地:至1997年,全国共有耕地20.6亿亩。
森林:国家林业局2005年1月18日宣布,中国森林面积达到1.75亿公顷,森林覆盖率为18.21%,人工林面积居世界首位。
水源:中国淡水资源总量为2.8万亿立方米,占世界第6位,可是人均占有量仅是世界人均占有量的1/4,排在第88位。
粮食:中国粮食总产量虽然居世界第一位,但人均粮食占有量长期维持在不足400公斤的低水平上。
生物:约48万种。其中高等植物3万余种、孢子植物20万种、昆虫15万种,其它动物5万余种。
动物:中国拥有脊椎动物4400多种,大熊猫、金丝猴、白唇鹿、 华南虎、褐马鸡、白鳍豚、扬子鳄、 丹顶鹤等百余种中国特产的珍稀动物。
植物:在中国,北半球寒、温、热各带植被的主要植物几乎都可以看到,仅高等植物就有3. 2万余种。
种子植物:中国种子植物有343科、3155属、30586种,其中有5个特有科、247个特有属和17300特有种。
裸子植物:中国是世界上裸子植物最多的国家.
⑺ 中国每年排放污水是多少
目前中国大约每抄年排放废水为710亿吨袭(2012年数据),年增长为20亿吨。每天排放约1.945亿吨。
污水排放口是将污水(雨水)向水体排放的构筑物。其任务是使排放的污水(雨水)与水体中的水尽快得到最大程度的混合,使排放污水中的污染物得到尽快得稀释扩散并进一步降解净化。根据排放口的位置一般分为岸边集中排放口、江心集中排放口或分散排放口。
⑻ 油气聚集区水体的石油污染
5.1.1区内水体的基本情况
黄河是黄河三角洲地区最主要的地表河流,黄河自利津县南宋乡进入东营市区至入海口约188km,平均年径流量317亿m3,年内分布极不均匀,汛期(7~10月)径流量占全年的63%,达199亿m3。非汛期内径流量只有118亿m3,枯水期常常出现断流现象,并且断流时间有逐年增加的趋势,对该地区工农业用水和人民生活造成了一定的影响。除黄河以外,区内大小入海河流20余条,其中主要的有15条。黄河以北有神仙沟、挑河、草桥河、潮河等沿海河流,大多自南向北流入渤海湾,河道顺直,无大的支流。黄河以南有广利河、广蒲河、溢洪河、支脉河、小清河、淄河等,这些河流大多由西向东流入莱洲湾。这些河流多系人工开挖,用于排碱、排涝和排污。
图5-1石油污染源分布示意图
黄河三角洲地区浅层地下水主要靠大气降水补给,在形成过程中一方面受黄河侧渗和下渗的影响,另一方面受海洋潮汐顶托、淹没作用的制约,受盐土体和海水的影响形成近代黄河三角洲高矿化度地下水的主要特征。因此区内大部分地区(小清河以北)为咸淡水重叠区及全咸水区,基本不适于饮用。水化学类型比较复杂,主要为重碳酸氯化物-钠镁型、重碳酸氯化物-钠钙镁型、氯化物硫酸盐-钠镁型、氯化物-钠钙镁型和氯化物-钠型水,矿化度大于2g/L,多数大于5g/L,沿海地区分布有大于50g/L的卤水。区内主要的全淡水区分布于小清河以南山前地带,面积420km2,约占东营市面积的5%。水化学类型以重碳酸型水为主,矿化度0.5~1.5g/L,pH值在7.0~8.5之间,是生活、农业用水的良好水源。有关区内地下水更为详细的情况见前一章节的水文地质条件部分。
为解决东营地区用水问题,调节黄河枯水季节水资源短缺而修建的各种类型水库10余座。其中大型水库一座,库容量1.14亿m3;中型水库6座,库容量1.6亿m3;小型水库11余座,蓄水总量可达3.02亿m3,基本上满足东营市目前的用水需求。
根据黄河三角洲地表水分布的基本格局,全局(胜利石油管理局)所排工业废水主要分四路,最终排入渤海。孤岛地区废水经神仙沟排入渤海湾;河口地区废水经挑河排入渤海湾;东营地区废水经广利河排入莱洲湾。孤岛采油厂和桩西采油厂属滨海滩涂油田,工业废水主要经过各排涝站提升泵,直接排入莱洲湾和渤海湾。因此受纳油田污水的河流主要有挑河、神仙沟、支脉河、广利河、溢洪河,此外还有武家大沟、广蒲河两条比较小的河段。
以下为纳污各河流域的概况(见表5-2)。
1.挑河流域概况
挑河主要位于东营市河口区境内,从利津县的集贤、神庙自南而北由新刁口入渤海湾,全长32.6km,流域面积504km2。1974年开挖,形成以排涝、防洪和排污为主要功能的河流。汇入挑河的污水主要为河口采油厂的采油废水、生活污水和地方工业企业废水及生活废水。
2.神仙沟流域概况
神仙沟位于东营市河口区孤岛油区境内,最初是承担黄河分流行水,自1979年黄河由清沟入海后,神仙沟不再承担黄河水的分流入海责任,其下游功能完全变为排污河道。全河长54km,流域面积250km2,流域内的主要废水污染源是孤岛、桩西采油厂的采油废水、生活废水以及地方工业废水及生活废水。
3.支脉河流域概况
支脉河源于山东高青县,流域面积1338km2,全河长112.5km,流经东营区和广饶县交界处进入莱洲湾,该河功能主要用于排涝。受纳石油化工开发总公司、纯梁首站、王家岗联合站及胜利发电厂等工业废水及生活污水。
4.广利河流域概况
广利河发源于垦利县胜坨乡王营,全长47.8km,流域面积844km2,最大排涝能力148m3/s。广利河流域内汇入的主要污水为西城区的生活污水、东辛采油厂、现河采油厂、动力机械厂、胜利采油厂的工业废水及地方工业企业废水。
5.溢洪河流域概况
溢洪河起源于垦利县崔家庄子,全长47.9km,流域面积2130km2,最大排涝能力110m3/s。流域内汇入的主要污水为胜利采油厂、东辛采油厂及钻井集团公司的生产、生活废水和地方工业企业生活废水。
表5-2胜利石油管理局主要纳污河流及排污企业
5.1.2主要的污染部门及排污种类
由前面区内的经济概述部分介绍可以看出:区内经济的主体是石油经济,对水体的影响也主要是石油企业的工业废水排放。
企业工业废水排放的具体情况如下:
1.主要工业污染行业
石油开采过程中,以采油产生的废水最多。采油与炼化两大部门构成了主要污染部门。采油部门等标污染负荷比为74.85%,是第一工业废水污染行业。炼化部门仅次于采油部门,等标污染负荷比为17.36%,是第二工业废水污染行业。两者等标污染负荷累计百分比为92.21%。油水井作业过程中,也可产生废水,由于一般都进干线,实行无污染作业,所以仅有少量废水排入井场土池中。1993年全局作业部门等标污染负荷比仅为0.24%,是工业废水污染最小的部门(图5-2,图5-3,表5-3)。
图5-2主要工业污染部门
图5-3各类废水排放达标率
表5-3主要工业污染部门评价表
2.石油行业主要的污染企业
全局工业废水主要污染企业有5个,其中4个是采油厂。现河采油厂等标污染负荷比为41.59%,是第一工业废水污染企业。其余按等标污染负荷比为大小顺序依次是:石油化工开发总公司、东辛采油厂、孤岛采油厂和孤东采油厂,其等标污染负荷比依次是17.36%、12.89%、10.24%和6.63%。以上5个单位的等标污染负荷累加比达88.71%,是主要的工业废水污染企业。
3.主要污染物排放种类
表5-4列出11项污染物的等标污染负荷,从表中可以看出,挥发酚等标污染负荷比最高,为51.63%,是第一污染物。石油类等标污染负荷比为32.78%,是第二污染物,化学需氧量等标污染负荷比为12.99%,是第三位污染物。三者等标污染负荷累加负荷比达到97.40%,是主要污染物。悬浮物、硫化物、氰化物、铜、铅、汞、锌和六价铬八项污染物相对污染较轻,等标污染负荷比总和仅为2.6%。废水中主要污染物种类比例如图5-4。
表5-4石油企业工业废水主要污染物评价表
① 含Cu、Pb、Hg、CN-、Zn和Cr6+六项污染物。
图5-4废水中主要污染物种类
5.1.3地表水体的纳污状况
区内的挑河、神仙沟、支脉河、广利河、溢洪河、小清河、渤海湾7个主要水系的11条河流是主要的纳污水系(图5-5),共接纳全局19个主要排污口外排工业废水1075.36万t,占全局工业废水外排总量的69.96%。接纳污染物4456.23t,占全局工业废水中污染物总量的53.59%。其中含化学需氧量3065.09t,石油类545.84t、悬浮物820.95t、挥发酚17.45t、硫化物2.17t,分别占全局工业废水中同种污染物总量的67.16%、94.80%、26.03%、96.20%和76.95%。
在上述7个主要的纳污水系当中,支脉河、广利河、小清河水系和渤海湾又是其中最主要的纳污水体,1993年,接纳来自19个主要排污口的工业废水941.47万t,占纳污水体接纳工业废水总量的87.55%。接纳污染物3662t,占纳污水体接纳工业废水污染物总量的82.18%。支脉河水系接纳工业废水量最大,为549.9万t,接纳污染物1769.66t,其中含化学需氧量1238.22t、石油类153.89t、悬浮物366.78t、挥发酚10.3t、硫化物0.88t,是第一大纳污水体。各纳污水体接纳工业废水污染物状况详见表5-2。
5.1.4区内水体环境质量状况评价
1.地表河流
(1)黄河
区内最主要的地表河流黄河水质较好,根据东营市环境保护监测站多年的监测结果,除了黄河特有的悬浮物含量较高外,绝大多数化学元素均在国家地面水环境质量标准(GB3838-88)三类水范围以内,另有COD和石油类含量超过五类水质标准。说明黄河入海处的水质虽好,能够满足饮用水源的要求,但已经受到石油等有机物的轻微污染。
黄河综合污染指数为2.97(见表5-5)。
表5-5黄河综合污染指数评价表
结论:黄河水质尚好,能满足饮用水源需要,但已经受到石油等有机物的轻微污染,今后应引起高度重视。
(2)广利河
广利河的所有监测断面化学需氧有机指标在枯、平、丰三个水期都超标,最大超标倍数为4.096倍。所有监测断面的氨氮在枯水期全部超标,最大超标倍数2.67倍。BOD5和总磷只在枯水期的个别断面超标,超标倍数分别为0.814和0.48倍。石油类除了丰水期各断面没有超标现象外,其余两个水期的个别断面上有超标现象,最大超标倍数为8.21倍。
图5-5地表水系污染程度示意图
另据1999年度对广利河水质监测结果最新资料,广利河小赵家断面CODcr、挥发酚2项指标超标,超标率分别为100%、33.3%;广利河沙营断面CODcr、CODmn、DO、BOD5、挥发酚、油等6项指标超标,超标率分别为100%、83.3%、66.7%、100%、66.7%、83.3%;广利河广利港断面CODcr、CODmn、BOD5、挥发酚、油、氯化物、pH值等7项指标超标,超标率分别为100%、100%、100%、66.7%、83.3%、100%、33.3%。从三个断面的超标情况可以看出,上游小赵家断面超标项目少,而中、下游沙营、广利港断面则超标项目较多,这主要是由于西城工业废水和生活废水的排入造成的。广利河三个断面水质均劣于V类水。小赵家沙营、广利港断面的综合污染指数分别为7.52、27.07、15.78。
结论:广利河水质有机污染已经相当严重,不及时治理有加重趋势。造成广利河水质有机污染严重的主要污染源是西城区的大量生活污水、东辛采油厂的采油废水以及沿岸地方企业废水。
(3)支脉河
支脉河水质CODcr所有监测断面在枯平丰三个水期都超标,最大超标倍数为3.36倍。BOD5在平水期有两个断面超标,超标倍数分别为2.835倍和1.438倍;石油类在枯水期的广利虾场南一个断面超标,超标倍数为1.51倍。
1999年度王营断面的最新资料:超标指标有CODcr、CODmn、DO、BOD5、挥发酚、油,超标率分别为100%、75%、50%、50%、25%、75%。综合污染指数为12.1。已达到严重污染。
结论:支脉河已达到严重污染,污染项目增多,造成污染的原因是污染主要来自上游高青、博兴县的工业、生活污水及王家岗联合站纯梁首站等所排入的工业废水及地方企业所排入的各类废水。
(4)小清河
根据1999年度对小清河石村、三岔断面的监测结果可知:小清河石村断面有7项指标超标,其中CODcr、CODmn、BOD5、挥发酚等4项指标超标率为100%,其他3项指标超标率分别为DO83.3%、汞83.3%、石油类16.7%;小清河三岔断面有6项指标超标,其中Cl-、CODcr、CODmn等三项指标超标率为100%,其他3项指标超标率分别为BOD583.3%、挥发酚33.3%、石油类16.7%;石村和三岔断面的污染指数分别为36.2和35.9。
结论:小清河水质各监测断面均劣于V类水,已失去水体功能。
(5)广蒲河
广蒲河水质1999年以前超标因子为化学需氧量、氨氮、砷。
1999年度广蒲河东王路断面超标指标为CODcr、CODmn、DO、BOD5、油,超标率分别为100%、75%、75%、50%。综合污染指数为24.3。
结论:广蒲河已达到严重污染。污染的原因主要是石化总公司、总机械厂、胜利发电厂所排工业废水及六户镇工业废水及生活污水。
(6)淄河
淄河发源于淄博市临淄区,流经广饶县境内,在三岔河口上游汇入小清河。1999年度对淄河西水、小营两个断面的检测结果表明,淄河西水断面CODcr、CODmn、BOD5、挥发酚、铅、油、DO等7项指标超标,超标率分别为100%、100%、100%、80%、20%、40%、100%;淄河小营断面DO、CODcr、CODmn、BOD5、挥发酚、油等6项指标超标,超标率分别为25%、100%、100%、50%、25%、25%。
结论:水质均劣于Ⅴ类。淄河西水、小营两个断面的综合污染指数分别为143.1和16.1,达到极严重污染程度,已失去水体功能。主要接纳临淄区工业、生活废水。
(7)溢洪河
溢洪河所有监测断面的化学需氧量在枯、平、丰三个水期都超标,最大超标倍数5.215倍。氨氮在枯丰两个水期个别断面超标。溶解氧在丰水期的个别断面上超标,超标倍数1.26倍。石油类只有丰水期的个别断面超标,超标倍数为0.79倍。
结论:溢洪河水质也遭到严重的有机污染,造成有机污染严重的原因是由于胜利采油厂、东辛采油厂、垦利炼油厂等工业废水及生活废水。
(8)挑河
挑河化学需氧量在所有监测断面的枯、平、丰三个水期都超标,超标倍数3.904倍;其他有机污染指标氨氮、溶解氧、生化需氧量在枯水期和平水期中的个别断面超标,超标倍数分别为1.28倍、3.96倍和0.272倍。
结论:挑河已经受有机污染。造成挑河水质污染的原因主要是河口采油厂的采油、生活废水及地方企业废水。
(9)神仙沟
神仙沟化学需氧量在所有断面的枯、平、丰三个水期都超标,最大超标倍数为13.72倍。其他有机污染指标:氨氮在枯水期所有断面都超标,最大超标倍数0.56倍;总磷在枯水期有一个断面超标,超标倍数为1.75倍,溶解氧和生化需氧量在枯、平、丰三个水期基本都超标,最大超标倍数分别为9.0和7.3倍。污染指标石油类在枯、平、丰三个水期基本都超标,最大超标倍数为1.68倍。
结论:神仙沟水质污染相当严重。造成神仙沟水质污染的主要污染源是军马造纸厂、桩西采油厂、孤岛采油厂工业及生活污水。
(10)武家大沟
武家大沟有机污染指标化学需氧量在三个水期都超标,最大超标倍数为1.93倍,生化需氧量和溶解氧有一个水期超标,超标倍数分别为0.027和1.305倍。
结论:武家大沟水质污染比其他河流轻,属有机污染类型。污染的主要原因是现河采油厂的王家岗站所排的采油废水及附近的地方企业排放的废水。
2.油田浅海海水
胜利油田浅海滩涂地下油藏丰富,是重点开发区之一,这个区域又是我国的传统渔场,是渤海经济鱼虾、贝类产卵孵化和育肥的良好场所和水产养殖基地。在石油开采过程中,石油类等污染物会对近海水造成一定影响。此外,河流污水未经处理直接排向大海,对近岸海域的水质也有较大的影响。
为了全面了解油田浅海水的质量状况,胜利油田曾在1989年组织了《胜利油田开发建设与浅海滩涂石油勘探开发区域环境影响评价及研究》课题,对浅海海域的水质及浅海滩涂底质的污染状况进行了全面的调查与评价。当时的海域调查范围北起马颊河口,南至潍河口,海域的经纬度范围为117°58.3′~119°30.1′E,37°11.6′~38°50.6′N。浅海调查海域包括0~15m等深线水域,共设12条断面,大面观测站49个。49个大面观测站中包括3个连续观测站,对有关水质参数每隔两小时测一次,历时24小时连续监测。浅海调查时间在枯水期(5月)和丰水期(8月)各进行一个航次。浅海水质调查的采样层次是水深小于10m者,只采表层,水深10~15m者,采表底两层。评价方法采用1990年3月国家海洋局海洋环境保护研究所《中国近海水质评价方法研究报告》所推荐的方法,评价标准用海水水质标准GB3097—82中第一类海水标准。海水质量分为4个等级:A、B、C、D,A、B、C级大致相当于一类、二类、三类海水,劣于三级海水者属于D级。除了排污口以外,任何海域不允许D级海水存在(图5-6)。
海水水质评价结果为:
(1)单项海水水质等级
COD:超标站位1个,位于神仙沟口,超标率1.7%,仅神仙沟口潮间带出现D级水质,并影响到附近浅水域,使其水质等级为C级到B级,其余评价海域COD水质均为A级。
石油:超标站位7个,其中6个在潮间带,一个在小清河附近,超标率12%。石油类在海域里造成的局部污染是明显的,尤其突出的有两处,一是神仙沟口潮间带,二是旺河口与小清河口潮间带。石油的水质等级最差的出现在神仙沟口,为D级。孤东、小清河口潮间带均为B级。
挥发酚:挥发酚的超标站位主要在孤东和神仙沟口的潮间带,超标站位3个,超标率11.5%。挑河口、神仙沟口、黄河口、小清河、旺河口一直到莱洲湾底部一带沿岸区域水质均为A级。
图5-6油田浅海海水水质分区图
(2)综合海水水质等级
将两个水期的平均结果做出综合水质等级评价,水质最差的地方是在神仙沟口的潮间带,其主要污染物是石油和COD,尤其是石油超标较高。B级水质在靠近潮间带的一小块区域以及广利河口潮间带区域,潮下带就基本是A级水质。调查区绝大部分区域的水质属于A级,即一般的一类海水水质。
由于底质能很好地反映出水域环境的污染状况和污染历史,此次调查除了海水水质以外,对浅海滩涂的底质污染状况也进行了相应的评价。
(3)浅海、滩涂底质状况
通过对浅海、滩涂地质调查发现:除了孤东油田潮间带底质超标以外,其他区域的滩涂及浅海底质均未超标。孤东油田受油污染存在灰黑色稀泥的底质宽度约100m。从污染程度上看极其严重,石油污染超标40倍,硫化物的污染超标2.5倍,酚和有机质的含量也是全区最高值。从污染发展的速度来看:1986年10月胜利油田对孤东油田进行环境影响评价工作时,该区域底质质量尚好,无超标项目,也未见明显的油污染。目前状况显然是1986年以后油田排出的污水中的石油在滩涂的底质上迅速积累所致。
此外,通过对整个区域底质污染指数分析可以发现:滩涂的污染指数最小,浅海近岸底质的指数大于滩涂,而小于离岸较远的浅海。显示出底质污染指数由滩涂向深水方向递增的条带状分区现象(这一点与浅海海水水质条带分区正好相反),这一方面反映了石油等污染物入海后主要是随细悬浮物输移到水动力较弱的海域沉积下来的的趋势;另一方面也是由于滩涂近岸水浅,水交换充分,氧化电位高,污染物不易形成所致。
总之,通过此次对黄河三角洲海岸带浅海水质及底质的全面调查可以看出:1989年时海水污染主要是在孤东油田的近海,由于油田濒临海边,排涝站直接将水排入海内,对海水影响较大,但污染仅限于潮间带,特别是神仙沟口和广利河口水质较差,除此之外大部分地区浅海水质基本上属于一般一类海水水质。
10年以后,通过收集到的1999年度对近岸海域的水质监测资料,根据GB3097—1997标准进行评价,另外根据海域功能区的不同,分别采用Ⅲ类标准、Ⅱ类标准进行评价,其中东营港、渤海埕岛石油开发区按Ⅲ类标准进行评价,其余按Ⅱ类标准进行评价。近海海域水质状况评价结果见表5-6。
表5-6近海海域水质状况评价结果表
通过1989年和1999年对海水水质的评价对比,尽管评价所采用的标准有所不同,超标项目也无法进行有效对比,但总体上1989年大部分区域的浅海海水属于一般的一类海水水质,主要污染区域孤东油田潮间带也多为二级海水水质,而1999年调查区海水水质状况多为三级水质,污染有所加重,污染区域也有扩大的趋势,应引起高度重视,防止污染的进一步扩大和加重。
结论:自1986年以来,浅海海水污染有所加重,污染区域也有扩大的趋势。
3.地下水
黄河三角洲局部地区浅层地下水污染元素含量超过家庭饮用水标准,污染严重的地区主要分布在排污河道沿岸、城镇和工业集中区。此外东营市地势偏低,受外来污水影响严重,据监测,东营市地下水污染主要是浅层地下水污染,以石油、挥发酚、COD为主,以广饶县南部浅层淡水分布区的地下水污染对人危害最大。尤其淄河沿岸地下水,局部地区肉眼可辨水颜色发黄、发黑。另外,在浅层地下水中,农药残留也有检出,据1992~1995年的检测结果,主要有乐果(检出值0.4~12mg/dm3,)、“六六六”(检出值0~0.18mg/dm3)、DDVP(检出值0.3~10.5mg/dm3)、“四〇四九”(检出值0.1~0.5mg/dm3)。人们正逐渐意识到地下水污染的危害,品尝到了人类自己酿成的苦果,因为已经发现了可能与地下水污染或者与早期污水灌溉有关的可疑病区,肝大、癌症发病率高(图5-7)。
图5-7浅层地下水质量分区示意图
(1)淄河沿岸地下水的污染
淄河是一条重度污染河流,由于两岸浅层地下水开采强度大,因而淄河的污水对地下水有较强的补给作用,造成沿岸地下水严重污染,近岸地带地下水具有异味,颜色呈黄灰色,60m以上的浅层地下水已不能饮用。
据垂直淄河布设的地下水取样点分析资料,主要污染物为挥发酚、油,并且砷和六价铬也有检出,挥发酚超过饮用水标准4.5~4.7倍。地下水的污染程度随着距淄河的距离加大而减小,污染区分布在淄河西岸梧村—皂户李—黄丘—白兔丘一带和东岸西朱营—杨庄—李璩—郭辛一带的临河地区,面积约32km2。污染区沿淄河呈条带状展布,宽度2~3km,污染区边界距淄河的距离一般为1.0~1.5km。区内浅层地下水中石油类的含量一般为0.18~0.50mg/L,超过生活饮用水卫生标准,COD的含量一般为0.90~2.00mg/L,最高为8.68mg/L,超过生活饮用水卫生标准。另外,区内浅层地下水中Cr6+和Mo的检出率较高,Cr6+的检出率约为40%,含量一般为0.005~0.025mg/L。Mo的检出率约为80%,含量一般为0.001~0.005mg/L(见表5-7)。
表5-7淄河沿岸地下水污染监测断面水质分析成果表
未污染区分布在距淄河较远的呈羔—大张—晋王一带和大张淡—西营一带,面积约109km2。该区距淄河较远,浅层地下水仅受到轻微污染。该区浅层地下水中COD的含量一般为0.87~1.17mg/L,Cr6+含量一般为0.008mg/L。Mo含量一般为0.001~0.002mg/L,它们的含量均低于生活饮用水卫生标准。该区浅层地下水基本满足人畜供水水质要求(图5-8)。
图5-8淄河沿岸地下水污染评价分区示意图
区内中深层地下水基本未受污染,水质良好,仅个别村庄因开采中深层地下水造成串层污染,其污染呈点状,污染范围较小。这些污染点主要分布在南部淄河沿岸的杨庄、赵庄、明庄和北部的王昌屋子、常徐庄等村。南部发生串层污染的深井距淄河的距离都小于200m,它们均开凿于20世纪80年代初,井深小于160m,其主要污染物为石油类和Cr6+,石油类的含量一般为0.44~1.06mg/L,超过生活饮用水卫生标准。Cr6+含量一般为0.01~0.02mg/L。北部中深层地下水污染也是由上部咸水串层污染引起。
(2)小清河沿岸地下水的污染
小清河为严重污染河流,受小清河水影响,两岸浅层地下水已受到较严重的污染,地下水检出有机化合物58种,有31种直接来源于工业废水和小清河水,个别取样点苯并(A)芘和CCL4浓度已分别超过我国生活饮用水标准几倍乃至上百倍,污染程度严重。浅层地下水污染本质为有机化合物的污染,已有研究成果表明,潜水含水层纵向弥散度为0.42m,小清河污染物质向潜水扩散速度1年约2.8m,现浅层地下水污染范围已达500m左右。小清河在枯水期、平水期排泄两岸地下水,仅在丰水期对浅层地下水有短期的补给,因此,小清河对地下水的污染,主要是通过污染物质的弥散作用。另一个污染途经则是小清河污水灌溉,据调查,小清河两岸仍有污水灌溉区,这加剧了地下水和土壤以及粮食作物的污染。
(3)黄河三角洲平原区地下水污染现状
小清河以北的黄河三角洲平原区是胜利油田主要石油开发区,东营市的主要工业企业也在区内,地下水亦受到不同程度的污染。以取样点资料分析,地下水污染带主要分布于地表污染源附近,在远离污染源的地带,地下水受污染程度较轻。主要污染物为油、挥发酚和重金属镉、铅、六价铬,如表5-8。
结论:区内主要是浅层地下水受到污染,主要污染物是大肠菌群、细菌总数、石油类、COD和氨氮,其中以大肠菌群、石油类和总磷最为严重。污染严重的地区主要分布在排污河道沿岸、城镇和工业集中区,其他地区污染轻微。相比之下深层地下水受污染程度较小,超标项目主要是石油类和挥发酚。但在该区内,由于地下水的开发利用较少,对地下水的污染没有引起足够的重视,现在的监测工作也做得较少。
4.水库
区内水库的水质总体上良好,基本未受到石油开发带来的负面影响。通过对辛安水库、广南水库、孤东水库、广北水库、孤北水库、耿井水库、民丰水库水质的检测结果,其pH值范围在7.69~8.42,其最高值虽然接近8.5标准但尚未超过,基本属于中偏碱性水质。虽然各水库水源来自黄河,但由于储水时间较长,又受地表含盐量高的影响,使各水库水质酸碱度增加,尤其是耿井水库。各水库中有机污染物都有检出,挥发酚和氰化物检出率不低于80%,但均低于国家地面水1类水标准。水库水质中值得注意的是微生物污染问题,国家Ⅲ类水质标准规定,总大肠杆菌群数为1万个/L,广北水库大肠菌数高达3万个/L。这种现象明显说明受人为影响严重,居民生活、放牧是造成微生物污染的主要原因,需要净化消毒处理才能作为饮用水。
结论:区内水库的水质总体上良好,基本未受到石油开发带来的负面影响,水库水质中值得注意的是微生物污染问题。
表5-8黄河三角洲平原区浅层地下水污染监测数据
⑼ 我国石油化工行业节水潜力有多大
我国是人均水资源贫乏的国家,人均水资源仅为世界平均水平的四分之一。我国工业用水量占总用水量的20%,工业废水排放量占全国废水排放量的49%。工业用水效率低、增长快、污染重是我国水资源应用中的重要问题。我国石油天然气行业是用水和废水排放大户,因此节水成为一项十分重要和迫切的任务。
1997年全国加工原油1.54亿吨,其中中国石油化工总公司加工1.25亿吨,炼油行业消耗新鲜水4.26亿吨(按工业用水统计为3.66亿吨),平均加工每吨原油耗水3.41吨(按工业用水统计为2.93吨);排放废水总量为2.96亿吨(按工业废水统计为2.73亿吨),加工每吨原油排放废水2.37吨(按工业废水统计为2.19吨)。2000年,中国石油天然气股份有限公司加工1吨原油用新鲜水平均在1立方米以上,最高的公司达3.95吨。
国外炼油企业加工1吨原油用新鲜水仅为0.5吨,加工1吨原油废水排放量大多在0.1吨以下,先进水平仅0.01吨。国外有的炼油厂甚至可以做到废水全部回用,基本上不向外排放废水。如日本兵库炼油厂,平均加工1吨原油的废水排放量仅为6~7千克;日本科斯莫(COSMO)公司千叶炼油厂,炼油能力为1200万吨/年,年排放废水不到3000吨,平均每加工1吨原油排放废水不到0.25千克。我国只有燕山石化公司炼油厂、齐鲁石化公司炼油厂、镇海炼化公司炼油厂、福建炼油厂、济南炼油厂和林源炼油厂加工每吨原油排放废水小于1吨,比兵库炼油厂排放量高100~130倍,比COSMO公司千叶炼油厂排放量高3000~4000倍,而其他炼油厂差距更大。1997年全国加工1.54亿吨原油,与国外一般水平比较,约多排放废水2.6亿吨,相当于多耗新鲜水3亿吨。如果与国外先进水平比,约多排放废水3.49亿吨,相当于多耗新鲜水4亿吨。全国炼油厂废水排放率如果都能达到兵库炼油厂水平,一年可少排放废水3.64亿吨,相当于少消耗新鲜水4亿吨,每吨水价格按0.45元计算,可以节约1.8亿元。可见节水潜力的经济效益很可观。
中国的石油天然气企业都在采取具体措施来节约用水,但由于各种技术和管理方面的原因,节水目标的实现还有一个过程。中国石油天然气股份公司制定的2005年主要用水指标为:加工1吨原油用新鲜水1立方米;在化工产品产量比2000年增长53%时,新鲜水用量不增;炼化系统水的重复利用率整体达到95%时,重点企业达到97%;炼化系统循环水浓缩倍数整体达到3.5~4.5,重点企业达到5~6;炼化系统凝结水回收率达到70%,重点企业要达到80%;炼化系统污水回用量达到30%,重点企业要达到50%;油气田采油污水有效回用率达到95.5%。
炼油化工生产采取的节水措施有:提高循环水浓缩倍数;回收利用凝结水;炼油污水处理回用;海水利用;加强用水计量和监测工作;加强管理和考核等。
⑽ 医疗废水处理后中石油类一般是多少呢动植物油呢今天检测到石油类4.8904,不应该有这么多石油
医疗废水处理后,石油类应小于5mg/l,动植物油也应小于5mg/l,如果检测结果石油类为4.89045mg/,充分说明处理结果是达标排放的,至于石油类的来源,请观察是否有汽修厂,机械加厂等企业。