⑴ 【多贝】虎牌、象印、膳魔师,日系三大保温品牌的由来!
一、 虎牌tiger
幸福の温暖魔法
产地:中国上海
日本大阪
の温暖魔
最先说虎牌是因为它在国内的名头最响,在日本也是民用水壶保有量第一,然而说起他的历史却是日本三保里成立最晚的。虎牌热水瓶株式会社(タイガー魔法瓶株式会社),是日本的一个高品质真空瓶及消费电子产品制造的跨国公司,目前,它在中国台湾和北美分别开设有分公司。上图中左下角的上海虎生电子电器有限公司是日本虎牌热水瓶株式会社控股与台湾企业合资在中国投资设立的外商独资企业,1997年成立,是其在中国的子公司,国内卖的虎牌都是这个虎生公司生产的。
1923年(大正12年),创始人是菊池武范(1895.11~1975.5)在大阪市西区设立了菊池制作所,开始销售虎印魔法瓶(如图所示)。纵观虎牌保温瓶诞生的历史,是从“将犹如母亲烹的茶的温暖带给所有人”的初衷开始的。
关于虎牌的来历,后人便把创始人的传记画成漫画,讲菊池武范创业史的漫画,这是篇充满心灵鸡汤的励志故事。
话说,明治28年(1895年)菊池武范生于日本爱媛县西宇和郡三瓶町,父亲是村长,家里还经营着远洋渔业和矿山业,菊池是家中长子,从小住在具有300年历史的祖屋大宅中,是个不折不扣地含着金钥匙出生的富二代。菊池无忧无虑的大少爷生活一直维持到12岁,那年父亲生意失败,豪宅也卖了全家变的一贫如洗,祸不单行的是在那不久父亲又突发脑溢血,菊池小公子一下子就从王子变成了乞丐。
作为家中长子,家道中落的菊池为了养家糊口只能中途辍学去大阪的一家纺织工厂打工。每天从早到晚的辛勤工作,可到了吃饭的时候也只能吃残羹冷饭,这就是在这个时候,小小的菊池开始一边扒拉冷饭一边怀念起昔日妈妈给他烹的热茶泡的饭(日本有种饮食叫做茶渍饭,就是用热茶浇在饭上再配点小菜吃)。故事说到这里,接下来就是主人公跟保温瓶一生一世的死磕的命运了。
时光荏苒,菊池慢慢长大,想去参军却因为营养不良太瘦而落选了。无所事事的菊池有一天路过文具店,就在橱窗里,他邂逅了终其一生追求的真爱——魔法瓶!日本人叫魔法瓶实际上就是我们说的热水瓶。由于热水倒到壶里面一整天也不会冷掉,就像梦一般的魔法,所以当时的日本人称其为魔法瓶。这个名字叫出来真的是比热水瓶浪漫主义多了。
菊池看到魔法瓶里倒出的热腾腾的水,不禁张大嘴惊叹:“哇塞!好神奇啊~”于是就按照壶上面的logo找到了鹰印魔法瓶公司。之后就见到了人生中非常重要的好基友山本富吉。菊池参观了山本的公司后就表示不走了,死气白咧地要跟着山本当学徒做产品。山本也是个一点就燃的天真boy,看到菊池这么诚恳,他激动地大放厥词说:“有了你,咱们将来一定可以造出全日本首屈一指的暖水壶!”
又好几年过去了,菊池把山本的技术学的差不多了,老家的弟弟妹妹也越长越大,家里的开支开始越来越多,菊池一个人的薪水开始养不起一家子了。于是,菊池想要自立门户,可是苦于没有资金。好基友山本给菊池出主意说:“要不你当我魔法瓶的下线,我提供给你货源,你卖出去的利润全归你~”菊池就这样从技术工种一下子变成了销售人员,完成了他最初创业资金的原始积累。
然后就是1923年,菊池设立了菊池制作所开始生产和销售虎印魔法瓶。山本的魔法瓶是“イーグル印”,翻译过来就是鹰印,想必用猛禽名字作为暖水壶的logo再以“印”字结尾是魔法瓶界一贯做法,所以菊池的暖水瓶就选择了具有王者风范的“老虎”作为产品logo,并沿用至今。
公司成立后,菊池发誓要制造出新的产品,妈妈和兄弟姐妹都来帮忙。在当时来说,暖壶还是很奢侈的东西,普通人家需要用一个月的薪水才能买一个瓶子。因为它特别容易摔碎,所以菊池就开始改良壶身,用纸板包裹暖壶的中间保壶胆,外面用容器把它盛进去使用,这样既能防摔又能防止生锈。
于是乎比其他暖水瓶结实5倍以上的虎牌一下子成为了大阪和神户地区网红商品,就在虎牌准备打入东京市场的时候,日本爆发了历史上非常著名的“关东大地震”,那次灾难造成9万人死亡,10万人受伤,神奇的是菊池准备在东京销售的一百来个暖瓶竟然完好无损地保存了下来,一个破损的都没有,这令虎牌一下子名声大震。以此为契机,菊池家的虎牌,逐渐成为了日本魔法瓶领域里的领军人物。
回想年少时期的艰辛的打工生涯,菊池最怀念的就是妈妈给他烹的茶所带来的温暖,所以“妈妈给他倒的茶的温度”成为了虎牌创业的原点。
随着科技的进步,保温瓶逐渐从家中的奢侈品变成了日常生活用品,它的功能也开始变得多样化,随时随地都可以吃到热乎乎的饭菜已经不再是什么新鲜事。虎牌的产品从保温瓶领域逐渐扩展到大家的餐桌领域,越来越多的保温产品成为了我们日常生活中必不可少的部分。
便利的科技和美好的生活应该分享给全世界的人们,热乎乎的茶、好吃的饭菜、人与人之间的分享使生活变得更有幸福感。如今,保温制品早已不在是一国的专利,全世界的人们都在承袭着它的便利,虎牌不过是其中的一个品牌,但科技改变生活却是实实在在影响着我们的日常生活。
二、 膳魔师THERMOS
产地:中国昆山
菲律宾
马来西亚
膳魔师可以说是保温瓶的鼻祖,是三大保温瓶中诞生最早的一个。
1880年代,德国物理学家提出了真空容器的概念,1892年1月20日,苏格兰物理学家和化学家詹姆斯-杜瓦根据真空容器的理论设计出了两层真空的玻璃容器。它的原理是将玻璃吹制一个特殊的玻璃瓶,两层玻璃胆壁都涂满银,然后把两层壁间的空气抽掉,形成真空。这种特殊的低温恒温器就是我们的保温瓶、日本人的魔法瓶的原型,即世界上大名鼎鼎的“杜瓦瓶”。
德国的玻璃制造工匠莱因霍尔德伯格在杜瓦的真空玻璃容器的基础上又加上了一个金属保护壳,1903年在德意志取得专利,并于第二年,即1904年以“THERMOS”为注册品牌,制造出玻璃内胆保温瓶,并在德国柏林成立了“THERMOSG.M.B.H公司”。“THERMOS”来源于希腊语,代表着“暑热、盛夏”的含义。所以,膳魔师原本是个德国品牌,并非日本本土品牌。
图为膳魔师公司初期生产的魔法瓶。THERMOS保温瓶一经推出就掀起了整个欧洲的风潮,到了1907年,更是在英国、美国、加拿大等世界各地建立了分公司,膳魔师开始在世界范围内流行开来。
1903-1905年间膳魔师水壶被怀特兄弟带着飞上了蓝天,1907年,膳魔师保温瓶曾经伴随战地记者理查德哈丁戴维斯探访刚果内陆。1908年,探险家罗伯特皮尔里在膳魔师保温瓶的陪伴下,历经10个月的严寒挑战终于到达了北极点,开创了世界纪录。欧内斯特沙克尔顿在1909年率队发现南磁极、罗斯福上校进入蒙巴萨时,也都使用了膳魔师保温瓶。可以说当时的膳魔师就是极限挑战人内心当中的作战必备爆款。随着一战爆发,膳魔师水壶又被带了战区,有了更多的用途,右图是一战时期的膳魔师海报,可以看出战争意味浓厚。
二战期间,膳魔师真空保温瓶作为军需品为军队保储水源、储存药品、血液甚至器官。由救援军犬们背载膳魔师保温瓶来回奔波于前线与后方,提供最及时的温暖援助。保温瓶被士兵们称为“拯救生命的必需品”,图为二战时期膳魔是宣传海报,右下角的英勇救援犬成为了无数生死瞬间传递希望的经典符号。
膳魔师进入了日本市场是1908年,图为当时的广告语,它在日本被称为“震惊世人的发明——寒暖坛”。此后,随着一战的爆发,列强的舶来品大量涌入日本,从而进一步促进了日本本国内的保温瓶制造业。1912年之后,日本制的魔法瓶开始生产,当时的大阪是玻璃工业的中心,魔法瓶的生产便以大阪为中心开始发展起来。上文提到的虎牌和菊池,也是在这之后从大阪开始起家的。
至于一个德国品牌为什么会最终被当成日本保温杯呢?还是要从1978年日本本土膳魔师推出全球第一只不锈钢双层高真空保温瓶(VacuumBottle)(如图左)。不怕摔又轻便的不锈钢保温杯是一个划时代的产物,它成功缔造了膳魔师的品牌市场地位,也是现代保温杯的雏形。也正因如此,今天我们在谈论膳魔师产品时,总是把膳魔师说成日本的品牌。
1981年不锈钢真空保温杯正式投入制造生产。这是当时产品发售时的广告,赤裸裸地打出了“轻便、不会摔碎的不锈钢二层真空构造”的标语,宣布了易碎沉重的玻璃保温瓶时代的即将终结。不锈钢保温瓶融合了当时非常难的高真空断热技术、金属加工技术和溶解技术,因此在当时也是价格不菲,要不说日本人科研攻关能力就是强,活生生把一个舶来品研发出具有本国特色的里程碑产品。
需要提一句的是,瓶子是当时的日本本土膳魔师研发的,而制造商却是日本酸素公司。当时的日本酸素公司就是现在的大阳日酸株式会社的前身,是日本三大工业气体制造商之一,1989年时收购了膳魔师品牌。我们从官网上的企业概况中也能看到大阳日酸全额出资的股东。所以,膳魔师虽然出生地是德国,后来有一段时间还被美国公司收购过,但真正形成现如今的不锈钢保温杯的品牌形象,还是要从日本说起。
现在膳魔师于2001年又被中国台湾公司皇冠金属收入麾下,严格说来目前的国籍其实是台湾,但日本技术的印象已经根深蒂固地存在于广大消费者脑中了。我们说膳魔师是第一个发明真空保温技术的,但这在今天的保温瓶界早已不是什么高新技术了,膳魔师家族不断推陈出新……,就此不锈钢保温制品犹如旧时王谢堂前燕一般开始逐渐飞入寻常百姓家。
三、 象印ZOJIRUSHI
产地:泰国
象印的创始人是市川银三郎和市川金三郎,两兄弟出生于爱知县中岛郡的朝日村。自从1908年膳魔师保温瓶进入日本市场,金三郎就对保温瓶感兴趣,金三郎起初是个加工电灯泡的工人还是是个好奇宝宝。恰好白炽灯泡本来就是真空工业的鼻祖,玻璃真空的技术都是相通的,金兄弟也算是半个内行,于是他自己就开始没日没夜的钻研。话说,日本本土保温瓶的创始人八目亭二郎也是做电灯泡出身的,可以这么说,日本的保温瓶的发端就是从电灯泡制作发源的。
后来住在大阪经商的哥哥银三郎知道了弟弟的喜好后,就决定两个人组团一起搞暖水壶营生,于是在1918年(大正七年),兄弟俩在大阪的一个偏僻工厂内成立了市川兄弟贸易公司,哥哥当时20岁、弟弟17岁。保温瓶在当时是个奢侈品,日本的一般家庭买不起,日本本国销售额只占1成,制作出来的成品90%都是出口,主要销往中国和东南亚。
二战以后,日本的保温瓶工业成为了民间指定商品,需求量一下子激增。1945年(昭和20年)10月,银三郎开始在田边町的家里重新开设保温壶修理店,没曾想生意超级红火。到了1947年,兄弟俩干脆关了修理店直接在南区高津重新设厂,并成功开发出自动制瓶机内瓶的量产化,就此开始生产组装的保温瓶。
图为社长市川重幸视察高津工厂的魔法瓶加工现场,高津工厂最初开始生产的是携带用的保温壶,后来银三郎的大儿子从中国回来的朋友那里听说了家庭用桌上型水壶,觉得这种类型的水壶将会成为日后趋势,于是工厂生产方针就改成了以生产家庭用桌上型水壶为主。
上图为1948年研制成功的桌上用水壶,战后开工以来的第一个研发制品。壶的盖、肩部、腰部和壶底的内胆都是电镀了铬炮制而成,把手是压铸而成,头部的形状像是醍醐的嘴巴一样,因此被命名为“醍醐壶”。这个水壶因为其古典而风雅的造型一经推出就成了爆款,加之此后日本曾一度狂掀复古风浪潮,在很长一段时间内都是明星商品。
1953年(昭和28年),市川兄弟商会更名为协和魔法瓶工业株式会社。1960年(昭和35年)正值日本的经济繁荣期,在这样的背景下,协和魔法瓶会社赞助了一档名为“象印歌锦标赛”的电视节目,一下子大火,经由这次成功的宣传策略,此后的7年间“象印”这个名字逐渐渗透到日本国民当中成为家喻户晓的品牌。图为象印的宣传车在日本街头行驶,吸引了无数行人的目光,车内有播音员进行广播,这种宣传方式在当时也属于业界首创。
1961年(昭和36年)11月20日,协和魔法瓶工业株式会社正式更名为“象印魔法瓶株式会社”,由此社名和logo终于统一到了一起。图为象印的商标的变更图,可以看到1958年与1961年的logo相比,象印便把以往的长鼻子象的logo形象更改为更加可爱风的短鼻子象。1961年以后,小象logo就基本没再变过了。
1981年,象印魔法瓶株式会社量产化不锈钢保温杯保温瓶上市。此后,象印不断推陈出新,开发出电饭煲、电热水瓶、电火锅、电烤箱、咖啡壶、保温便当盒、真空保温瓶等系列生活小家电,并且还在不断开发用于改善生活环境的空气净化器、加湿器等产品。
说到“象印”的由来,要从一战结束后兄弟俩的魔法瓶的出口生意说起。日本是个水资源特别丰富的国家,不仅水量丰富,水质也好,直接饮用也是没有问题 ,所以我们在灌篮高手里看樱木花道的侧脸对着自来水管直接喝的画面千万不要学,日本人都是直接从水管里接水喝的, 但咱们不成。正因如此,魔法瓶在日本国内的需求就没有那么大,九成的魔法瓶都是出口。
而反观中国、东南亚、印度等国家的水质就不那么好了,大多需要烧开才可以饮用,对煮沸的水进行保温或是保冷的需求量就很大,因此这些国家相较于日本而言,保温瓶很快就加入了人们日常生活必需品的行列。所以说,日本人生产保温壶很牛叉,但在自己本国却市场不是很大。图为当时大阪西区林立的各种外国商馆,当时的华侨进口日本的魔法瓶就是在这里。
图中描绘的是银三郎两年一次从神户港出发去上海出差洽谈出口事宜。既然制造出来的绝大部分商品是要出口外销,那么就必须要给自己的产品想一个商标。兄弟俩想来想去,决定用大象来当作商社的商标。大象聪明、家族使命感强,是陆地上最大的动物,给人一种憨厚从容的感觉,在小朋友们中间很有人气。
大象,它生命力顽强,寿命也长,给人的种种印象都非常符合魔法瓶的功用。特别是考虑到自己的产品未来要面向东南亚等国,大象在当地是神圣的象征,以象印作为logo更容易打入市场。于是,当时还叫市川商会的象印商标就这么愉快地决定了,出口外销用的魔法瓶上都会标有一个带着王冠的大象,并附有“ELEPHANT&CROWN”的商标。
纵观日系三大保温品牌,他们各自有各自的优点和特色,在价格上虎牌贵些、象印次之、膳魔师相对便宜一点。膳魔师虽然是魔法瓶和不锈钢保温杯的鼻祖,但后来却被勇于钻研的日系本土水壶超越。目前虎牌是日本民用水壶的NO.1,象印则更倾向外观设计,膳魔师商品名目繁多更加普惠大众。但不管怎么说,三大品牌的质量都是非常可靠值得信赖的,差别也是伯仲之间,所以大家在选择的时候主要考虑的因素并不是哪个比哪个好,根据价格和喜好选择合适的就行。
⑵ 无机物进化到微生物
无机物——————有机小分子物质(氨基酸)————————有机大分子物质(蛋白质)——————生命(拥有基本代谢功能和繁殖功能)
英国科学家米勒作了一个实验,它将氨气,氢气,水蒸气等混合气体加热,然后通过电火花的洗礼,再接着冷却,最后在所得液体中发现了最简单的如氨基酸类的有机物。这就是生物进化的第一阶段。
原始地球中,大气中充满了氨气,氢气,co2,等等无机物质(大多数从地
球表层火山喷出来的),当时乌烟瘴气的大气层中,闪电密布,大概过了多少亿年,积累了许久的量变在一次巨大的闪电袭击下突然间质变,成为了一个有机物。然后,越来越多的有机物落到了原始海洋中(还是喷出来的……),慢慢的,他们聚集到一起,在强烈的紫外线和闪电攻击下,成为了基本的大分子有机物。后来,有很多物质不停的变化,成为了一个细胞中的各种物质,比如线粒体等等。后来,他们聚集在一起,生成了隔离水和细胞液的细胞膜,就此,第一个“生命”诞生了,虽然他只能有基本的新陈代谢和繁殖能力,但他是个定义上的生命。之后那就是越来越多的细胞聚集在一起,成为了多细胞生物。
DNA,原名脱氧核糖核酸,他就是一种大分子有机物,生物的遗传物质分RNA,DNA,有的蛋白质也有遗传功能。是DNA指导氨基酸合成和本体一样的蛋白质,并且组成到一起。
生命的组合完全是意外的,就像我刚才跟你陈述的过程,只有非常小的几率,他们合成了,并且,如果第一个生命不幸夭折了,那就还要等很久很久。
(原创)
DNADNA(为英文Deoxyribonucleic acid的缩写),又称脱氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料,有时被称为“遗传微粒”。DNA是一种分子,可组成遗传指令,以引导生物发育与生命机能运作。主要功能是长期性的资讯储存,可比喻为“蓝图”或“食谱”。其中包含的指令,是建构细胞内其他的化合物,如蛋白质与RNA所需。带有遗传讯息的DNA片段称为基因,其他的DNA序列,有些直接以自身构造发挥作用,有些则参与调控遗传讯息的表现。
单体脱氧核糖核酸聚合而成的聚合体——脱氧核糖核酸链,也被称为DNA。在繁殖过程中,父代把它们自己DNA的一部分(通常一半,即DNA双链中的一条)复制传递到子代中,从而完成性状的传播。因此,化学物质DNA会被称为“遗传微粒”。原核细胞的拟核是一个长DNA分子。真核细胞核中有不止一个染色体,每条染色体上含有一个或两个DNA。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种性状的几乎所有蛋白质和RNA分子的全部遗传信息;编码和设计生物有机体在一定的时空中有序地转录基因和表达蛋白完成定向发育的所有程序;初步确定了生物独有的性状和个性以及和环境相互作用时所有的应激反应.除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA,极少数为RNA.
DNA是一种长链聚合物,组成单位称为核苷酸,而糖类与磷酸分子借由酯键相连,组成其长链骨架。每个糖分子都与四种碱基里的其中一种相接,这些碱基沿着DNA长链所排列而成的序列,可组成遗传密码,是蛋白质氨基酸序列合成的依据。读取密码的过程称为转录,是根据DNA序列复制出一段称为RNA的核酸分子。多数RNA带有合成蛋白质的讯息,另有一些本身就拥有特殊功能,例如rRNA、snRNA与siRNA。
DNA是遗传信息的载体,故亲代DNA必须以自身分子为模板准确的复制成两个拷贝,并分配到两个子细胞中去,完成其遗传信息载体的使命。而DNA的双链结构对于维持这类遗传物质的稳定性和复制的准确性都是极为重要的。
(一)DNA的半保留复制
Waston和Click在提出DNA双螺旋结构模型时曾就DNA复制过程进行过研究,发现DNA在复制过程中碱基间的氢键首先断裂(通过解旋酶),双螺旋结构解旋分开,每条链分别作模板合成新链。由于每个子代DNA的一条链来自亲代,另一条则是新合成的,故称之为半保留式复制(semiconservative replication)。
(二)DNA复制过程
1.DNA双螺旋的解旋
(1)单链DNA结合蛋白(single—stranded DNA binding protein, ssbDNA蛋白)
(2)DNA解链酶(DNA helicase)
(3)DNA解链
2.冈崎片段与半不连续复制
3.复制的引发和终止
(三)端粒和端粒酶
1941年美籍印度人麦克林托克(Mc Clintock)就提出了端粒(telomere)的假说,认为染色体末端必然存在一种特殊结构——端粒。现在已知染色体端粒的作用至少有二:① 保护染色体末端免受损伤,使染色体保持稳定;② 与核纤层相连,使染色体得以定位。
[编辑本段]【DNA的理化性质】
DNA是大分子高分子聚合物,DNA溶液为高分子溶液,具有很高的粘度。DNA对紫外线有吸收作用,当核酸变性时,吸光值升高;当变性核酸可复性时,吸光值又会恢复到原来水平。温度、有机溶剂、酸碱度、尿素、酰胺等试剂都可以引起DNA分子变性,即使得DNA双键间的氢键断裂,双螺旋结构解开。
DNA(deoxyribonucleic acid)指脱氧核糖核酸(染色体和基因的组成部分) 脱氧核苷酸的高聚物,是染色体的主要成分。遗传信息的绝大部分贮存在DNA分子中。
[编辑本段]【分布和功能】
原核细胞的染色体是一个长DNA分子。真核细胞核中有不止一个染色体,每个染色体也只含一个DNA分子。不过它们一般都比原核细胞中的DNA分子大而且和蛋白质结合在一起。DNA分子的功能是贮存决定物种的所有蛋白质和RNA结构的全部遗传信息;策划生物有次序地合成细胞和组织组分的时间和空间;确定生物生命周期自始至终的活性和确定生物的个性。除染色体DNA外,有极少量结构不同的DNA存在于真核细胞的线粒体和叶绿体中。DNA病毒的遗传物质也是DNA。
[编辑本段]【DNA的发现】
自从孟德尔的遗传定律被重新发现以后,人们又提出了一个问题:遗传因子是不是一种物质实体?为了解决基因是什么的问题,人们开始了对核酸和蛋白质的研究。
早在1868年,人们就已经发现了核酸。在德国化学家霍佩·赛勒的实验室里,有一个瑞士籍的研究生名叫米歇尔(1844--1895),他对实验室附近的一家医院扔出的带脓血的绷带很感兴趣,因为他知道脓血是那些为了保卫人体健康,与病菌“作战”而战死的白细胞和被杀死的人体细胞的“遗体”。于是他细心地把绷带上的脓血收集起来,并用胃蛋白酶进行分解,结果发现细胞遗体的大部分被分解了,但对细胞核不起作用。他进一步对细胞核内物质进行分析,发现细胞核中含有一种富含磷和氮的物质。霍佩·赛勒用酵母做实验,证明米歇尔对细胞核内物质的发现是正确的。于是他便给这种从细胞核中分离出来的物质取名为 “核素”,后来人们发现它呈酸性,因此改叫“核酸”。从此人们对核酸进行了一系列卓有成效的研究。
20世纪初,德国科赛尔(1853--1927)和他的两个学生琼斯(1865--1935)和列文(1869--1940)的研究,弄清了核酸的基本化学结构,认为它是由许多核苷酸组成的大分子。核苷酸是由碱基、核糖和磷酸构成的。其中碱基有4种(腺瞟吟、鸟嘌吟、胸腺嘧啶和胞嘧啶),核糖有两种(核糖、脱氧核糖),因此把核酸分为核糖核酸(RNA)和脱氧核糖核酸(DNA)。
列文急于发表他的研究成果,错误地认为4种碱基在核酸中的量是相等的,从而推导出核酸的基本结构是由4个含不同碱基的核苷酸连接成的四核苷酸,以此为基础聚合成核酸,提出了"四核苷酸假说"。这个错误的假说,对认识复杂的核酸结构起了相当大的阻碍作用,也在一定程度上影响了人们对核酸功能的认识。人们认为,虽然核酸存在于重要的结构--细胞核中,但它的结构太简单,很难设想它能在遗传过程中起什么作用。
蛋白质的发现比核酸早30年,发展迅速。进入20世纪时,组成蛋白质的20种氨基酸中已有12种被发现,到1940年则全部被发现。
1902年,德国化学家费歇尔提出氨基酸之间以肽链相连接而形成蛋白质的理论,1917年他合成了由15个甘氨酸和3个亮氨酸组成的18个肽的长链。于是,有的科学家设想,很可能是蛋白质在遗传中起主要作用。如果核酸参与遗传作用,也必然是与蛋白质连在一起的核蛋白在起作用。因此,那时生物界普遍倾向于认为蛋白质是遗传信息的载体。
1928年,美国科学家格里菲斯(1877--1941)用一种有荚膜、毒性强的和一种无荚膜、毒性弱的肺炎双球菌对老鼠做实验。他把有荚病菌用高温杀死后与无荚的活病菌一起注人老鼠体内,结果他发现老鼠很快发病死亡,同时他从老鼠的血液中分离出了活的有荚病菌。这说明无荚菌竟从死的有荚菌中获得了什么物质,使无荚菌转化为有荚菌。这种假设是否正确呢?格里菲斯又在试管中做实验,发现把死了的有美菌与活的无荚菌同时放在试管中培养,无荚菌全部变成了有荚菌,并发现使无荚菌长出蛋白质荚的就是已死的有荚菌壳中遗留的核酸(因为在加热中,荚中的核酸并没有被破坏)。格里菲斯称该核酸为"转化因子"。
1944年,美国细菌学家艾弗里(1877--1955)从有美菌中分离得到活性的“转化因子”,并对这种物质做了检验蛋白质是否存在的试验,结果为阴性,并证明“转化因子”是DNA。但这个发现没有得到广泛的承认,人们怀疑当时的技术不能除净蛋白质,残留的蛋白质起到转化的作用。
美籍德国科学家德尔布吕克(1906--1981)的噬菌体小组对艾弗里的发现坚信不移。因为他们在电子显微镜下观察到了噬菌体的形态和进入大肠杆菌的生长过程。噬菌体是以细菌细胞为寄主的一种病毒,个体微小,只有用电子显微镜才能看到它。它像一个小蝌蚪,外部是由蛋白质组成的头膜和尾鞘,头的内部含有DNA,尾鞘上有尾丝、基片和小钩。当噬菌体侵染大肠杆菌时,先把尾部末端扎在细菌的细胞膜上,然后将它体内的DNA全部注人到细菌细胞中去,蛋白质空壳仍留在细菌细胞外面,再没有起什么作用了。进入细菌细胞后的噬菌体DNA,就利用细菌内的物质迅速合成噬菌体的DNA和蛋白质,从而复制出许多与原噬菌体大小形状一模一样的新噬菌体,直到细菌被彻底解体,这些噬菌体才离开死了的细菌,再去侵染其他的细菌。
1952年,噬菌体小组主要成员赫尔希(1908一)和他的学生蔡斯用先进的同位素标记技术,做噬菌体侵染大肠杆菌的实验。他把大肠杆菌T2噬菌体的核酸标记上32P,蛋白质外壳标记上35S。先用标记了的T2噬菌体感染大肠杆菌,然后加以分离,结果噬菌体将带35S标记的空壳留在大肠杆菌外面,只有噬菌体内部带有32P标记的核酸全部注人大肠杆菌,并在大肠杆菌内成功地进行噬菌体的繁殖。这个实验证明DNA有传递遗传信息的功能,而蛋白质则是由 DNA的指令合成的。这一结果立即为学术界所接受。
几乎与此同时,奥地利生物化学家查加夫(1905--)对核酸中的4种碱基的含量的重新测定取得了成果。在艾弗里工作的影响下,他认为如果不同的生物种是由于DNA的不同,则DNA的结构必定十分复杂,否则难以适应生物界的多样性。因此,他对列文的"四核苷酸假说"产生了怀疑。在1948- 1952年4年时间内,他利用了比列文时代更精确的纸层析法分离4种碱基,用紫外线吸收光谱做定量分析,经过多次反复实验,终于得出了不同于列文的结果。实验结果表明,在DNA大分子中嘌吟和嘧啶的总分子数量相等,其中腺嘌吟A与胸腺嘧啶T数量相等,鸟嘌吟G与胞嘧啶C数量相等。说明DNA分子中的碱基A 与T、G与C是配对存在的,从而否定了"四核苷酸假说",并为探索DNA分子结构提供了重要的线索和依据。
1953年4月25日,英国的《自然》杂志刊登了美国的沃森和英国的克里克在英国剑桥大学合作的研究成果:DNA双螺旋结构的分子模型,这一成果后来被誉为20世纪以来生物学方面最伟大的发现,标志着分子生物学的诞生。
沃森(1928一)在中学时代是一个极其聪明的孩子,15岁时便进入芝加哥大学学习。当时,由于一个允许较早人学的实验性教育计划,使沃森有机会从各个方面完整地攻读生物科学课程。在大学期间,沃森在遗传学方面虽然很少有正规的训练,但自从阅读了薛定愕的《生命是什么?--活细胞的物理面貌》一书,促使他去"发现基因的秘密"。他善于集思广益,博取众长,善于用他人的思想来充实自己。只要有便利的条件,不必强迫自己学习整个新领域,也能得到所需要的知识。沃森22岁取得博士学位,然后被送往欧洲攻读博士后研究员。为了完全搞清楚一个病毒基因的化学结构,他到丹麦哥本哈根实验室学习化学。有一次他与导师一起到意大利那不勒斯参加一次生物大分子会议,有机会听英国物理生物学家威尔金斯(1916--)的演讲,看到了威尔金斯的DNAX射线衍射照片。从此,寻找解开DNA结构的钥匙的念头在沃森的头脑中索回。什么地方可以学习分析X射线衍射图呢?于是他又到英国剑桥大学卡文迪什实验室学习,在此期间沃森认识了克里克。
克里克(1916一2004)上中学时对科学充满热情,1937年毕业于伦敦大学。1946年,他阅读了《生命是什么?-活细胞的物理面貌》一书,决心把物理学知识用于生物学的研究,从此对生物学产生了兴趣。1947年他重新开始了研究生的学习,1949年他同佩鲁兹一起使用X射线技术研究蛋白质分子结构,于是在此与沃森相遇了。当时克里克比沃森大12岁,还没有取得博士学位。但他们谈得很投机,沃森感到在这里居然能找到一位懂得DNA比蛋白质更重要的人,真是三生有幸。同时沃森感到在他所接触的人当中,克里克是最聪明的一个。他们每天交谈至少几个小时,讨论学术问题。两个人互相补充,互相批评以及相互激发出对方的灵感。他们认为解决DNA分子结构是打开遗传之谜的关键。只有借助于精确的X射线衍射资料,才能更快地弄清DNA的结构。为了搞到DNAX射线衍射资料,克里克请威尔金斯到剑桥来度周末。在交谈中威尔金斯接受了DNA结构是螺旋型的观点,还谈到他的合作者富兰克林(1920一1958,女)以及实验室的科学家们,也在苦苦思索着DNA结构模型的问题。从1951年11月至1953年4月的18个月中,沃森、克里克同威尔金斯、富兰克林之间有过几次重要的学术交往。
1951年11月,沃森听了富兰克林关于DNA结构的较详细的报告后,深受启发,具有一定晶体结构分析知识的沃森和克里克认识到,要想很快建立 DNA结构模型,只能利用别人的分析数据。他们很快就提出了一个三股螺旋的DNA结构的设想。1951年底,他们请威尔金斯和富兰克林来讨论这个模型时,富兰克林指出他们把DNA的含水量少算了一半,于是第一次设立的模型宣告失败。
有一天,沃森又到国王学院威尔金斯实验室,威尔金斯拿出一张富兰克林最近拍制的“B型”DNA的X射线衍射的照片。沃森一看照片,立刻兴奋起来、心跳也加快了,因为这种图像比以前得到的“A型”简单得多,只要稍稍看一下“B型”的X射线衍射照片,再经简单计算,就能确定DNA分子内多核苷酸链的数目了。
克里克请数学家帮助计算,结果表明源吟有吸引嘧啶的趋势。他们根据这一结果和从查加夫处得到的核酸的两个嘌吟和两个嘧啶两两相等的结果,形成了碱基配对的概念。
他们苦苦地思索4种碱基的排列顺序,一次又一次地在纸上画碱基结构式,摆弄模型,一次次地提出假设,又一次次地推翻自己的假设。
沃森(左)和克里克有一次,沃森又在按着自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性。突然,他发现由两个氢键连接的腺膘吟一胸腺嘧啶对竟然和由3个氢键连接的鸟嘌吟一胞嘧啶对有着相同的形状,于是精神为之大振。因为嘌吟的数目为什么和嘧啶数目完全相同这个谜就要被解开了。查加夫规律也就一下子成了 DNA双螺旋结构的必然结果。因此,一条链如何作为模板合成另一条互补碱基顺序的链也就不难想象了。那么,两条链的骨架一定是方向相反的。
经过沃森和克里克紧张连续的工作,很快就完成了DNA金属模型的组装。从这模型中看到,DNA由两条核苷酸链组成,它们沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基对。由于缺乏准确的X射线资料,他们还不敢断定模型是完全正确的。
威尔金斯富兰克林下一步的科学方法就是把根据这个模型预测出的衍射图与X射线的实验数据作一番认真的比较。他们又一次打电话请来了威尔金斯。不到两天工夫,威尔金斯和富兰克林就用X射线数据分析证实了双螺旋结构模型是正确的,并写了两篇实验报告同时发表在英国《自然》杂志上。1962年,沃森、克里克和威尔金斯获得了诺贝尔医学和生理学奖,而富兰克林因患癌症于1958年病逝而未被授予该奖。
20世纪30年代后期,瑞典的科学家们就证明DNA是不对称的。第二次世界大战后,用电子显微镜测定出DNA分子的直径约为2nm。
DNA双螺旋结构被发现后,极大地震动了学术界,启发了人们的思想。从此,人们立即以遗传学为中心开展了大量的分子生物学的研究。首先是围绕着4 种碱基怎样排列组合进行编码才能表达出20种氨基酸为中心开展实验研究。1967年,遗传密码全部被破解,基因从而在DNA分子水平上得到新的概念。它表明:基因实际上就是DNA大分子中的一个片段,是控制生物性状的遗传物质的功能单位和结构单位。在这个单位片段上的许多核苷酸不是任意排列的,而是以有含意的密码顺序排列的。一定结构的DNA,可以控制合成相应结构的蛋白质。蛋白质是组成生物体的重要成分,生物体的性状主要是通过蛋白质来体现的。因此,基因对性状的控制是通过DNA控制蛋白质的合成来实现的。在此基础上相继产生了基因工程、酶工程、发酵工程、蛋白质工程等,这些生物技术的发展必将使人们利用生物规律造福于人类。现代生物学的发展,愈来愈显示出它将要上升为带头学科的趋势。
[编辑本段]【DNA重组技术的发展】
20世纪50年代,DNA双螺旋结构被阐明,揭开了生命科学的新篇章,开创了科学技术的新时代。随后,遗传的分子机理――DNA复制、遗传密码、遗传信息传递的中心法则、作为遗传的基本单位和细胞工程蓝图的基因以及基因表达的调控相继被认识。至此,人们已完全认识到掌握所有生物命运的东西就是DNA和它所包含的基因,生物的进化过程和生命过程的不同,就是因为DNA和基因运作轨迹不同所致。
知道DNA的重大作用和价值后,生命科学家首先想到能否在某些与人类利益密切相关的方面打破自然遗传的铁律,让患病者的基因改邪归正以达治病目的,把不同来源的基因片段进行“嫁接”以产生新品种和新品质……于是,一个充满了诱惑力的科学幻想奇迹般地成为现实。这是发生在20世纪70年代初的事情。
实现这一科学奇迹的科技手段就是DNA重组技术。1972年,美国科学家保罗?伯格首次成功地重组了世界上第一批DNA分子,标志着DNA重组技术――基因工程作为现代生物工程的基础,成为现代生物技术和生命科学的基础与核心。
DNA重组技术的具体内容就是采用人工手段将不同来源的含某种特定基因的DNA片段进行重组,以达到改变生物基因类型和获得特定基因产物的目的的一种高科学技术。
到了20世纪70年代中后期,由于出现了工程菌以及实现DNA重组和后处理都有工程化的性质,基因工程或遗传工程作为DNA重组技术的代名词被广泛使用。现在,基因工程还包括基因组的改造、核酸序列分析、分子进化分析、分子免疫学、基因克隆、基因诊断和基因治疗等内容。可以说,DNA重组技术创立近 30多年来所获得的丰硕成果已经把人们带进了一个不可思议的梦幻般的科学世界,使人类获得了打开生命奥秘和防病治病“魔盒”的金钥匙。
目前,DNA重组技术已经取得的成果是多方面的。到20世纪末,DNA重组技术最大的应用领域在医药方面,包括活性多肽、蛋白质和疫苗的生产,疾病发生机理、诊断和治疗,新基因的分离以及环境监测与净化。
许多活性多肽和蛋白质都具有治疗和预防疾病的作用,它们都是从相应的基因中产生的。但是由于在组织细胞内产量极微,所以采用常规方法很难获得足够量供临床应用。
基因工程则突破了这一局限性,能够大量生产这类多肽和蛋白质,迄今已成功地生产出治疗糖尿病和精神分裂症的胰岛素,对血癌和某些实体肿瘤有疗效的抗病毒剂――干扰素,治疗侏儒症的人体生长激素,治疗肢端肥大症和急性胰腺炎的生长激素释放抑制因子等100多种产品。
基因工程还可将有关抗原的DNA导入活的微生物,这种微生物在受免疫应激后的宿主体内生长可产生弱毒活疫苗,具有抗原刺激剂量大、且持续时间长等优点。目前正在研制的基因工程疫苗就有数十种之多,在对付细菌方面有针对麻风杆菌、百日咳杆菌、淋球菌、脑膜炎双球菌等的疫苗;在对付病毒方面有针对甲型肝炎、乙型肝炎、巨细胞病毒、单纯疱疹、流感、人体免疫缺陷病毒等的疫苗……。我国乙肝病毒携带者和乙肝患者多达一二亿,这一情况更促使了我国科学家自行成功研制出乙肝疫苗,取得了巨大的社会效益和经济效益。
抗体是人体免疫系统防病抗病的主要武器之一,20世纪70年代创立的单克隆抗体技术在防病抗病方面虽然发挥了重要作用,但由于人源性单抗很难获得,使得单抗在临床上的应用受到限制。为解决此问题,近年来科学家采用DNA重组技术已获得了人源性抗体,这种抗体既可保证它与抗原结合的专一性和亲合力,又能保证正常功能的发挥。目前,已有多种这样的抗体进行了临床试验,如抗HER-2人源化单抗治疗乳腺癌已进入Ⅲ期试验,抗IGE人源化单抗治疗哮喘病已进入Ⅱ期试验。
抗生素在治疗疾病上起到了重要作用,随着抗生素数量的增加,用传统方法发现新抗生素的几率越来越低。为了获取更多的新型抗生素,采用DNA重组技术已成为重要手段之一。目前人们已获得数十种基因工程“杂合”的抗生素,为临床应用开辟了新的治疗途径。
值得指出的是,以上所述基因工程多肽、蛋白质、疫苗、抗生素等防治药物不仅在有效控制疾病,而且在避免毒副作用方面也往往优于以传统方法生产的同类药品,因而更受人们青睐。
人类疾病都直接或间接与基因相关,在基因水平上对疾病进行诊断和治疗,则既可达到病因诊断的准确性和原始性,又可使诊断和治疗工作达到特异性强、灵敏度高、简便快速的目的。于基因水平进行诊断和治疗在专业上称为基因诊断和基因治疗。目前基因诊断作为第四代临床诊断技术已被广泛应用于对遗传病、肿瘤、心脑血管疾病、病毒细菌寄生虫病和职业病等的诊断;而基因治疗的目标则是通过DNA重组技术创建具有特定功能的基因重组体,以补偿失去功能的基因的作用,或是增加某种功能以利对异常细胞进行矫正或消灭。
在理论上,基因治疗是治本治愈而无任何毒副作用的疗法。不过,尽管至今国际上已有100多个基因治疗方案正处于临床试验阶段,但基因治疗在理论和技术上的一些难题仍使这种治疗方法离大规模应用还有一段很长的距离。不论是确定基因病因还是实施基因诊断、基因治疗、研究疾病发生机理,关键的先决条件是要了解特定疾病的相关基因。随着“人类基因组计划”的临近完成,科学家们对人体全部基因将会获得全面的了解,这就为运用基因重组技术造逼于人类健康事业创造了条件。
不过,虽然基因技术向人类展示了它奇妙的“魔术师”般的魅力,但也有大量的科学家对这种技术的发展予以人类伦理和生态演化的自然法则的冲击表示出极大的担忧。从理论上来讲,这种技术发展的一个极致就是使人类拥有了创造任何生命形态或从未有过的生物的能力。人们能够想像这将是怎样的结果吗?
科学家在DNA中发现除基因密码之外的新密码
据台湾媒体报道,美国与以色列科学家相信,他们已在DNA(去氧核醣核酸)之中找到除了基因密码之外的第二种密码。新发现的密码负责决定核体—亦即DNA所环绕的微型蛋白质线轴—之位置。这些线轴同时保护与控制通往DNA本身的途径。
这项发现若获得证实,可能开启有关控制基因更高位阶的机制新知。譬如,每一种人体细胞得以激活其所需基因,却又无法触及其它种类细胞所使用的基因等既关键又神秘的过程。
以色列魏兹曼研究院的塞格尔与美国西北大学的威顿及其同僚,在这一期“自然”科学期刊中,撰文描述这种DNA新密码。
每一个人体细胞里都有约三千万个核体。之所以需要这么多的核体,是因为DNA线包覆每一个核体仅一.六五次,每个DNA螺旋就包含一百四十七个单位,而且单一染色体里的DNA分子在长度上可能就有高达二亿二千五百万个单位。
生物学家多年来一直怀疑,DNA上的某些位置,特别是DNA最容易弯曲的那些位置,可能比其它位置更有利于核体的存在,但整体模式并不显而易见。如今,塞格尔与威顿博士分析了酵母菌基因内约二百个位置的序列,这些都是既知核体纠结在一起的地方,两人发现其中确实隐含一个模式存在。
透过了解此一模式,他们成功预测其它有机体大约五成核体的位置。这个模式乃是能让DNA更容易弯曲,以及紧密包复核体的两种序列结合而成。但在此一模式中,每一个核体纠结的位置仅需若干序列出现即可,因此并不明显。正由于其形成条件松散,因此并不与基因密码冲突。