⑴ 地下水中的砷主要是以阳离子形态存在还是阴离子
地下水中的砷主要是以阳离子形态存在还是阴离子
胶体实际可以分为溶胶(氢氧化铁胶体,硫化砷胶体),大分子溶液(橡胶,蛋白质,淀粉溶于水或其他溶剂),缔合胶体(以表面活性剂包覆非水相物质的水溶液)等。他们实际上并不属于原子,分子,或离子水平的物质,拿氢氧化铁胶体为例,它属于溶胶的一种,其写法
{【Fe(OH)3】m·nFeO+·(n-x)Cl-}x+·xCl-
*以上结构式除(n-x)外,其余+,-号均表示电荷量,应摆在右上角
以上称作胶束;{【Fe(OH)3】m·nFeO+·(n-x)Cl-}x+称为胶粒;【Fe(OH)3】m称为胶核
由此可知,胶粒实际上是以离子,分子或极小的其他微粒为中心胶核,结合其他微粒形成的一个大微粒,,即使上文所说大分子溶液也是如此,它不是分子,更不是离子,而是一种复杂得多的物质,是各种粒子之间以静电力相结合的粒子集团作为分散相的分散体系
⑵ 砷污染的主要原因
1.1 随着大气沉降进入土壤的重金属
1.2 随污水进入土壤的重金属
1.3 随固体废弃物进入土壤的重金属
1.4 随农用物资进入土壤的重金属
⑶ 砷在环境中存在的主要化学形态有哪些
砷,符号As,
原子序数
33。旧名“砒”。有灰、黄、黑褐三种
同素异形体
,具有
金属性
。
原子量
74.92,比重5.73(14℃),熔点814℃,615℃时升华。不溶于水,溶于硝酸和
王水
。在潮湿空气中易被氧化。主要以硫化物矿的形式(如雄黄As2S2,雌黄As2S3等)存在于自然界。
⑷ 污水处理中微生物活性时好时坏,是何原因
影响微生物活性的关键因素
1、营养物质的比例B:N:P。另外还需要一些微量元素,如铁、锌、锰等。
2、温度50~70;-5~0;是微生物无法适应,直接死亡的危险温度。处理污水的各类微生物适宜在20~35。
在适宜的温度范围内,温度越高,微生物的活性越强,处理效果也越好;反之则相反。
3、pH水解酸化微生物可在PH3.5—10范围内生存,最佳为:5.5--6.5。硝化微生物在PH8—9范围内最强,小于6.5要加碱;
反硝化微生物在PH8—9范围内能进行正常反应,最佳是在6.5—8的范围内,小于6.5时要加碱;
除磷微生物在6.5—8内能正常进行,如小于6.5时要加碱。一般应将PH控制在6.5—8或6.5—9的范围内。
4、有毒有害物质
毒 物 抑制浓度 毒 物 抑制浓度 铝 15--26 铅 0.1 氨 480 锰 10 砷 0.1 镁
硼(硼酸盐) 0.05--100 汞 0.1—5 镉 10--100 镍 1—2.5 钙 25 00 银 5 三价铬 1--10 硫酸盐 3000 铜 1 锌 0.08--10 铁 1000 酚 200
其他有重金属毒物质的毒性影响及排放企业
氰化物(CN):氰化物是剧毒物质,急性中毒时抑制细胞呼吸,造成人体组织严重缺氧,对人的经口致死量为0.05-0.12g。
排放含氰废水的工业主要有电镀、焦炉和高炉的煤气洗涤,金、银选矿和某些化工企业等,含氰浓度约为20—79mg/L之间。
氰化物在水中的存在形式有无机氰(如氰氢酸HCN、氰酸盐CN—)及有机氰化物(称为腈,如丙烯腈C2H3CN)。我国饮用水标准规定,氰化物含量不得超过0.05mg/L,农业灌溉水质标准规定为不大于0.5mg/L。
砷(As):砷是对人体毒性作用比较严重的有毒物质之一。砷化物在污水中存在形式有无机砷化物(如亚砷酸盐As02,砷酸盐As03—4)以及有机砷(如三甲基砷)。
三价砷的毒性远高于五价砷,对人体来说,亚砷酸盐的毒性作用比砷酸盐大60倍,因为亚砷酸盐能够和蛋白质中的硫反应,而三甲基砷的毒性比亚砷酸盐更大。
砷也是累积性中毒的毒物,当饮水中砷含量大于0.05mg/L时就会导致累积。近年来发现砷还是致癌元素(主要是皮肤癌)。
工业中排放含砷废水的有:化工、有色冶金、炼焦、火电、造纸、皮革、等行业。其中以冶金、化工排放砷含量较高。我国饮用水标准规定,砷含量不应大于0.04mg/L,农田灌溉标准是不高于0.05mg/L,渔业用水不超过0.1mg/L。
重金属:重金属指原子序数在21-83之间的金属或相对密度大于4的金属,其中汞(Hg)、镉(Cd)、铬(Cr)、铅(Pd)毒性最大,危害也最大。
汞(Hg):汞是重的污染物质,也是对人体毒害作用比较严重的物质。汞是累积性毒物,无机汞进入人体后随血液分布全身组织,在血液中遇氯化钠生成二价汞盐累积在肝、肾和脑中,在达到一定浓度后毒性发作,其毒理主要是汞离子与酶蛋白的硫结合,抑制多种酶的活性,使细胞的正常代谢发生障碍。
甲基汞是无机汞在厌氧微生物的作用下转化而成的。甲基汞在体内约有15%的累积在脑内,侵入中枢神经系统,破坏神经系统功能。
我国饮用水、农田灌溉水都要求汞的含量不得超过0.001mg/L,渔业用水要求更为严格,不得超过0.0005mg/L。
排放含汞废水的主要有:含汞废水排放量较大的是氯碱工业,因其在工艺上以金属汞作流动阴电极,以制成氯气和苛性钠,有大量的汞残留在废水盐水中。
聚氯乙烯、乙醛、醋酸乙烯的合成工业均以汞作催化剂,因此上述工业废水中含有一定数量的汞。此外,在仪表和电气工业中也常使用金属汞,因此也排放含汞废水。
镉(Cd):镉也是一种比较广泛的污染物质。镉是一种典型的累积富集型毒物,主要累积在肾脏和骨骼中,引起肾功能失调。骨质中钙被镉所取代,使骨质软化,造成自然骨折,疼痛难忍。这种病潜伏期长,短则10年,长则30年,发病后很难治疗。
每人每日允许摄入的镉量为0.057-0.071 mg。我国饮用水标准规定:镉的含量不得大于0.01 mg/L,农业用水下渔业用水标准则规定要小于0.005 mg/L。镉主要来自采矿、冶金、电镀、玻璃、陶瓷、塑料等生产部门的废水。
铬(Cr):铬也是一种较普遍的污染物。铬在水中以六价和三价二种形态存在,三价铬的毒性低,作为污染物质所指的是六价铬。人体大量摄入能够引起急性中毒,长期少量摄入也能引起慢性中毒。
六价铬是卫生标准中的重要指标,饮用水中的浓度不得超过0.05 mg/L,农业灌溉用水与渔业用水应小于0.1 mg/L。
排放含铬废水的工业企业主要有:电镀、制革、铬酸盐生产以及铬矿石开采等。电镀车间是产生六价铬的主要来源,电镀废水中铬的浓度一般在50-100 mg/L。
生产铬酸盐的工厂,其废水中六价铬的含量一般在100-200 mg/L之间。皮革鞣制工业排放的废水中六价铬的含量约为40 mg/L。
铅(Pd):铅对人体也是累积性毒物。据美国资料报道,成年人每日摄取铅低于0.32 mg时,人体可将其排除而不产生积累作用;摄取0.5-0.6mg,可能有少量的累积,但尚不至于危及健康。
如每日摄取量超过1 mg,即将在体内产生明显的累积作用,长期摄入会引起慢性中毒。其毒理是铅离子与人体多种酶结合,从而扰乱了机体方面的生理功能,可危及神经系统、造血系统、循环系统和消化系统。
我国饮用水、渔业用水及农田灌溉用水都要求铅的含量小于0.1 mg/L。含铅废水主要来源于:采矿、治炼、化学、蓄电池、颜料工业等。
⑸ 污水中有害物质
污水中有害物质可分为三类:重金属、病原微生物、有机化学物
重金属:包括铁锈、泥沙、铅、汞、锌、铬等等,常饮重金属超标的水极易引起人体骨痛、痴呆、结石等疾病;
病原微生物:常饮细菌超标的水极易引起人体霍乱、甲肝、感冒、非典、禽流感、传染病等等;
有机化学物:化肥、农药、自来水中的余氯等有机化学物极易引起人体细胞突变、肿瘤、畸形等疾病的发生。
重金属废水是指矿冶、机械制造、化工、电子、仪表等工业生产过程中排出的含重金属的废水。重金属(如含镉、镍、汞、锌等)废水是对一环境污染最严重和对人类危害最大的工业废水之一,其水质水量与生产工艺有关。废水中的重金属一般不能分解破坏,只能转移其存在位置和转变其物化形态。处理方法是首先改革生产工艺,不用或少用毒性大的重金属,在生产地点就地处理(如不排出生产车间)常采用化学沉淀法、离子交换法等进行处理,处理后的水中重金属低于排放标准可以排放或回用。形成新的重金属浓缩产物尽量回收利用或加以无害化处理
生活污水、畜禽饲养场污水以及制革、洗毛、屠宰业和医院等排出的废水,常含有各种病原体,如病毒、病菌。病原微生物是指可以侵犯人体,引起感染甚至传染病的微生物,或称病原体。病原体中,以细菌和病毒的危害性最大。病原微生物指朊毒体、寄生虫(原虫、蠕虫、医学昆虫)、真菌、细菌、螺旋体、支原体、立克次体、衣原体、病毒。
有机化学物污水易造成水质富营养化,危害比较大。在生活污水、食品加工和造纸等工业废水中,含有碳水化合物、蛋白质、油脂、木质素等有机物质。这些物质以悬浮或溶解状态存在于污水中,可通过微生物的生物化学作用而分解。在其分解过程中需要消耗氧气,因而被称为耗氧污染物。这种污染物可造成水中溶解氧减少,影响鱼类和其他水生生物的生长。水中溶解氧耗尽后,有机物进行厌氧分解,产生硫化氢、氨和硫醇等难闻气味,使水质恶化。水体中有机物成分非常复杂,耗氧有机物浓度常用单位体积水中耗氧物质生化分解过程中所消耗的氧量表示。
⑹ 地表水砷主要以什么价态存在
陆地水中溶解态砷的含量通常在以下,常以砷(三价)、砷(五价)两种价态形式存在,其化合物均有毒性,三价化合物比五价化合物毒性强,多以砷酸盐状态存在。
⑺ 砷的在自然界中是以什么形态存在
以固态存。在元素原子量:74.92,元素类型:非金属.砒霜为三氧化二砷,晶体结构:晶胞为三斜晶胞。
氧化态:
化学键能: (kJ /mol)
As-H 245
As-C 200
As-O 477
As-F 464
As-Cl 293
As-As 348
莫氏硬度:3.5
电离能 (kJ/ mol)
M - M+ 947
M+ - M2+ 1798
M2+ - M3+ 2735
M3+ - M4+ 4837
M4+ - M5+ 6042
M5+ - M6+ 12305
M6+ - M7+ 15400
M7+ - M8+ 18900
M8+ - M9+ 22600
M9+ - M10+ 26400
晶胞参数:
a = 375.98 pm
b = 375.98 pm
c = 1054.75 pm
α = 90°
β = 90°
γ = 120°
发现过程:
1250年,罗马的马格努斯在由雄黄与肥皂共热时得到砷[1]。
元素描述:
有黄、灰、黑褐三种同素异形体。其中灰色晶体具有金属性,脆而硬,具有金属般的光泽,并善于传热导电,易被捣成粉沫。密度5.727克/立方厘米。熔点817℃(28大气压),加热到613℃,便可不经液态,直接升华,成为蒸气,砷蒸气具有一股难闻的大蒜臭味。砷的化合价3和5。第一电离能9.81电子伏特。游离的砷是相当活泼的。在空气中加热至约200℃时,有萤光出现,于400℃时,会有一种带蓝色的火焰燃烧,并形成白色的氧化砷烟。游离元素易与氟和氮化合,在加热情况亦与大多数金属和非金属发生反应。不溶于水,溶于硝酸和王水,也能溶解于强碱,生成砷酸盐。
元素来源:
主要以硫化物矿形式存在,有雄黄(As4S4)、雌黄(As2S3)、砷黄铁矿(FeAsS)等。由三氧化二砷用碳还原而制得。
元素用途:
砷作合金添加剂生产铅制弹丸、印刷合金、黄铜(冷凝器用)、蓄电池栅板、耐磨合金、高强结构钢及耐蚀钢等。黄铜中含有重量砷时可防止脱锌。高纯砷是制取化合物半导体砷化镓、砷化铟等的原料,也是半导体材料锗和硅的掺杂元素,这些材料广泛用作二极管、发光二极管、红外线发射器、激光器等。砷的化合物还用于制造农药、防腐剂、染料和医药等。
用于制造硬质合金;黄铜中含有微量砷时可以防止脱锌;砷的化合物可用于杀虫及医疗。砷和它的可溶性化合物都有毒。
元素辅助资料:
砷在地壳中含量并不大,但是它在自然界中到处都有。砷在地壳中有时以游离状态存在,不过主要是以硫化物矿的形式存在如雌黄(As2S3)、雄黄(As2S2)和砷黄铁矿(FeAsS)。无论何种金属硫化物矿石中都含有一定量砷的硫化物。因此人们很早就认识到砷和它的化合物。
经过分析,在我国商代时期的一些铜器中有砷,有的多达4%。铜砷合金中含砷约10%时呈现白色,有锡时含砷少一些,也可得银白色的铜。我国古代劳动人民创造了白铜。
砷的硫化物矿自古以来被用作颜料和沙虫剂、灭鼠药。硫化合物具有强烈毒性,今天砷的拉丁名称 arsenium和元素符号As正是由这一词演变而来。
1世纪希腊医生第奥斯科里底斯叙述烧砷的硫化物以制取三氧化二砷,用于医药中。三氧化二砷在我国古代文献中称为砒石或砒霜。小剂量砒霜作为药用在我国医药书籍中最早出现在公元973年宋朝人编辑的《开宝本草》中。
西方化学史学家们一致认为从砷化合物中分离出单质砷的是13世纪德国炼金家阿尔伯特·马格努斯,他是用肥皂与雌黄共同加热获得单质砷的。比中国的葛洪大概晚了900年。
到18世纪,瑞典化学家、矿物学家布兰特阐明砷和三氧化二砷以及其他砷化合物之间的关系。拉瓦锡证实了布兰特的研究成果,认为砷是一种化学元素。
砷的拉丁名称arsenicum和元素符号As来自希腊文arsenikos,原意是“强有力的”,“男子气概”,表示砷化合物在医药中的作用。
[编辑本段]砷过量表现
砷的素性与其化合物有关,无机砷氧化物及含氧酸是最常见的砷中毒的原因。
通过尿砷检测可确定是否中毒,暂行标准是尿砷含量达到0.09mg/L以上为中毒。检测发砷也可以了解砷中毒情况,中毒暂行标准为发砷含量达到0.06μg/g以上为中毒。但受环境污染的影响,各地区应有本地区的发砷正常含量的标准。
砷的简介
砷在自然界中主要以硫化物的形式存在,如雌黄和雄黄。最常见的化合物为砷的氢化物AsH3或称胂。砷以三价和五价状态存在于生物体中,三价砷在体内可以转化为甲基或甲基砷化物。
⑻ 含砷废水怎样处理
处理含砷废水,目前国内外主要有中和沉淀法、絮凝沉淀法、铁氧体法、硫化物沉淀法等,适用于高浓度含砷废水,生成的污泥易造成二次污染。在化学法方面的研究已经比较成熟,很多人曾在这方面做了深入的研究。
1 化学法处理含砷废水
中和沉淀法作为工程上应用较广的一种方法,很多人在这方面作了深入的研究,机理主要是往废水中添加碱(一般是氢氧化钙)提高其pH,这时可生成亚砷酸钙、砷酸钙和氟化钙沉淀。这种方法能除去大部分砷和氟,且方法简单,但泥渣沉淀缓慢,难以将废水净化到符合排放标准。
絮凝共沉淀法,这是目前处理含砷废水用得最多的方法。它是借助加入(或废水中原有)Fe3+、Fe2+、Al3+和Mg2+等离子,并用碱(一般是氢氧化钙)调到适当pH,使其形成氢氧化物胶体吸附并与废水中的砷反应,生成难溶盐沉淀而将其除去。其具体方法有,石灰-铝盐法、石灰-高铁法、石灰-亚铁法等。
铁氧体法,在国外,自70年代起已有较多报道,工艺过程是在含砷废水中加入一定数量的硫酸亚铁,然后加碱调pH至8.5-9.0,反应温度60-70℃,鼓风氧化20-30分钟,可生成咖啡色的磁性铁氧体渣。Nakazawa Hiroshi 等研究指出,在热的含砷废水中加铁盐(FeSO4或Fe2(SO4)3),在一定pH下,恒温加热1 h。用这种沉淀法比普通沉淀法效果更好。特别是利用磁铁矿中Fe3+盐处理废水中As(III)、As(V),在温度90℃,不仅效果很好,而且所需要的Fe3+浓度也降到小于0.05mg/L。赵宗升曾从化学热力学和铁砷沉淀物的红外光谱两个方面探讨了氧化铁砷体系沉淀除砷的机理,发现在低pH值条件下,废水中的砷酸根离子与铁离子形成溶解积很小的FeAsO4,并与过量的铁离子形成的FeOOH羟基氧化铁生成吸附沉淀物,使砷得到去除。
马伟等报道,采用硫化法与磁场协同处理含砷废水,提高了硫化渣的絮凝沉降速度和过滤速度,并提高了硫化剂的利用率。研究发现经磁场处理后,溶液的电导率增加,电势降低,磁化处理使水的结构发生了变化,改变了水的渗透效果。国外曾有人提出在高度厌氧的条件下,在硫化物沉淀剂的作用下生成难溶、稳定的硫化砷,从而除去砷。
化学沉淀法作为含砷废水的一种主要处理方法,工程化比较普遍,但并不是采用单一的处理方式,而是几种处理方式的综合处理,如钙盐与铁盐相结合,铁盐与铝盐相结合等等。这种综合处理能提高砷的去除率。但由于化学法普遍要加入大量的化学药剂,并成为沉淀物的形式沉淀出来。这就决定了化学法处理后会存在大量的二次污染,如大量废渣的产生,而这些废渣的处理目前尚无较好的处理处置方法,所以对其在工程上的应用和以后的可持续发展都存在巨大的负面作用。
2 物化法处理含砷废水
物化法一般都是采用离子交换 、吸附、萃取、反渗透等方法除去废液中的砷。物化法大都是些近年来发展起来的较新方法,实用的尚不多见,但是有众多学者在这方面做了深入的研究,并取得了显著的成果。
陈红等曾利用MnO2对含As(III)废水进行了吸附实验,结果表明,MnO2对As(III)有着较强的吸附能力,其饱和吸附量为44.06mg/g(δ-MnO2)和17.9 mg/g(ε-MnO2),阴离子的存在使MnO2吸附量有所下降,一些阳离子(如Ga3+、In3+)可增加其吸附量,吸附后的MnO2经解吸后可重复使用。
胡天觉等报道,合成制备了一种对As(III)离子高效选择性吸附的螯合离子交换树脂,用该离子交换柱脱砷:含As(III)5 g/L的溶液脱砷率高于99.99%,脱砷溶液中砷含量完全达标,而且离子交换柱用2mol/L的氢氧化钠(含5% 硫氢化钠)作洗脱液洗涤,可完全回收As(III)并使树脂再生循环利用。
刘瑞霞等也曾制备了一种新型离子交换纤维,该离子交换纤维对砷酸根离子具有较高的吸附容量和较快的吸附速度。实验表明该纤维具有较好的动态吸附特性,30mL 0.5mol/L氢氧化钠溶液可定量将96.0 mg/g吸附量的砷从纤维上洗脱。
另外,还有不少人作了用钢渣、选矿尾渣、高炉冶炼矿渣等废渣处理含砷废水的研究,取得了不错的成果。但由于物化法只能处理浓度较低,处理量不大,组成单纯且有较高回收价值的废水,而工业废水的成分较复杂,所以物化法的工程化程度较低。
3 微生物法处理含砷废水
与传统物理化学方法相比,用微生物法处理含砷废水具有经济、高效且无害化等优点,已成为公认最具发展前途的方法。
3.1 活性污泥
国内外诸多研究表明,活性污泥ECP(胞外多聚物)能大量吸附溶液中的金属离子,尤其是重金属离子,他们与ECP的络合更为稳定。关于吸附机制,在ECP的复杂成分中吸附重金属离子的似乎是糖类。Brown和Lester(1979)指出ECP中的中性糖和阴离子多糖有着吸附不同金属离子的结合点位,不同价态或不同电荷的金属离子可以在不同的点位与 ECP结合,如中性糖的羟基、阴离子多聚物的羟基都可能是金属的结合位。Kasan、Lester、Modak和Natarajam等认为:活性污泥对重金属离子的吸附有两种机制即表面吸附和胞内吸收;表面吸附是指活性污泥微生物的胞外多聚物(甲壳素、壳聚糖等)含有配位基团—OH,—COOH,—NH2,PO43-和—HS等,他们与金属离子进行沉淀、络合、离子交换和吸附,其特点是快速、可逆和不需要外加能量,与代谢无关;胞外吸收通过金属离子和胞内的透膜酶、水解酶相结合而实现,速度较慢需要能量,而且与代谢有关。
此外,Ralinske指出:好氧生物能大量富集各种重金属离子,这些离子积累于细胞外多聚物中,并在厌氧条件下释放回液相中。这就有利于我们在二沉池中分离和沉降重金属离子。
在活性污泥法处理含砷废水的实验中,存在许多影响因素,主要影响因素如下:
(1)砷的浓度及价态
不同价态的砷对活性污泥的毒性不同。实验表明,As(III)对脱氢酶的毒性比As(V)平均大53倍。As(III)对蛋白酶活性的毒性约为As(V)的75倍。还有,As(III)对活性污泥脲酶活性的毒害作用是As(V)的35倍。所以处理含砷废水时有必要将As(III)氧化成As(V)。实验还表明,活性污泥对低浓度砷的去除率高于对高浓度砷的去除率,这是由于污泥的吸附能力有限所造成的。此外,重金属离子浓度小于5mg·L-1时,活性污泥法对污水中有机物的处理效果不受重金属影响,当重金属离子浓度大于30mg·L-1时,活性污泥法污水中有机物的处理效果则大大受到影响。
(2)有机负荷
有机负荷对活性污泥去除五价砷也有较大的影响,有机负荷高,去除率也高。主要有两方面的原因:一是污水中的有机物本身可和五价砷相结合,降低了污水中砷的浓度;二是有机物浓度高有利微生物生长繁殖,这进一步提高活性污泥对五价砷的去除率。此外,有机负荷高还可以防止污泥膨胀。因为在高有机负荷环境中絮状菌比大多数丝状菌有更强的吸附和存贮营养物能力,能够充分利用高浓度的底物迅速增殖,具有较高的比生长速率,抑制了丝状菌的生长。在低负荷下混合液中底物浓度长时间都低,由于缺少足够的营养底物,絮状菌的生长受到抑制,而丝状菌具有较大的比表面积,当环境不利于微生物的生长时,丝状菌会从菌胶团中伸展出来以增加其摄取营养物质的表面积。一方面,伸出絮体之外的丝状菌更易吸收底物和营养,其生长速率高于絮状菌,从而成为活性污泥中的优势菌种;另一方面,丝状菌越多,其菌丝越长,活性污泥越不易沉降,SVI越高,导致了污泥膨胀。
(3)pH
pH 对金属去除影响很大,因为pH不仅影响金属的沉降状态,而且影响吸附点的电荷。一般pH 升高有利于污泥对阳离子金属的吸附。直至产生氢氧化物沉淀,反之则有利于对呈负电荷状态存在的金属的吸附。但是,过高或过低的pH对微生物生长繁殖不利,具体表现在以下几个方面:①pH过低(pH=1.5),会引起微生物体表面由带负电变为带正电,进而影响微生物对营养物的吸收。②过高或过低的 PH还可影响培养基中有机化合物的离子化作用,从而间接影响微生物。③酶只有在最适宜的pH时才能发挥其最大活性,极端的pH使酶的活性降低,进而影响微生物细胞内的生物化学过程,甚至直接破坏微生物细胞。④过高或过低的pH均降低微生物对高温的抵抗能力。
(4)生物固体停留时间(Qc)
Qc对阳离子金属去除有较大影响,因为活性污泥表面常被难溶性或微溶性的多聚物所包围(如多糖),这些多聚物表面的电荷可使金属迅速地得以去除。已经证实,细菌多聚物产生和细菌生长相有关,稳定相和内源呼吸阶段多聚物产量最大,而Qc增大,污泥中细菌处于稳定相和内源呼吸阶段,有利于对金属的去除。
(5)污泥浓度
污泥浓度高,吸附点也随着增加,从而有利于金属的去除。从去除金属的角度出发,高有机负荷,高污泥浓度的运行方式最为理想。
活性污泥法处理含砷废水,不论在处理费用,还是二次污染,或者工程化方面,都比传统处理方法具有相当突出的优势。虽然在理论研究方面还不是十分完善,但是在处理机制和影响因素方面都已达成一定的共识。如果在处理工艺上再进行一定的改进,如往污泥中投加优势菌种,可以改善污水的处理效果;此外,还可以引进生活污水进行混合处理并进行曝气,这样不仅降低了砷的浓度以及砷对污泥的毒害作用,同时还解决了活性污泥的营养源问题,为活性污泥法处理含砷废水的工程化应用开辟了一片新天地。
3.2 菌藻共生体
国外研究表明,生物迁移转化作为一种新的微生物法处理重金属废水,与传统方法相比,具有更高效,费用更低等优点。用小球藻的生物迁移转化处理重金属废水的工艺,有一些已投入工程运作。
菌藻共生体对砷的去除机理可认为是藻类和细菌的共同作用。许多研究表明,在去除金属过程中,微生物的表面起着重要作用。菌藻共生体中,藻类和细菌表面存在许多功能键,如羟基、氨基、羧基、硫基等。这些功能键可与水中砷共价结合,砷先与藻类和细菌表面上亲和力最强的键结合,然后与较弱的键结合,吸附在细胞表面的砷再慢慢渗入细胞内原生质中。因而在藻类和细胞吸附砷中,可能经过快吸附过程和较慢吸附两过程后,吸附作用才趋于平衡。
廖敏等人曾研究了菌藻共生体对废水中砷的去除效果。研究发现:培养分离所得菌藻共生体中以小球藻为主,此时菌藻共生体积累砷达7.47 g/kg干重。在引入菌藻共生体并培养16h后,其对无营养源的含As(III),As(V)的废水除砷率达80%以上,并趋于平衡,含营养源的As(III)、As(V)的废水中,菌藻共生体对As(V)的去除率大于As(III),对As(V)去除率超过70%,但对As(III)的去除率也在50%以上,在除砷过程中同时出现砷的解吸现象。在无营养源条件下,对As(III)、As(V)混合废水的除砷率超过80%。
菌藻共生体是一种易培养获得的材料。其对废水中的砷具有较强的去除力,并能同时去除废水中的营养物,因此其在含砷废水的处理运用中有着广阔的前景。
3.3 投菌活性污泥法
投菌活性污泥法(Application of Bio-Augmentation Process with Liquid Live microorganisms)是将具有强活力的细菌投入到曝气池里去,使曝气池混合液内的各种细菌处于最佳活性状态,这样.不仅投入了吸气池内所缺少的细菌,在流入污水水质不变的条件下,微生物氧化作用显著,而且,当污水水质改变,环境变异的情况下,微生物仍能适应,保持活性,其氧化代谢过程依然充分,投入菌液后使曝气池耐冲击负荷,提高污水处理厂的处理效果,改善了出水水质。
投菌活性污泥法(LLMO)是出之一种新的概念,它是根据在同一环境里,最适宜的细菌能自然繁殖,同样,污水处理厂曝气池混合液内的细菌也会自然繁殖到一定数目,自然界无处不可找到细茵,然而,在同一环境里并非可以找到一切细菌这一原则,作为理论指导,从自然界土壤内筛选出污水厂中的有用细菌制成液态的或固态的产品。液态菌液微生物成活率高;固态菌使用前需先用水溶成液态,细菌的成活率较液态菌液低,使用时按一定比例将液态菌液投入曝气池内或投到需用处,投菌活性污泥法(LLMO)在国外已收到良好的应用效果。
因此,我们可望通过向活性污泥中投加对砷具有高耐受力,对砷具有特殊处理效果的混合菌种,达到对砷的高效处理,净化工业含砷废水。
4 前景展望
随着冶金、化工等产业的日益发展,以及含砷制品市场的日益拓大,含砷废水的排放和污染问题,必将影响到人们的生活水平的提高,影响到人类生存环境的改善,所以解决含砷废水的污染问题已迫在眉睫。然而传统的处理方法都存在一定的问题。如化学法,虽然在工程上有了一定的应用,处理效果也较明显,但由于化学药剂的添加,导致了产生大量的废渣,而这些废渣目前尚无较好的处置办法。而物理法的处理费用较高,处理投资非常大,无法进行工程运作。微生物法作为一种最有前途的处理方法,不仅具有高效、无二次污染,而且处理费用低等优点。其中,活性污泥法处理含砷废水的理论在国内外处于热点研究探索中,又由于活性污泥具有的来源广泛,容易培养,处理后二次污染小等一系列优点,使其在工程上的应用成为可能,成为含砷废水的主要处理方法。此外,若对单纯活性污泥法进行工艺上的改进,如引进优势菌种,或掺入生活污水进行混合处理等工艺上的改进,都可能为活性污泥法的应用创造更为广阔的前景。
⑼ 砷污染是什么
砷是剧毒物砒霜的主要组成元素。砷是近代农药、医药、玻璃、皮革、日用化学、合金等工业的重要原料。工农业中含砷化合物的大量制造,是目前环境中砷污染的主要来源。砷污染环境后,除了能引起急性或慢性砷中毒外,对人体有致癌、致突变作用,对动物还有致畸胎作用。
1956年,日本永康公司在制造奶粉时,奶粉中混入了剧毒砷(砒霜)。在日本27个府县都先后出现了砷中毒病人,总计人数达到12000人之多,有120多人因患脑麻痹症死亡,很多婴儿一出生就吃这种奶粉,长到几岁就变成了严重的残废或发育畸形。
我国珠江上游的几个村的农民,在离村不到500米的半山坡上,开了一个炼砒厂,生产方式十分原始。破碎砒霜时,砷尘飞扬,遍地皆是。随着气流和雨水,剧毒的砷把整个村子都污染了。厂里的炼砒工人更惨,癌病发病率达17%,死亡率达55.5%。平均寿命只有45岁。还有一个村子,慢性砷中毒的病人也不少,但附近并没有炼砒厂,后来随水追溯,才发现离村1公里处有4个已经停产多年的炼砒窑,废渣堆上布满白色的砒霜,带蒜臭的砷化氢气味扑鼻而来,土壤中砷含量较正常土壤高出几百倍,所降雨水经过土壤渗流后,含砷量也高于正常值的几百倍。砷不仅污染了附近山村,也污染了珠江,使更多的人深受其害。因此必须引起重视,加以解决,再不能让慢性砷中毒在这些地区一代一代地延续下去。
⑽ 生活污水中含有哪些重金属以及这些重金属的来源
汞、铬、砷、铅、铜、镉、钼、镍等,重金属通过矿山开采,金属冶炼,金属加工及回化工生产废水,化石燃料的答燃烧,施用农药化肥和生活垃圾等人为污染源,以及地质侵蚀,风化等天然源形式进入水体,重金属具有毒性大,在环境中不易被代谢,易被生物富集并有生物放大效应等特点,不但污染水环境,也严重威胁人类和水生生物的生存。