⑴ 凝结水的回收方式有哪些
冷凝水回收的主要障碍是水泵输送高温凝结水时的气蚀现象。由于水泵叶轮的抽吸作用,在水泵入口处形成较低的压力,当进口的凝结水的温度高于该处水压所对应的饱和温度时,凝结水汽化,形成许多小汽泡,这些小汽泡在叶轮处由于流体被压缩压力升高,又凝结,形成一个局部空腔,周围液体以很高的速度冲过来,高速液滴冲击在叶轮上,液滴的动量很大,长期下去叶轮表面产生许多小坑,使叶轮的使用寿命大大减小。要防止汽蚀发生,必须采取各种防汽蚀措施,提高水泵入口处的压力,使凝结水温度低于该处压力对应的饱和温度。最简单的措施就是提高水泵入口前凝结水的重力压头,把凝结水储罐布置在较高的位置,把凝结水泵布置在较低的位置。如果工艺条件不允许或者仅仅靠重力压达不到要求,就需要使用专门的凝结水回收装置。
按蒸汽的压力温度回收凝结水
(1)用汽设备疏水压力小于0.15兆帕时,凝结水可以利用重力自流回收。尽量用集水罐水泵吸入口的液位差提供防汽蚀压头,如果工艺布置不能保证必要的防汽蚀压头,要采取专门的防汽蚀装置。
(2)用汽设备疏水压力在0.15~0.6兆帕之间,多数采用增压回收方式回收凝结水,要仔细核算阻力损失,设计集水罐超压排汽装置,考虑直接喷淋吸收和增压回收两种方式利用超压排汽。需要选用泵叶轮耐温150℃的水泵,配置专门的防汽蚀装置。
(3)用汽设备凝结水压力大于0.6兆帕时,采用高压、中压回水系统闪蒸装置,闪蒸汽供中压或低压用汽设备。闪蒸量小于或等于低压热用户蒸汽使用量,具有周期使用系数时,直接利用。无中低压热用户时,设中压或低压热交换装置,加热其他工艺介质,以达到相同的热能利用效果。采用喷射热泵方式,增压增量利用。
按用汽设备供热方式回收凝结水
负荷稳定,耗汽量大的用户
条件:企业生产工艺要求该类换热设备开机后即处于一种耗汽量和蒸汽使用压力下的稳定负荷。
管网选择:按余压回水方式的限定流速和比摩阻原则设计管径,可不专门设集水罐。回收管网直接回收装置。
回收装置选择:按回收的冷凝水流量和冷凝水热用户阻力确定给水泵防汽蚀装置流量和扬程,在装置吸入管考虑装置故障时的自动排水功能。
特殊工艺用户
造纸行业:造纸行业有多缸纸机和浆机,每个缸有不同的烘干温度和湿度要求,一台纸机或浆机可自成一个独立的热能梯级利用系统。设计时要考虑上述因素,将喷射热泵技术、自控技术和冷凝水回收技术结合起来,以设计最理想的热能利用系统。
卷烟行业:卷烟行业蒸汽使用参数变化比较大,蒸汽使用有直接加湿和间接加热两种方式。可考虑用高压用汽设备的二次闪蒸汽用于直接加湿或空调采暖等方式,二次闪蒸汽汽量和压力不足时可用喷射泵引射和增压。
橡胶行业:用汽设备多,单台耗汽量小,同期使用系数大,用户回水需要合理的压力匹配,才能保证硫化温度。冷凝水既可作锅炉供水,又可作硫化机内胎用水。
总之,不同工艺要有不同的处理方法,在回收系统上和回收装置的选配上力求达到最佳的效果。
按用途选择回收冷凝水
冷凝水做锅炉补水
冷凝水做锅炉汽包补水:直接上锅炉是指将回收装置出口管接至原锅炉上水管在省煤器前端的某处(一般应在原上水泵止回阀后端)。由于上水温度提高,应注意省煤器的安全问题,可通过有关计算,确定省煤器出口的温度,对于非沸腾式省煤器,此温度应至少低于饱和温度30℃,对于沸腾式省煤器,省煤器出口温度应保证汽水混合物的干度小于或等于20%。在锅炉原给水控制要求不高或无热力除氧时选择该方案。
冷凝水直接进热力除氧器:大型锅炉对上水连续性和平稳性要求很高,这时凝结水不再直接输入锅炉而是进入热力除氧器,然后由原锅炉上水系统完成输入锅炉的任务。不管是直接上锅炉还是间接上锅炉,从安全的角度考虑,还应设置一根当锅炉或除氧器满水时供凝结水排放的管道,此管一般接到软化水箱中,具有溢流管的性质。
凝结水的这种去向选择是自动的,一般通过电磁阀、双回路调节器等控制阀门来完成。
冷凝水做低温热源
当企业利用热电厂供汽,由于回收管网太长等原因无法直接回收到锅炉房时,或当冷凝水水质受到二次污染,不能作锅炉补水时,可作为低温加热热源使用、其方式如下:
企业用于取暖热源:利用冷凝水的余热,根据供热负荷确定是否需要补充部分软水(或生水)作采暖循环用水,根据余热量确定供暖面积,可节省集中供热费用。
用于直接热水用户:对于印染、纺织、橡胶、轮胎等企业,需要大量自用高温软化热水,利用冷凝水,污染介质并不影响同行业加热的目的。
间接换热热源:当冷凝水受到污染无法直接利用时,可考虑间接换热方式。如加热工艺用水,采暖循环水等非饮用水场合。
总之,凝结式回收的原则是:通过凝结水回收系统中能量的综合利用,达到最经济的能量回收利用,保持整个蒸汽热力系统利用率最高,经济性最好。凝结水回收中的能量回收实际上有交错在一起的三种方式:凝结水所含热能的回收、闪蒸汽的有效利用、软化水的回收。
对于高、中压回收系统,在系统中设专门的闪蒸装置,闪蒸汽供低压用汽设备使用。同时也减少了其余凝结水的回收难度。如果没有下一级低压蒸汽用户,可以设置热交换器,加热其他用途的工艺介质,做到能量的有效利用。在凝结水回收管网中可以设多级闪蒸装置,使蒸汽按梯级方式利用。
凝结水回收装置中最终的凝结水一般送回锅炉重新使用,这样不仅节约了热能,也节约了软化水,从而也节省了水处理的费用。
有时,凝结水被污染,作为软化水回收已经没有意义,但是其中的热能还是应该尽量回收,可以作为低温加热热源使用,如用于取暖,间接加热热水或其他工质。
当企业采用热电厂供汽时,把凝结水回收到锅炉管网太长,或者需要回收的凝结水数量太少,不值得设回收管网,也应该把用汽点的凝结水收集起来,就地利用。
⑵ 我国石油化工行业节水潜力有多大
我国是人均水资源贫乏的国家,人均水资源仅为世界平均水平的四分之一。我国工业用水量占总用水量的20%,工业废水排放量占全国废水排放量的49%。工业用水效率低、增长快、污染重是我国水资源应用中的重要问题。我国石油天然气行业是用水和废水排放大户,因此节水成为一项十分重要和迫切的任务。
1997年全国加工原油1.54亿吨,其中中国石油化工总公司加工1.25亿吨,炼油行业消耗新鲜水4.26亿吨(按工业用水统计为3.66亿吨),平均加工每吨原油耗水3.41吨(按工业用水统计为2.93吨);排放废水总量为2.96亿吨(按工业废水统计为2.73亿吨),加工每吨原油排放废水2.37吨(按工业废水统计为2.19吨)。2000年,中国石油天然气股份有限公司加工1吨原油用新鲜水平均在1立方米以上,最高的公司达3.95吨。
国外炼油企业加工1吨原油用新鲜水仅为0.5吨,加工1吨原油废水排放量大多在0.1吨以下,先进水平仅0.01吨。国外有的炼油厂甚至可以做到废水全部回用,基本上不向外排放废水。如日本兵库炼油厂,平均加工1吨原油的废水排放量仅为6~7千克;日本科斯莫(COSMO)公司千叶炼油厂,炼油能力为1200万吨/年,年排放废水不到3000吨,平均每加工1吨原油排放废水不到0.25千克。我国只有燕山石化公司炼油厂、齐鲁石化公司炼油厂、镇海炼化公司炼油厂、福建炼油厂、济南炼油厂和林源炼油厂加工每吨原油排放废水小于1吨,比兵库炼油厂排放量高100~130倍,比COSMO公司千叶炼油厂排放量高3000~4000倍,而其他炼油厂差距更大。1997年全国加工1.54亿吨原油,与国外一般水平比较,约多排放废水2.6亿吨,相当于多耗新鲜水3亿吨。如果与国外先进水平比,约多排放废水3.49亿吨,相当于多耗新鲜水4亿吨。全国炼油厂废水排放率如果都能达到兵库炼油厂水平,一年可少排放废水3.64亿吨,相当于少消耗新鲜水4亿吨,每吨水价格按0.45元计算,可以节约1.8亿元。可见节水潜力的经济效益很可观。
中国的石油天然气企业都在采取具体措施来节约用水,但由于各种技术和管理方面的原因,节水目标的实现还有一个过程。中国石油天然气股份公司制定的2005年主要用水指标为:加工1吨原油用新鲜水1立方米;在化工产品产量比2000年增长53%时,新鲜水用量不增;炼化系统水的重复利用率整体达到95%时,重点企业达到97%;炼化系统循环水浓缩倍数整体达到3.5~4.5,重点企业达到5~6;炼化系统凝结水回收率达到70%,重点企业要达到80%;炼化系统污水回用量达到30%,重点企业要达到50%;油气田采油污水有效回用率达到95.5%。
炼油化工生产采取的节水措施有:提高循环水浓缩倍数;回收利用凝结水;炼油污水处理回用;海水利用;加强用水计量和监测工作;加强管理和考核等。
⑶ 凝结水回收与不回收各有什么利弊
凝结水不回收会产生以下问题:
1.大量的疏水阀漏汽和闪蒸二次汽对空排放,这部分浪费约占凝结水总量的5~20%,总热量的20~60%。
2.闪蒸汽的排放,在冬天热雾漫天,夏季热浪逼人,即对环境造成严重的热污染,又可能烫伤人员,存在安全隐患。
3.潮湿的环境加重了金属设备的腐蚀,电气设备老化,形成间接损失。
4.回收系统为动态两相流,经常形成水击,使设备和管道产生剧烈的震动,存在安全隐患。
5.回收的凝结水再次被溶解空气中的氧气,二氧化碳等杂质,增加后处理费用。将高品质的凝结水按低品位的水用本身就是一种浪费。
凝结水回收的效益:
1. 凝结水的回收节约软化水的价值。凝结水是处理过的软化水,接近蒸馏水的水质。一般不需要处理可直接回收进锅炉在利用。
2. 凝结水回收温度的提高,使锅炉进水温度提高,而节约的燃料耗量产生的效益。可以减少加热普通水到凝结水的温度,同时可以降低水温差,减少燃料耗费。
3. 由于采用闭式回收系统,系统封闭运行,使背压提高而减少蒸汽的漏汽量,产生的效益;
4. 减少排污量和热耗量。
5. .凝结水回收投资回收期在3到6个月,一般不超过半年。
我就是做凝结水回收设备的,现在好多企业都在节能减排,设备投资回收期也很短,有什么问题可加QQ:1365669809
⑷ 凝结水有什么用
作用是比较纯净的,用在各种高精度设备使用,真正实用是在工业领域
⑸ 石化行业的凝结水与电力行业的凝结水有何不同
丛本质上来说是一样的都是蒸汽冷凝后形成的。但是,电厂的蒸汽比较单一,汽轮机发电后形成的凝结水。石化行业的比较复杂,有供塔底作为热源的,有清洗容器的,也有用于汽轮机的。
电厂蒸汽成分单一,石化行业里蒸汽容易带油。
⑹ 凝结水的凝结水回收
1、凝结水性质概述: 蒸汽的热能由显热和潜热两部分组成,通常用汽设备只利用蒸汽的潜热和少量的显热,释放潜热和少量的显热后的蒸汽还原成高温的凝结水,凝结水是饱和的高温软化水,其热能价值占蒸汽热能价值的25%左右, 而且也是洁净的蒸馏水,适合重新作为锅炉给水。 因此,采取有效的回收系统,最大程度回收系统的热能和软化水是非常必要的,它不但可以节能降耗,也可以消除因二次闪蒸汽的排放而对厂区环境造成的污染,无论是在经济效益还是社会效益上都有十分重要的意义。
2.开式回收无法避免的难题
2.1 造成大量的热量散失: 开式回收为了减轻气蚀危害通常采取降低凝结水温至普通水泵不产生汽蚀的75℃左右,饱和凝结水在大气压下二次闪蒸,造成大量能量损失,能源利用率不足60%。
2.2 造成大量软化水损失: 高温凝结水具有很高的脱盐度,是理想的锅炉补给水,在不回收或开式回收中却以二次蒸汽的形式将大量的软化水白白浪费掉。
2.3 降低凝结水品质: 由于凝结水与大气的接触,再次遭到污染及空气中氧气的再次溶入,导致了管路系统内外腐蚀及电导率变化,缩短设备使用寿命,降低凝结水的品质,甚至使其达不到脱盐水标准,丧失了原本可直接作为锅炉给水的洁净蒸汽凝结水的品质,而不得不浪费掉或是重新进行水处理,而增加水处理费用。
2.4无法有效避免水泵气蚀难题,缩短水泵寿命,影响其他设备运行。 1 .减少锅炉补给水量、节约用水和运行费用 工业锅炉的补给水一般采用离子交换软化处理,对于碱度较高的原水还需采用软化-降碱处理。原水硬度越高,水处理的运行费用越大。若以多数地区原水平均硬度为 4mmol/L计,每吨水软化处理的运行费用约0.8元(其中包括再生剂消耗、再生水耗、树脂损耗及耗电等,而不包括设备和树脂等投资、维修及操作人员费用)。若回收蒸汽凝结水作锅炉给水,就可减少补给水处理量,不但能节约大量用水,而且降低水处理运行费用。 此外,将蒸汽凝结水回收作锅炉给水,还可缩小或简化补给水处理系统,节省投资,尤其对碱度较高的原水,当凝结水回收率较大时,有的可省去降碱处理的氢离交换系统,这可使投资减少约50%左右。
2 .提高给水品质,降低锅炉排污率 在锅炉运行中,一方面为了保持蒸汽品质良好,防止受热面结垢,必须对锅炉进行适当的排污。另一方面,锅炉排污越多,造成热能、给水和药剂的损失就越多。因此,通常要求在确保锅水各项指标达到合格的前提下,尽量降低锅炉的排污率。当锅水中允许的杂质含量确定后,应控制的锅炉排污率大小取决于给水中的杂质含量。在正常情况下,蒸汽凝结水相当于纯净水,杂质含量极低。对于工业锅炉来说,当凝结水回收作给水时,回收率越高,给水品质就越好,一般杂质含量可降低5~10倍,由此可大大降低锅炉排污率。 对于采用锅内加药处理的锅炉,利用凝结水作给水能显著降低给水硬度,不但可减少防垢处理的药剂用量,而且更有利于使水质达到国家标准,防止锅炉结垢。
3 .提高给水温度,降低燃料消耗 一般蒸汽凝结水的温度都较高,在适当的保温措施下,回水的温度可达120℃或以上,而初始补给水的水温只有5℃~35℃,两者温差可达100℃以上。因此,用凝结水作给水就可大量节约能源,减少燃料费用,尤其对于燃油、燃气锅炉来说,可获得的经济效益更为显著。
4 .降低给水溶解氧含量,减少氧腐蚀 给水中的溶解氧是锅炉运行中发生腐蚀的主要因素之一。21较常用的除氧方法为热力除氧和加药化学除氧。由于在一定的压力下,氧在水中的溶解度是随着水温升高而降低的,水温越低含氧量就越高。如果给水全部为软化水,在冬季锅炉负荷较大的情况下,无论是热力除氧还是化学除氧,除氧效果往往都难以达到合格标准。而利用凝结水作给水,不但提高了水温,而且凝结水中的溶解氧含量较低,可确保给水余氧含量达到合格标准。即使对于给水无除氧措施的小型工业锅炉,回收凝结水可大幅度提高给水温度,也能降低水中溶解氧含量。根据水中氧含量与温度、压力的关系,在常压下,水温升高60℃,含氧量可降低66%~80%,可显著减少锅炉的氧腐蚀。 2012-2015年中国凝结水处理市场调研与发展预测
〖 目 录 〗
第一章中国凝结水处理行业概述 11
第一节电力化学水处理的工作流程简介 11
第二节凝结水处理设备介绍 16
第三节市场基本特点 22
第四节产品分类 23
第二章国内凝结水处理市场发展概况 30
第一节国内总体市场分析 30
一、火电市场 30
二、核电市场 33
三、石化市场 36
第二节国内市场发展存在的问题 37
第三节市场特性分析 38
一、凝结水精处理技术变革 38
二、企业凝结水精处理系统差异化分析 39
三、凝结水精处理系统的投资特点 39
第四节上游原材料市场分析 40
第三章 2012年中国凝结水处理市场供需调查分析 41
第一节需求分析 41
第二节供给分析 52
第三节重点客户调查分析 53
一、重点客户行为调查分析 53
二、重点客户需求调查分析 54
三、业主采购与渠道调查分析 58
第四章 2012年中国凝结水处理市场竞争格局与企业竞争力评价 60
第一节同类产品竞争格局分析 60
第二节同类产品竞争群组分析 60
第三节同类产品市场份额分析 61
第四节主要企业市场竞争力评价 62
第五章凝结水处理系统价格分析 69
第一节价格特征分析 69
第二节主要品牌产品价位分析 69
第三节价格与成本的关系 70
第六章国内凝结水处理市场渠道分析 72
第一节销售渠道形式 72
第二节销售渠道要素对比 73
第七章影响2011-2012年中国凝结水处理市场发展因素 83
第一节有利因素 83
第二节不利因素 84
第三节政策因素 84
第四节次贷金融危机影响分析 86
第八章国内凝结水处理设备进出口现状与趋势分析 87
第一节我国出口及增长情况 87
第二节主要海外市场分布情况 87
第三节进口分析 88
⑺ 凝结水精处理装置的再循环泵有什么作用
这个应该是锅炉水处理范畴,因为凝结水回用是很好的能源再利用,由集水回器和循环答泵组成,金润环保科技水处理认为:利用循环水泵的压力把集水器回收的凝结水注入锅炉的预热器中。如果没有循环泵,凝结水将无法回到带有压力的蒸汽系统中,将采取直排方式处理,无法资源再利用。所以,循环泵起到回收再利用的增压作用。
⑻ 凝结水再循环的作用有哪些
1、采取有效的回收系统,最大程度回收系统的热能和软化水是非常必要的,它不但可以节能降耗,也可以消除因二次闪蒸汽的排放而对厂区环境造成的污染,无论是在经济效益还是社会效益上都有十分重要的意义。
2、由于闭式回收后减少了煤炭的使用量,也就降低了排放到大气中的二氧化碳量,有效实现节能减排,尤其是在温室气体排放引起全球气候变暖,备受国际社会及我国各阶层广泛关注的时刻;
采取措施减少二氧化碳排放量,能充分地展示一个积极承担社会责任的企业形象,增进企业在公众中的知名度和威信力,有利于企业开拓市场。
凝结作用
在一般大气中,实际水汽压大于当时温度下水面饱和水汽压时,水汽就会发生凝结过程;但在洁净大气中实际水汽压需达到水面饱和水汽压6倍以上,水汽才会凝结,为自发凝结。
如果大气中含有能吸收水分的气溶胶颗粒,这时则可在稍低于水面饱和水汽的条件喜爱发生凝结。如这些气溶胶颗粒含有硫酸盐、硝酸盐等,则可发生作为酸性凝结核形成酸雨。
⑼ 凝结水净化系统的组成分为哪几部分
由于凝汽器白钢管泄漏或其它原因造成凝结水中含盐量大。
本系统的凝结水精处理装置采用中压系统的连接方式,即无凝结水升压泵而直接将凝结水精处理装置串联在凝结水泵出口。这时,凝结水精处理装置承受凝结水泵出口的较高压力。这种系统的优点是设备少(节省了两台凝结水升压泵及其再循环管路、阀门等)、阀门少、凝结水管道短,简化了系统,便于运行人员操作。低压系统(凝结水精处理装置位于凝结水泵和凝结水升压泵之间,凝结水须经二次升压,此时凝结水精处理装置承受较低压力)常常因凝结水泵和凝结水升压泵不同步及压缩空气阀门不严,导致空气漏入凝结水精处理系统,使凝结水中溶解氧含量大增。中压系统则避免了这个问题,运行时几乎无空气漏入凝结水系统,保证了凝结水的较低含氧量。
凝结水精处理装置的进、出口管道上各装有一只电动隔离阀,同时与之并联一条旁路管道,装有电动旁路阀。在启动充水或运行时装置故障需要切除时,旁路阀开启,进、出口阀关闭,主凝结水走旁路;装置投入运行时,进、出口阀开启,旁路阀关闭。
3、轴封冷却器及凝结水最小流量再循环
经凝结水精处理装置后的凝结水的大部分进入轴封冷却器。轴封冷却器进口的主凝结水管路上设置流量测量孔板,以便测量主凝结水流量。
轴封冷却器为表面式热交换器,用于凝结轴封漏汽和门杆漏汽。轴封冷却器以及与之相连的汽轮机轴封汽室依靠轴封风机维持微真空状态,以防止蒸汽漏入环境或汽机润滑油系统。为维特上述的真空,降低轴封风机的功率,还必须有足够的凝结水量流过轴封冷却器来保证完全凝结上述漏汽。
在机组启动或低负荷时,主凝结水的流量将远小于额定值,但如果凝结水泵的流量小于允许的最小流量,水泵有发生汽蚀的可能。同时轴封冷却器的加热蒸汽是来自汽轮机轴封漏汽,无论是启动还是负荷变化,这些蒸汽都要有足够的凝结水来使其冷却后凝结,因此为兼顾在正常运行、启动停机和低负荷运行时机组、凝结水泵及轴封冷却器各自对流量的需求,轴封冷却器后设有再循环,必要时使部分凝结水经再循环阀返回凝汽器,以加大通过凝结水泵和轴封冷却器的凝结水流量。再循环流量取凝结水泵或轴封冷却器最小流量的较大值。而连接轴加进出口管道的旁路阀则能够调节通过凝结水泵和轴加的凝结水流量,
使其分别满足两者的要求。
凝结水最小流量再循环装置由—个调节阀、两个隔离阀和一个旁路阀组成,其后设置流量测量装置。正常运行时,隔离阀全开,旁路阀关闭。调节阀检修时,关闭两侧隔离阀,开启旁路阀。
4、除氧器水箱水位控制
除氧器水箱水位调节装置安装在轴封冷却器和#7低压加热器之间,由调节装置和一只旁路阀组成。调节装置由一个调节阀和其前后的两个隔离阀组成。当除氧器水箱水位升高且机组负荷减少时,调节阀关小,反之则开大。
5、低压加热器及其管道
系统中的低压加热器均采用全容量表面式加热器(抽汽压力由高到低为#5、#6、#7。#5和#6低压加热器为卧式,均采用小旁路(每个加热器有单独的旁路)。当加热器水位过高或因其它故障需要隔离检修时,关闭该加热器进、出口电动闸阀,电动旁路阀自动开启。#7低压加热器为卧式组合结构置于凝汽器喉部,采用大旁路系统。当其故障时,进、出口电动闸阀自动关闭,电动旁路阀自动开启。
#5低压加热器出口的主凝结水经过一个逆止阀进入除氧器。逆止阀可以防止机组低负荷或事故甩负荷时,除氧器内蒸汽倒入凝结水系统,造成管系振动。
#7安装在低背压凝汽器喉部,7段抽汽管道分别布置在凝汽器内部,因此无法装设隔离阀和逆止阀。为防止#7低压加热器满水造成汽轮机进水,在水侧采取隔离措施。#7低压加热器的进、出水阀和旁路阀均采用电动阀,并与低加高一高水位信号联动。当#7低压加热器出现高水位时,在控制室报警;当水位继续升高达到高一高水位时,在控制室报警的同时,进出口电动闸阀关闭,电动旁路阀开启,凝结水经旁路运行。
⑽ 凝结水系统的组成和作用
主凝结水系统的主要作用是把凝结水从凝汽器热井送到除氧器。为保证整个系统可靠工作,提高效率,在输送过程中,还要对凝结水进行除盐、净化、加热和必要的控制调节。同时在运行过程中提供有关设备的减温水、密封水、冷却水和控制水等。另外,还补充热力循环过程中的汽水损失。
主凝结水系统一般由凝结水泵、轴封加热器、低压加热器等主要设备及其连接管道组成。亚临界及超临界参数机组由于锅炉对给水品质要求很高,所以在凝结水泵后都设有除盐装置。国产机组由于除盐装置耐压条件的限制,凝结水采用二级升压,因此在除盐装置后一般还装设有凝结水升压泵。对于大型机组,主凝结水系统还包括由补充水箱和补充水泵等组成的补充水系统。一般再热机组的主凝结水系统有以下特点:
X
(1)设两台容量为100%的凝结水泵或凝结水升压泵,一台正常运行,一台备用,运行泵故障时连锁启动备用泵。
(2)低压加热器设置主凝结水旁路,旁路的作用是当某台加热器故障解列或停运时,凝结水通过旁路进入除氧器,不因加热器故障而影响整个机组正常运行。每台加热器设有一个旁路的,称为小旁路;两台以上加热器共用一个旁路的,称为大旁路。大旁路具有系统简单、阀门少、节省投资等优点,但是当一台加热器发生故障时,该旁路中其余加热器也随之解列停运,凝结水温度大幅度降低,这不仅降低了机组运行的经济性,而且使除氧器进水温度降低,工作不稳定,除氧 效果变差。小旁路与大旁路恰恰相反。因此,低压加热器的主凝结水系统多采用大、小旁路联合应用的方式。
(3)为了使凝结水泵在启动或低负荷时不发生汽蚀,同时保证轴封加热器有足够的凝结水量流过,使轴封漏汽能完全凝结下来,以维持轴封加热器中的微负压状态,在轴封加热器后的主凝结水管道上设有返回凝汽器的凝结水最小流量再循环管道。
(4)各种减温水及杂项用水管道,接在凝结水泵出口或除盐装置后。因为,这些水往往要求的是纯净的压力水。
(5)在凝汽器热井底部、最后一台(沿凝结水流向)低压加热器的出口凝结水管道上、除氧器水箱底部都接有排地沟的支管,以便在机组投运前,冲洗凝结水管道时,将不合格的凝结水排入地沟。
(6)化学补充水通过补充水调节阀进入凝汽器,文章由南宁泽德水泵整理以补充热力循环过程中的汽水损失。