❶ 水醇酶对人的作用
水,除了解渴还有其他意义吗?人如果不吃饭的话,仍能存活几周;但要是不喝水,几天后就会脱水而死。我们身体三分之二多的部分是水,水本身就是一种最重要的营养素,任何饮料都无法替代。 水主要负责消化食物、传送养分、保持各关节和内脏器官的...3409
❷ 中药黄芪醇提和水提,提取出来的成分有区别吗
没有不同,纯度问题
黄芪用水提取,比用乙醇提取为佳。黄芪采用水煎煮3次,乙醇回流提取3次,以黄芪甲苷含量为考察依据,提取率均可达到70%以上,但水提醇沉时甲苷损失小,经3次醇沉分离纯化得黄芪苷提取物(中间体)纯度高,制成的注射液非常澄明,久置不会产生沉淀,而醇提水沉时不但甲苷损失大,而且难以将脂溶性成分除尽,所得黄芪苷提取物(中间体)纯度低,制成的注射液放置后会产生沉淀;
黄芪采用水提醇沉分离纯化,不但可同时将黄芪皂苷类、黄芪黄酮类和多糖有效成分一并提出,经醇沉可将多糖与前述两类有效成分分离,
❸ 提取工艺里,醇提水沉和水提醇沉的区别是什么
水提醇沉法系指处抄方中药材加袭水煎煮,既提取出有效成分,如:生物碱盐、甙类、有机酸类、氨基酸、多糖类等;同时也提出一些水溶性杂质,如:淀粉、蛋白质、粘液质、鞣质、色素、无机盐等。若往水煎液中加入适量乙醇,可以改变其溶解性能而将杂质部分或全部除去。当乙醇浓度达到60%~70%时,除鞣质、树脂等外,其他杂质已基本上沉淀而除去。如果分2~3次加入乙醇,浓度又逐步提高,最终达到75%~80%,则除去杂质的效果更好。
醇提水沉法系指将中药原料用一定浓度的乙醇用渗漉法、回流法提取,即可提取出生物碱及其盐、甙类、挥发油及有机酸类等;虽然多糖类、蛋白质、淀粉等无效成分不易溶出,但树脂、油脂、色素等杂质却仍可提出。为此,醇提取液经回收乙醇后,再加水处理,并冷藏一定时间,可使杂质沉淀而除去。40%~50%的乙醇可提取强心甙、鞣质、蒽醌及其甙、苦味质等;60%~70%乙醇可提取甙类;更高浓度乙醇则可用于生物碱、挥发油、树脂和叶绿素的提取。
❹ 常用酶的提取方法有哪些并解释提取机理
血中DNA的提取血液中DNA提取的原理:如果以外周血为DNA提取材料,在外周血中提取DNA就是从有核的白细胞中提取DNA.因此,从外周血中提取DNA包括以下几个关键步骤:第一,破坏红细胞,通常利用红细胞与白细胞膜结构的差异,先使红细胞裂解,经离心后收集白细胞;第二,白细胞裂使膜蛋白和核蛋白变性,游离DNA,通常是采用离子型表面活性剂使蛋白质变性;第三,除去变性蛋白质:通常采用蛋白沉淀剂沉淀变性蛋白质,使DNA留在上清液中;第四,在高盐环境下使DNA从有机溶剂如无水乙醇中析出. 取材 取外周血5ml,EDTA抗凝 1.新鲜抗凝血,离心弃去上清液; 2.取出4℃冰箱预冷的ELS裂解液,按1:6-10的比例向细胞沉淀中加入ELS裂解液(1ml细胞压积加入6-10ml裂解液),轻轻吹打混匀;红细胞裂解液ELS配方: NH4Cl:4.15克加双蒸水500ml,取450ml; Tris:1.0297克加双蒸水50ml,再加上上面的450ml,共计500ml,高压灭菌, 用时加10-20ml 3.800-1000rpm离心5-8分钟,离心弃去上层红色清液; 4.收集沉淀部分,加入Hank’s液或无血清培养液离心洗2-3次; 5.如裂解不完全可重复步骤2和3; 6.重悬细胞,用于后续实验;提取DNA,最好是于步骤4开始使用DEPC水配制的溶液进行. 酚氯仿方法提取DNA 在DNA提取过程中应尽量避免使DNA断裂和降解的各种因素,以保证DNA的完整性,为后续的实验打下基础.是采用在EDTA以及SDS等试剂存在下用蛋白酶K消化细胞,随后用酚抽提而实现的.这一方法获得的DNA不仅经酶切后可用于Southern分析,还可用于PCR的模板、文库构建等实验. 原则:(1)防止和抑制DNase对DNA的降解;(2)尽量减少对溶液中DNA的机械剪切破坏. 一、试剂准备 1.TE: 10mM Tris-HCl (pH 7.8); 1mM EDTA (pH 8.0). 2.TBS: 25mM Tris-HCl (pH 7.4); 200mM NaCl; 5mM KCl. 3.裂解缓冲液:250mM SDS; 使用前加入蛋白酶K至100mg/ml. 4.20% SDS 5.2mg/ml蛋白酶K 6.Tris饱和酚(pH 8.0)、酚/氯仿(酚∶氯仿=1∶1)、氯仿 7.无水乙醇、75%乙醇二、操作步骤(一)材料处理 1.白细胞处理 ⑴ 取红细胞裂解完全后收集的沉淀,加入0.5ml TE ⑵ 将匀浆液转移到1.5ml离心管中. ⑶ 加20% SDS 25 μl,蛋白酶K (2mg/ml) 25 μl,混匀. ⑷ 60°C水浴1-3hr. 2.培养细胞处理: ⑴ 将培养细胞悬浮后,用TBS洗涤一次. ⑵ 离心4000g×5min,去除上清液. ⑶ 加10倍体积的裂解缓冲液. ⑷ 50-55°C水浴1-2hr. (二)DNA提取 1. 加等体积饱和酚至上述样品处理液中,温和、充分混匀3min. 2. 离心5000g×10min,取上层水相到另一1.5ml离心管中. 3. 加等体积饱和酚,混匀,离心5000g×10min,取上层水相到另一管中. 4. 加等体积酚/氯仿,轻轻混匀,离心5000g×10min,取上层水相到另一管中.如水相仍不澄清,可重复此步骤数次. 5. 加等体积氯仿,轻轻混匀,离心5000g×10min,取上层水相到另一管中. 6. 加1/10体积的3M醋酸钠(pH 5.2)和2.5倍体积的无水乙醇,轻轻倒置混匀. 7. 待絮状物出现后,离心5000g×5min,弃上清液. 8. 沉淀用75%乙醇洗涤,离心5000g×3min ,弃上清液. 9. 室温下挥发乙醇,待沉淀将近透明后加50-100ml TE溶解过夜. (三)DNA定量和电泳检测 1.DNA定量: DNA在260nm处有最大的吸收峰,蛋白质在280nm处有最大的吸收峰,盐和小分子则集中在230nm处.因此,可以用260nm波长进行分光测定DNA浓度,OD值为1相当于大约50μg/ml双链DNA.如用1cm光径,用 H2O稀释DNA样品n倍并以H2O为空白对照,根据此时读出的OD260值即可计算出样品稀释前的浓度:DNA(mg/ml)=50×OD260读数×稀释倍数/1000. DNA纯品的OD260/OD280为1.8,故根据OD260/OD280的值可以估计DNA的纯度.若比值较高说明含有RNA,比值较低说明有残余蛋白质存在.OD230/OD260的比值应在0.4-0.5之间,若比值较高说明有残余的盐存在. 2.电泳检测:取1μg基因组DNA用行0.8%琼脂糖凝胶上电泳,检测DNA的完整性,或多个样品的浓度是否相同.电泳结束后在点样孔附近应有单一的高分子量条带. 三、注意事项 1. 所有用品均需要高温高压,以灭活残余的DNA酶. 2. 所有试剂均用高压灭菌双蒸水配制. 3. 用大口滴管或吸头操作,以尽量减少打断DNA的可能性. 4. 用上述方法提取的DNA纯度可以满足一般实验(如Southern 杂交、PCR等)目的.如要求更高,可参考有关资料进行DNA纯化.
❺ 提取工艺里,醇提水沉和水提醇沉的区别是什么
水提醇沉法系指处复方中药制材加水煎煮,既提取出有效成分,如:生物碱盐、甙类、有机酸类、氨基酸、多糖类等;同时也提出一些水溶性杂质,如:淀粉、蛋白质、粘液质、鞣质、色素、无机盐等.若往水煎液中加入适量乙醇,可以改变其溶解性能而将杂质部分或全部除去.当乙醇浓度达到60%~70%时,除鞣质、树脂等外,其他杂质已基本上沉淀而除去.如果分2~3次加入乙醇,浓度又逐步提高,最终达到75%~80%,则除去杂质的效果更好.
醇提水沉法系指将中药原料用一定浓度的乙醇用渗漉法、回流法提取,即可提取出生物碱及其盐、甙类、挥发油及有机酸类等;虽然多糖类、蛋白质、淀粉等无效成分不易溶出,但树脂、油脂、色素等杂质却仍可提出.为此,醇提取液经回收乙醇后,再加水处理,并冷藏一定时间,可使杂质沉淀而除去.40%~50%的乙醇可提取强心甙、鞣质、蒽醌及其甙、苦味质等;60%~70%乙醇可提取甙类;更高浓度乙醇则可用于生物碱、挥发油、树脂和叶绿素的提取.
❻ 提取酶的方法有哪些
酶是蛋白质,可以根据其特点选择适当的蛋白质提取纯化方法!
选择材料及预处理
以蛋白质和结构与功能为基础,从分子水平上认识生命现象,已经成为现代生物学发展的主要方向,研究蛋白质,首先要得到高度纯化并具有生物活性的目的物质。蛋白质的制备工作涉及物理、化学和生物等各方面知识,但基本原理不外乎两方面。一是得用混合物中几个组分分配率的差别,把它们分配到可用机械方法分离的两个或几个物相中,如盐析,有机溶剂提取,层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于来同区域而达到分离目的,如电泳,超速离心,超滤等。在所有这些方法的应用中必须注意保存生物大分子的完整性,防止酸、碱、高温,剧烈机械作用而导致所提物质生物活性的丧失。蛋白质的制备一般分为以下四个阶段:选择材料和预处理,细胞的破碎及细胞器的分离,提取和纯化,浓细、干燥和保存。
微生物、植物和动物都可做为制备蛋白质的原材料,所选用的材料主要依据实验目的来确定。对于微生物,应注意它的生长期,在微生物的对数生长期,酶和核酸的含量较高,可以获得高产量,以微生物为材料时有两种情况:(1)得用微生物菌体分泌到培养基中的代谢产物和胞外酶等;(2)利用菌体含有的生化物质,如蛋白质、核酸和胞内酶等。植物材料必须经过去壳,脱脂并注意植物品种和生长发育状况不同,其中所含生物大分子的量变化很大,另外与季节性关系密切。对动物组织,必须选择有效成份含量丰富的脏器组织为原材料,先进行绞碎、脱脂等处理。另外,对预处理好的材料,若不立即进行实验,应冷冻保存,对于易分解的生物大分子应选用新鲜材料制备。
蛋白质的分离纯化
一,蛋白质(包括酶)的提取
大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。
(一)水溶液提取法
稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。提取的温度要视有效成份性质而定。一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。
下面着重讨论提取液的pH值和盐浓度的选择。
1、pH值
蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH 范围内。用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液。
2、盐浓度
稀浓度可促进蛋白质的溶,称为盐溶作用。同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等中性盐,一般以0.15摩尔。升浓度为宜。缓冲液常采用0.02-0.05M磷酸盐和碳酸盐等渗盐溶液。
(二)有机溶剂提取法
一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。但必须在低温下操作。丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁醇亲脂性强,特别是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为6.6%)不会引起酶的变性失活。另外,丁醇提取法的pH及温度选择范围较广,也适用于动植物及微生物材料。
二、蛋白质的分离纯化
蛋白质的分离纯化方法很多,主要有:
(一)根据蛋白质溶解度不同的分离方法
1、蛋白质的盐析
中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。盐析时若溶液pH在蛋白质等电点则效果更好。由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。
影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行。一般温度低蛋白质溶介度降低。但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析。(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低。(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象)。因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在2.5-3.0%。
蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等。 其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为4.1M,即767克/升;0度时饱和溶解度为3.9M,即676克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性。硫酸铵溶液的pH常在4.5-5.5之间,当用其他pH值进行盐析时,需用硫酸或氨水调节。
蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行。此外也可用葡萄糖凝胶G-25或G-50过柱的办法除盐,所用的时间就比较短。
2、等电点沉淀法
蛋白质在静电状态时颗粒之间的静电斥力最小,因而溶解度也最小,各种蛋白质的等电点有差别,可利用调节溶液的pH达到某一蛋白质的等电点使之沉淀,但此法很少单独使用,可与盐析法结合用。
3、低温有机溶剂沉淀法
用与水可混溶的有机溶剂,甲醇,乙醇或丙酮,可使多数蛋白质溶解度降低并析出,此法分辨力比盐析高,但蛋白质较易变性,应在低温下进行。
(二)根据蛋白质分子大小的差别的分离方法
1、透析与超滤
透析法是利用半透膜将分子大小不同的蛋白质分开。
超滤法是利用高压力或离心力,强使水和其他小的溶质分子通过半透膜,而蛋白质留在膜上,可选择不同孔径的泸膜截留不同分子量的蛋白质。
2、凝胶过滤法
也称分子排阻层析或分子筛层析,这是根据分子大小分离蛋白质混合物最有效的方法之一。柱中最常用的填充材料是葡萄糖凝胶(Sephadex ged)和琼脂糖凝胶(agarose gel)。
(三)根据蛋白质带电性质进行分离
蛋白质在不同pH环境中带电性质和电荷数量不同,可将其分开。
1、电泳法
各种蛋白质在同一pH条件下,因分子量和电荷数量不同而在电场中的迁移率不同而得以分开。值得重视的是等电聚焦电泳,这是利用一种两性电解质作为载体,电泳时两性电解质形成一个由正极到负极逐渐增加的pH梯度,当带一定电荷的蛋白质在其中泳动时,到达各自等电点的pH位置就停止,此法可用于分析和制备各种蛋白质。
2、离子交换层析法
离子交换剂有阳离子交换剂(如:羧甲基纤维素;CM-纤维素)和阴离子交换剂(二乙氨基乙基纤维素;DEAE?FONT FACE="宋体" LANG="ZH-CN">纤维素),当被分离的蛋白质溶液流经离子交换层析柱时,带有与离子交换剂相反电荷的蛋白质被吸附在离子交换剂上,随后用改变pH或离子强度办法将吸附的蛋白质洗脱下来。(详见层析技术章)
(四)根据配体特异性的分离方法-亲和色谱法
亲和层析法(aflinity chromatography)是分离蛋白质的一种极为有效的方法,它经常只需经过一步处理即可使某种待提纯的蛋白质从很复杂的蛋白质混合物中分离出来,而且纯度很高。这种方法是根据某些蛋白质与另一种称为配体(Ligand)的分子能特异而非共价地结合。其基本原理:蛋白质在组织或细胞中是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质,因此蛋白质的分离(Separation),提纯(Purification)
和鉴定(Characterization)是生物化学中的重要的一部分,至今还没的单独或一套现成的方法能移把任何一种蛋白质从复杂的混合蛋白质中提取出来,因此往往采取几种方法联合使用。
细胞的破碎
1、高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。此法适用于动物内脏组织、植物肉质种子等。
2、玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。
3、超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌制备各种酶,常选用50-100毫克菌体/毫升浓度,在1KG至10KG频率下处理10-15分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施。对超声波敏感和核酸应慎用。
4、反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。
5、化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破坏,细菌细胞壁较厚,可采用溶菌酶处理效果更好。
无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸(DFP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入苯甲磺酰氟化物(PMSF)也能清除蛋白水解酥活力,但不是全部,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。
浓缩、干燥及保存
一、样品的浓缩
生物大分子在制备过程中由于过柱纯化而样品变得很稀,为了保存和鉴定的目的,往往需要进行浓缩。常用的浓缩方法的:
1、减压加温蒸发浓缩
通过降低液面压力使液体沸点降低,减压的真空度愈高,液体沸点降得愈低,蒸发愈快,此法适用于一些不耐热的生物大分子的浓缩。
2、空气流动蒸发浓缩 空气的流动可使液体加速蒸发,铺成薄层的溶液,表面不断通过空气流;或将生物大分子溶液装入透析袋内置于冷室,用电扇对准吹风,使透过膜外的溶剂不沁蒸发,而达到浓缩目的,此法浓缩速度慢,不适于大量溶液的浓缩。
3、冰冻法 生物大分子在低温结成冰,盐类及生物大分子不进入冰内而留在液相中,操作时先将待浓缩的溶液冷却使之变成固体,然后缓慢地融解,利用溶剂与溶质融点介点的差别而达到除去大部分溶剂的目的。如蛋白质和酶的盐溶液用此法浓缩时,不含蛋白质和酶的纯冰结晶浮于液面,蛋白质和酶则集中于下层溶液中,移去上层冰块,可得蛋白质和酶的浓缩液。
4、吸收法 通过吸收剂直接收除去溶液中溶液分子使之浓缩。所用的吸收剂必需与溶液不起化学反应,对生物大分子不吸附,易与溶液分开。常用的吸收剂有聚乙二醇,聚乙稀吡咯酮、蔗糖和凝胶等,使用聚乙二醇吸收剂时,先将生物大分子溶液装入半透膜的袋里,外加聚乙二醇复盖置于4度下,袋内溶剂渗出即被聚乙二醇迅速吸去,聚乙二醇被水饱和后要更换新的直至达到所需要的体积。
5、超滤法 超滤法是使用一种特别的薄膜对溶液中各种溶质分子进行选择性过滤的方法,不液体在一定压力下(氮气压或真空泵压)通过膜时,溶剂和小分子透过,大分子受阻保留,这是近年来发展起来的新方法,最适于生物大分子尤其是蛋白质和酶的浓缩或脱盐,并具有成本低,操作方便,条件温和,能较好地保持生物大分子的活性,回收率高等优点。应用超滤法关键在于膜的选择,不同类型和规格的膜,水的流速,分子量截止值(即大体上能被膜保留分子最小分子量值)等参数均不同,必须根据工作需要来选用。另外,超滤装置形式,溶质成份及性质、溶液浓度等都对超滤效果的一定影响。Diaflo 超滤膜的分子量截留值:
膜名称
分子量截留值
孔的大的平均直径
XM-300
300,000
140
XM-200
100,000
55
XM-50
50,000
30
PM-30
30,000
22
UM-20
20,000
18
PM-10
10,000
15
UM-2
1,000
12
UM05
500
10
用上面的超滤膜制成空心的纤维管,将很多根这样的管拢成一束,管的两端与低离子强度的缓冲液相连,使缓冲液不断地在管中流动。然后将纤维管浸入待透析的蛋白质溶液中。当缓冲液流过纤维管时,则小分子很易透过膜而扩散,大分子则不能。这就是纤维过滤秀析法,由于透析面积增大,因而使透析时间缩短10倍。
二、干燥
生物大分子制备得到产品,为防止变质,易于保存,常需要干燥处理,最常用的方法是冷冻干燥和真空干燥。真空干燥适用于不耐高温,易于氧化物质的干燥和保存,整个装置包括干燥器、冷凝器及真空干燥原理外,同时增加了温度因素。在相同压力下,水蒸汽压随温度下降而下降,故在低温低压下,冰很易升华为气体。操作时一般先将待干燥的液体冷冻到冰点以下使之变成固体,然后在低温低压下将溶剂变成气体而除去。此法干后的产品具有疏松、溶解度好、保持天然结构等优点,适用于各类生物大分子的干燥保存。
三、贮存
生物大分子的稳定性与保存方法的很大关系。干燥的制品一般比较稳定,在低温情况下其活性可在数日甚至数年无明显变化,贮藏要求简单,只要将干燥的样品置于干燥器内(内装有干燥剂)密封,保持0-4度冰箱即可,液态贮藏时应注意以下几点。
1、样品不能太稀,必须浓缩到一定浓度才能封装贮藏,样品太稀易使生物大分子变性。
2、一般需加入防腐剂和稳定剂,常用的防腐剂有甲苯、苯甲酸、氯仿、百里酚等。蛋白质和酶常用的稳定剂有硫酸铵糊、蔗糖、甘油等,如酶也可加入底物和辅酶以提高其稳定性。此外,钙、锌、硼酸等溶液对某些酶也有一定保护作用。核酸大分子一般保存在氯化钠或柠檬酸钠的标准缓冲液中。
3、贮藏温度要求低,大多数在0度左右冰箱保存,有的则要求更低,应视不同物质而定。
❼ 酶的提取:固液比1:5,20℃提取30分钟,共提取三次如何操作
发个实验给你参考参考!!!
酵母蔗糖酶的分离纯化和活力测定
实验简介:酶的分离制备在酶学以及生物大分子的结构功能研究种具有重要意义。啤酒酵母中蔗糖酶含量丰富。本实验用新鲜啤酒酵母作为原料,通过破碎细胞,热处理,乙醇沉淀,柱层析等步骤提取蔗糖酶。并对其活力进行测定。
实验原理
蔗糖酶主要存在于酵母中,但工业上通常从酵母中制取。酵母蔗糖酶系胞内酶,提取时细胞破碎或菌体自溶。常用的提纯方法有盐析、有机溶剂沉淀、离子交换和凝胶柱层析。以此可得到较高纯度的酶。
蔗糖酶催化下蔗糖水解为等量的葡萄糖和果糖。用测定生成还原糖(葡萄糖和果糖)的量来测定蔗糖水解的速度,本实验中,蔗糖酶的活力单位指在一定条件下反应5min,每产生l毫克葡萄糖所需酶量。 用考马斯亮蓝法测定蛋白质含量,比活力为每毫克蛋白质的活力单位数。
实验操作
1. 提取
(1) 准备一个冰浴,将研钵稳妥放入冰浴中。
(2) 将10g湿啤酒酵母,和适量(5g)二氧化硅一起放入研钵中。二氧化硅要预先研细。
(3) 缓慢加入预冷的30mL去离子水,每次加2mL左右,边加边研磨,至少用30分钟。以便将蔗糖酶充分转入水相,至酵母细胞大部分研碎,以便将蔗糖酶充分转入水相中。
(4) (可选项) 研磨时用显微镜检查研磨的效果。
(5) 将混合物转入两个离心管中,平衡后,用高速冷离心机,4℃,10000rpm,离心5min。
(6) 用滴管小心地取出水相,转入另一个清洁的离心管中,4℃,10000rpm,离心15min。
(7) 将清液转入量筒,量出体积,用广泛pH试纸检查上清液pH,用1mol / L 醋酸将pH调至5.0,称为“粗级分Ⅰ”。留出1.5mL测定酶活力及蛋白含量,剩余部分转入清洁的离心管中。
2. 热处理和乙醇沉淀
(1) 预先将恒温水浴调到50℃,将盛有粗级分I的离心管稳妥地放入水浴中,45℃下保温30分钟,在保温过程中不断轻摇离心管。
(2) 取出离心管,于冰浴中迅速冷却,用4℃,10000rpm,离心10min。
(3) 将上清液转入小烧杯中,放入冰盐浴(没有水的碎冰撒入少量食盐),逐滴加入等体积预冷至-20℃的95%乙醇,同时轻轻搅拌,共需30分钟,再在冰盐浴中放置10分钟,以沉淀完全。于4℃,10000rpm,离心10min,倾去上清,并滴干,沉淀保存于离心管中,盖上盖子或薄膜封口,然后将其放入冰箱中冷冻保存(称为“级分Ⅱ”)。废弃上清液之前,要用尿糖试纸检查其酶活性(于下一个实验一起做)。
3. DEAE纤维素柱层析纯化酶蛋白
(1) 离子交换剂的处理
称取1.5克DEAE纤维素(DE-32)干粉,加入0.5mol/L NaOH溶液(约50m1),轻轻搅拌,浸泡至少0.5小时(不超过1小时),用玻璃砂漏斗抽滤,并用去离子水洗至近中性,抽干后,放入小烧杯中,加50mL 0.5mol/L HCl,搅匀,浸泡0.5小时,用去离子水洗至。近中性,再用0.5 mol/L NaOH重复处理一次,用去离子水洗至近中性后,抽干备用(因DEAE纤维素昂贵,用后务必回收)。实际操作时,通常纤维素是已浸泡过并回收的,按“碱一酸”的顺序洗即可,因为酸洗后较容易用水洗至中性。碱洗时因过滤困难,可以先浮选除去细颗粒,抽干后用0.5 mol/L NaOH-0.5 mol/L NaCl溶液处理,然后水洗至中性。
(2) 装柱与平衡
先将层析柱垂直装好,在烧杯内用0.02 mol/L,pH7.3 Tris-HCl缓冲液洗纤维素几次,用滴管吸取烧杯底部大颗粒的纤维素装柱,然后用此缓冲液洗柱至流出液的pH与缓冲液相同或接近时即可上样。
(3) 上样与洗脱
上样前先准备好梯度混合器,详见附录TH-500梯度混合器使用说明。
用5mL 0.02mol/L,pH7.3的Tris-HCl缓冲液充分溶解醇级分Ⅱ(注意玻璃搅棒头必须烧圆,搅拌溶解时不可将离心管划伤),若溶液混浊,则4 000r/min离心除去不溶物。取1.5mL上清液(即醇级分Ⅱ样品,留待下一个实验测酶活力及蛋白含量),将剩余的3.5mL上清液小心地加到层析柱上,不要扰动柱床,上样后用约30mL缓冲液洗去柱中未吸附的蛋白质,至A280降到0.1以下,注意从上样开始使用部分收集器收集,每管2.5~3.0mL/l0min。然后打开梯度混合器,采用30mL,0.02mol/L,pH7.3的Tris-HCl缓冲液和30mL含0.2mol/L浓度NaCl的0.02mol/L,pH7.3的Tris-HCl.缓冲液,进行线性梯度洗脱,连续收集洗脱液,控制流速2.5~3.0mL/10min。测定每管洗脱液的A280光吸收值。
(4) 各管洗脱液酶活力的定性测定
在点滴板上每一孔内,加一滴0.2mol/L,pH4.6的乙酸缓冲液,一滴0.5mol/L蔗糖和一滴洗脱液,反应5min,在每一孔内同时插入一小条尿糖试纸,10~20min后观察试纸颜色的变化。用“ ”号的数目,表示颜色的深浅,即各管酶活力的大小。合并活性最高的2~3管,量出总体积,并将其分成10份,分别倒人10个小试管,用保鲜膜封口,冰冻保存,使用时取出一管,此即“柱级分Ⅲ”。
4. 各级分Ⅰ、Ⅱ、Ⅲ蔗糖酶活力
用0.02mol/L,pH4.6乙酸缓冲液(也可以用pH5~6的去离子水代替)稀释各级分酶液,测出酶活合适的稀释倍数:
Ⅰ: 1 000~10 000倍;
Ⅱ: 1 000~10 000倍;
Ⅲ: 100~1 000倍;
以上稀释倍数仅供参考。
按“表1”的顺序在试管中加入各试剂,进行测定,为简化操作可取消保鲜膜封口,沸水浴加热改为用90~95℃水浴加热 8-10min,以5min生成的还原糖的毫克数为纵坐标,以试管中lmL反应混合物中的酶浓度(mg蛋白/m1)为横坐标,画出反应速度与酶浓度的关系曲线。
表1 各级分I、Ⅱ、Ⅲ蔗糖酶活性测定
各管名称 对照 级分Ⅰ 级分Ⅱ 级分Ⅲ 葡萄糖
管数 1 2 3 4 5 6 7 8 9 10 11 12 13
酶液/mL 0.0 0.05 0.20 0.50 0.05 0.20 0.50 0.05 0.20 0.50 / / /
H2O/mL 0.6 0.55 0.40 0.10 0.55 0.40 0.10 0.55 0.40 0.10 0.8 0.4 0.2
乙酸缓冲液0.2mol/L,pH4.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 / / /
葡萄糖2mmol/L / / / / / / / / / / 0.2 0.6 0.8
蔗糖0.25mol/L 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 / / /
加入蔗糖,立即摇匀开始记时,室温准确反应5min后,立即加1mL 0.1M NaOH中止反应
二硝基水杨酸溶液 mL 1.0
用保鲜膜封口,扎眼,沸水浴加热5min,立即用水冷却3分钟。
H2O/mL 4.0
A520
稀释后酶活力 /
原始酶活力 /
5. 考马斯亮兰法测定各级分蛋白质含量
(1) 蛋白质标准曲线制作
取14支试管,分两组按下表平行操作。
表2 蛋白质标准曲线制作
试管编号/mL 0 1 2 3 4 5 6
标准蛋白溶液/mL
0.02mol/L Tris-HCl缓冲液/mL
考马斯亮兰试剂/mL
摇匀,1h内以0号试管为空白对照,在595nm处比色
A595nm
(2) 各级分蛋白质含量测定
考马斯亮兰G-250在酸性溶液时呈茶棕色,最大吸收峰在465nm。当与蛋白质结合后变成深蓝色,最大吸收峰转至595nm,在10~100μg/mL蛋白质浓度范围内成正比。因此在测定各级分蛋白质含量时应稀释适当倍数,使其测定值在标准曲线的直线范围内。根据所测定的A595nm值,在标准曲线上查出相当于标准蛋白的量,从而计算出未知样品的蛋白质浓度(mg/mL)。
6. 计算各级分的比活力、纯化倍数及回收率
为了测定和计算下面表3中的各项数据,对各个级分都必须取样,每取一次样,对于下一级分来说会损失一部分量,因而要对下一个级分的体积进行校正,以使回收率的计算不致受到不利的影响。
1活力单位(U)=酶在室温,pH=4.6条件下,每分钟水解产生1μmol葡萄糖所需酶量。比活力=活力单位/mg蛋白。
表3 各级分的比活力、纯化倍数及回收率
级
分 记录
体积
(m1) 校正
体积
(m1) 蛋白质
(mg/m1) 总蛋白
(mg) Unit
(s/m1) 总活力
(U) 比活力
(Units
/mg) 纯化
倍数 回收率
(%)
Ⅰ 1.0 100
Ⅱ
Ⅲ
下面表4是对假定的各级分记录体积进行校正计算的方法和结果:
表4 实验记录表
级分 记录体积 (m1) 校正体积计算 取样体积
(m1) 校正后体积
(m1)
Ⅰ 15 15 1.5 15.00
Ⅱ 5 5×(15/13.5) 1.5 5.5
Ⅲ 6 6×(15/13.5)×(5/3.5) 1.5 9.5
五、 结果
在同一张图上画出所有管的酶活力、光吸收值A280的曲线和洗脱梯度线。得出各级分的活力,比活力,提纯倍数以及回收率。
六、 注意事项
从上样开始收集,可能有两个活性峰,梯度洗脱开始前的第一个峰是未吸附物,本实验取用梯度洗脱开始后洗下来的活性峰。
七、 作业
1.为什么酶的提取需要低温操作?
2.热处理的根据是什么?
去除热敏感蛋白。
参考文献
1.邵雪玲,毛歆,郭一清.生物化学与分子生物学实验指导.武汉:武汉大学出版社,2003
2.张龙翔.高级生物化学实验选编.北京:高等教育出版社,1989
3.许培雅,邱乐泉.离子交换柱层析纯化蔗糖酶实验方法改进研究.实验室研究与探索,2002,21(3):82~84
编著者——陈彦,李绍飞
❽ 中药醇提设备与水提设备区别,一台提取设备可以做水提又可以做醇提,能吗
没有不同,纯度问题
黄芪用水提取,比用乙醇提取为佳。黄芪采用版水煎煮3次,乙醇回流提取权3次,以黄芪甲苷含量为考察依据,提取率均可达到70%以上,但水提醇沉时甲苷损失小,经3次醇沉分离纯化得黄芪苷提取物(中间体)纯度高,制成的注射液非常澄明,久置不会产生沉淀,而醇提水沉时不但甲苷损失大,而且难以将脂溶性成分除尽,所得黄芪苷提取物(中间体)纯度低,制成的注射液放置后会产生沉淀;
黄芪采用水提醇沉分离纯化,不但可同时将黄芪皂苷类、黄芪黄酮类和多糖有效成分一并提出,经醇沉可将多糖与前述两类有效成分分离,
❾ 常见的多糖有哪些 他们的提取方法比较
多糖的广义分类分为: 均一性多糖和不均一性多糖。
均一性多糖:
由一种单糖分子缩合而成的多糖,叫做均一性多糖。自然界中最丰富的均一性多糖是淀粉和糖原、纤维素。它们都是由葡萄糖组成。淀粉和糖原分别是植物和动物中葡萄糖的贮存形式,纤维素是植物细胞主要的结构组分。
1、 淀粉 淀粉是植物营养物质的一种贮存形式,也是植物性食物中重要的营养成分,分为直链淀粉和支链淀粉。① 直链淀粉:许多α-葡萄糖以α(1-4)糖苷键依次相连成长而不分开的葡萄糖多聚物。典型情况下由数千个葡萄糖线基组成,分子量从150000到600000。结构:长而紧密的螺旋管形。这种紧实的结构是与其贮藏功能相适应的。遇碘显兰色。② 支链淀粉:在直链的基础上每隔20-25个葡萄糖残基就形成一个-(1-6)支链。不能形成螺旋管,遇碘显紫色。淀粉酶:内切淀粉酶(α-淀粉酶)水解α-1.4键,外切淀粉酶(β-淀粉酶)α-1.4,脱支酶α-1.6。 2、 糖元 与支链淀粉类似,只是分支程度更高,每隔4个葡萄糖残基便有一个分支。结构更紧密,更适应其贮藏功能,这是动物将其作为能量贮藏形式的一个重要原因,另一个原因是它含有大量的非原性端,可以被迅速动员水解。糖元遇碘显红褐色。
3、 纤维素结构 许多β-D-葡萄糖分子以β-(1-4)糖苷键相连而成直链。纤维素是植物细胞壁的主要结构成份,占植物体总重量的1/3左右,也是自然界最丰富的有机物,地球上每年约生产1011吨纤维素。经济价值:木材、纸张、纤维、棉花、亚麻。完整的细胞壁是以纤维素为主,并粘连有半纤维素、果胶和木质素。约40条纤维素链相互间以氢键相连成纤维细丝,无数纤维细丝构成细胞壁完整的纤维骨架。降解纤维素的纤维素主要存在于微生物中,一些反刍动物可以利用其消化道内的微生物消化纤维素,产生的葡萄糖供自身和微生物共同利用。虽大多数的动物(包括人)不能消化纤维素,但是含有纤维素的食物对于健康是必需的和有益的。
4、 几丁质(壳多糖) N-乙酰-D-葡萄糖胺以(1,4)糖苷链相连成的直链。
5、菊 糖 :多聚果糖,存在于菊科植物根部。
6、 琼 脂 :多聚半乳糖,是某些海藻所含的多糖,人和微生物不能消化琼脂。
不均一性多糖
有不同的单糖分子缩合而成的多糖,叫做不均一多糖。常见的有:透明质酸、硫酸软骨素等。
有一些不均一性多糖由含糖胺的重复双糖系列组成,称为糖胺聚糖(glyeosaminoglycans,GAGs),又称粘多糖。(mucopoly saceharides)、氨基多糖等。糖胺聚糖是蛋白聚糖的主要组分,按重复双糖单位的不同,糖胺聚糖有五类:
1、透明质酸
2、硫酸软骨素
3、硫酸皮肤素
4、硫酸用层酸
5、肝素
6、硫酸乙酰肝素
植物活性多糖的提取方法有多种,在水提醇沉的基础上,常采用酶解、微波、超声波,膜处理和CO<2>超临界萃取等方法进行辅助提取或精制.最常用的还是水提醇沉法.
举例: 蒽酮比色法,具体步骤
一、仪器、试剂和材料
1.仪器:电子天平,超声波清洗器,电热恒温水浴锅,抽滤设备,分光光度计,容量瓶,刻度吸管等
2.试剂:
(1)葡萄糖标准液:l00 µg/mL
(2)浓硫酸
(3)蒽酮试剂:0.2 g蒽酮溶于100 mL浓 H2SO4中。当日配制使用。
3.材料:甜高粱,甘草
二.操作步骤
1.葡萄糖标准曲线的制作
取7支大试管,按下表数据配制一系列不同浓度的葡萄糖溶液:
管号
1
2
3
4
5
6
7
葡萄糖标准液(mL)
0
0.1
0.2
0.3
0.4
0.6
0.8
蒸馏水(mL)
1
0.9
0.8
0.7
0.6
0.4
0.2
葡萄糖含量(µg)
0
10
20
30
40
60
80
在每支试管中立即加入蒽酮试剂4.0mL,迅速浸于冰水浴中冷却,各管加完后一起浸于沸水浴中,管口加盖,以防蒸发。自水浴沸腾起计时,准确煮沸l0 min,取出,用冰浴冷却至室温,在620 nm波长下以第一管为空白,迅速测其余各管吸光值。以标准葡萄糖含量(µg)为横坐标,以吸光值为纵坐标,绘出标准曲线。
2.植物样品中可溶性糖的提取:将样品粉碎,105 ºC烘干至恒重,精确称取1~5 g,置于50mL三角瓶中,加沸水25mL,加盖,超声提取10 min,冷却后过滤(抽滤),残渣用沸蒸馏水反复洗涤并过滤(抽滤),滤液收集在50mL容量瓶中,定容至刻度,得可溶性糖的提取液。
3.稀释:吸取提取液2mL,置于另一50mL容量瓶中,以蒸馏水定容,摇匀。
4.测定:吸取1 mL已稀释的提取液于试管中,加入4.0 mL蒽酮试剂,平行三份;空白管以等量蒸馏水替代提取液。以下操作同标准曲线制作。根据A620平均值在标准曲线上查出葡萄糖的含量(µg)。
三、结果处理:
C × V总 × D
样品含糖量(%)= ————————————— × 100%
W × V测 × 106
其中:C——在标准曲线上查出的糖含量(µg),
V总——提取液总体积(mL),
V测——测定时取用体积(mL),
D——稀释倍数,
W——样品重量(g),
106——样品重量单位由g换算成µg的倍数
溶剂提取法
溶剂提取法是从植物中提取多糖的常用方法,溶剂提取法首先要考虑的因素是选择溶剂,一般应遵循相似相溶的原则,即极性强的有效成分选择极性强的溶剂,极性弱的成分选择极性弱的溶剂。多糖是极性大分子化合物,应选择水、醇等极性强的溶剂。在所有溶剂中,水是典型的强极性溶剂,对植物组织的穿透力
强,提取效率高,在生产上使用安全。它能用于各种植物多糖,被广泛应用。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提。水提取的多糖大多是中性多糖。一般植物多糖提取多数采用热水浸提法,该法所得多糖提液可直接或离心除去不溶物;或者利用多糖不溶于高浓度乙醇的性质,用高浓度乙醇沉淀提纯多糖;但由于不同性质或不同相对分子质量的多糖沉淀所需乙醇浓度不同,它也可以用于样品中不同多糖组分的分级分离;还可按多糖不同性质在粗分阶段利用混合溶剂提取法对植物中不同的多糖进行分离;其中,以乙醇沉淀最为普遍。刘青梅等在紫菜粗多糖提取方式研
究中,热水提取控制条件为:温度为20~100℃,水与紫
菜的液固质量比为50:1,提取时间30~180min,经多次
试验最终得率为2.05%。周峙苗得到热水浸提羊栖菜
多糖的最佳因素:浸提温度为煮沸(102℃),pH为3.0,
浸提时间为3h,液固质量比为40:1。李战对三种紫球
藻的提取工艺研究表明,三种紫球藻的最佳提取工艺
各不相同。铜绿紫球藻的最优提取工艺为乙醇浓度
5%,乙醇用量为3倍体积,醇沉时间为1.5h。氯仿与正
丁醇的比例4:1,样液与Sevag试剂的比例1:2,作用时
间为15min。淡色紫球藻的最优提取工艺为乙醇浓度
75%,乙醇用量为2倍体积,醇沉时间为1h,氯仿与正
丁醇的比例3:1,样液与Sevag试剂的比例1:2,作用时
间为45min。血色紫球藻的最优提取工艺为乙醇浓度
50%。乙醇用量为1倍体积,醇沉时间为0.5h,氯仿与
正丁醇的比例4:1,样液与Sevag试剂的比例2:1,作用
时间为45min。
酸碱提取法
有些多糖适合用稀酸或碱溶液提取,才能得到更
高的提取率。但酸碱提取法有其特殊性,因多糖类的不
同而异。只在一些特定的植物多糖提取中占有优势,而
且即使有优势,在操作上还应严格控制酸碱度。因为
某些多糖在酸性或者碱性较强时,可能引起多糖中糖
苷键的断裂。另外,稀酸、稀碱提取液应迅速中和或迅
速透析,浓缩与醇析而获得多糖沉淀。赵宇等对海篙
子多糖的提取方法研究发现,从硫酸根含量及粗多糖
产率看酸提方法好于水提方法。具体方法为:100g海
篙子干粉,加入1000ml 0.1mo1/L HCL溶液提取。室温
搅拌1h后过滤,重复操作三遍,合并滤液;滤液减压浓
缩至总体积的1/5,再加入95%乙醇至乙醇浓度达
30%,沉淀,离心除去沉淀中的褐藻酸,继续向上清液
中加入乙醇至乙醇浓度达7%。室温放置过夜使沉淀
完全,离心,沉淀干燥得海篙子粗多糖,多次试验算得
平均产率为3.35%。
孟宪元等在茜草多糖提取研究中发现酸提相对
多于水提,以稀酸提取茜草多糖,产品纯度较高。具体
方法如下茜草根粗粉1000g 5%HCL浸泡、离心、取上
清液加入ETOH并调节至浓度为7%,静置,2500rpm
离心,收集棕色沉淀物,95%ETOH洗涤3次,用45%
HCL溶解。加1%活性炭脱色,真空抽滤,滤液4℃过
夜,弃去容器底部少许沉淀物。溶液置透析袋内,逆水
法透析3d,冷冻干燥,得白色粉末状多糖约10g。
Hayashi Katsuhiko发明了一种从绿色藻类中提取酸
性多糖的方法,而这种多糖用常规的热水法是无法得到的。具体过程为:将干燥的绿藻粉末制成悬浮液,热
水浸泡提取或将含水绿藻直接用热水提取后离心分
离,取粘稠的固状物,加入碱水,在pH≥10的条件下
再进行搅拌提取,碱水提取液在搅拌的同时加入酸水
调节pH值为3.0~4.0,静置沉降后离心得酸性多糖。
1.3生物酶提取法
酶技术是近年来广泛应用到有效成份提取中的一
项生物技术,在多糖的提取过程中,使用酶可降低提取
条件,在比较温和的条件中分解植物组织,加速多糖的
释放或提取。此外,使用酶还可分解提取液中淀粉、果
胶、蛋白质等的产物,常用的酶有蛋白酶,纤维素酶,果
胶酶等。孟江研究不同酶对大枣渣多搪提取效果的
影响,根据多糖得率、多糖含量及蛋白质含量进行综合
评分得到最适合的酶为复合酶2(先胰蛋白酶提取,后
木瓜蛋白酶提取),接下来依次是木瓜蛋白酶、复合酶、
(木瓜蛋白酶+胰蛋白酶)、胰蛋白酶、胃蛋白酶
(pH=7.0)、胃蛋白酶(pH=2.0)。复合酶2作用条件温
和,多糖得率及含量较高,且蛋白含量较低,实为一种
理想的酶提取剂。通过进一步正交实验考察得出最佳
工艺:先用胰蛋白酶3%,40倍体积在pH=7.0,65℃温
浸1.5h后,再加木瓜蛋白酶2.5%,在pH=7.0,50℃水
温浸1h,过滤残渣加40倍体积水,迅速升温至80℃,
然后温浸1.5h。
此外,植物多糖的提取方法还有超滤法,超声波强
化法,微波法等等。植物多糖的提取方法和技术在不断
改进和创新,但对于同一种方法和技术又需在不同植
物多糖的提取中研究考察。在选取提取分离方法的同
时,应当根据目标多糖的特点、物理化学性质,综合比
较,进行实验,选取最佳方法和提取工艺。
❿ 水提取液与醇提取液共有的成分,试验现象是否相同
酶是一种由氨基酸组成的具有特殊生物活性的物质,它存在于所有活的动植物回体内,是维答持机体正常功能,消化食物,修复组织等生命活动的一种必需物质。 酶作为生物催化剂普遍存在于动物、植物和微生物中,可直接从生物体中分离提纯。酶的生产方法可分为提取法﹑发酵法以及化学合成法。其中,化学法仍在实验室阶段;提取法是最早采用且沿用至今的方法;发酵法是50年代以来酶生产的主要方法。