1. 如何提高城市污水处理厂生物除磷效果
降低进入到厌氧池的溶解氧和硝态氮,调高C/P的比值,尽可能的降低系统SRT,降低后续系统内的二次释磷风险等
2. 生物法脱氮除磷的基本原理,影响因素及基本流程有哪些
氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害。然而,我国现有的城市污水处理厂主要集中于有机物的去除,污(废)水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物降解,大部分的可溶性含碳有机物被去除。
同时产生NH3-N 、 和和,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的 和 ,但对N、P等营养物只能去除10%~20%,其结果远不能达到二级排放标准。因此研究开发经济、高效的,适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要。
生物脱氮除磷机理
生物脱氮机理
污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过硝化作用转化为亚硝态氮、硝态氮,即,将 转化为 和 。在缺氧条件下通过反硝化作用将硝氮转化为氮气,即,将 (经反亚硝化)和 (经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的。
废水中氮的去除还包括靠微生物的同化作用将氮转化为细胞原生质成分。主要过程如下:氨化作用是有机氮在氨化菌的作用下转化为氨氮。硝化作用是在硝化菌的作用下进一步转化为硝酸盐氮。其中亚硝酸菌和硝酸菌为好氧自养菌,以无机碳化合物为碳源,从 或 的氧化反应中获取能量。其中硝化的最佳温度在纯培养中为25-35℃,在土壤中为30-40℃,最佳pH值偏碱性。反硝化作用是反硝化菌(大多数是异养型兼性厌氧菌,DO<0.5mg/L)在缺氧的条件下,以硝酸盐氮为电子受体,以有机物为电子供体进行厌氧呼吸,将硝酸盐氮还原为N2或NO2-同时降解有机物。
生物除磷原理
磷在自然界以2种状态存在:可溶态或颗粒态。所谓的除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离。废水在生物处理中,在厌氧条件下,聚磷菌的生长受到抑制,为了自身的生长便释放出其细胞中的聚磷酸盐,同时产生利用废水中简单的溶解性有机基质所需的能量,称该过程为磷的释放。进入好氧环境后,活力得到充分恢复,在充分利用基质的同时,从废水中摄取大量溶解态的正磷酸盐,从而完成聚磷的过程。将这些摄取大量磷的微生物从废水中去除,即可达到除磷的目的。
厌氧释放磷的过程
聚磷菌在厌氧条件下,分解体内的多聚磷酸盐产生ATP,利用ATP以主动运输方式吸收产酸菌提供的三类基质进入细胞内合成PHB。与此同时释放出于环境中。
好氧吸磷过程
聚磷菌在好氧条件下,分解机体内的PHB和外源基质,产生质子驱动力将体外的输送到体内合成ATP和核酸,将过剩的聚合成细胞贮存物:多聚磷酸盐(异染颗粒)。
3. 废水生物脱氮除磷什么原理
废水生物脱氮抄的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过硝化作用转化为亚硝态氮、硝态氮,即,将 转化为 和 。在缺氧条件下通过反硝化作用将硝氮转化为氮气,即,将 (经反亚硝化)和 (经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的。
该过程可分为三步:
第一步是氨化作用,即水中的有机氮在氨化细菌的作用下转化成氨氮。(在普通活性污泥法中,氨化作用进行得很快,无需采取特殊的措施)
第二步是硝化作用,即在供氧充足的条件下,水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐,然后再在硝酸菌的作用下进一步氧化成硝酸盐。
三步是反硝化作用,即在缺氧或厌氧的条件下,硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。
4. 城镇污水处理厂一般采用什么脱氮除磷处理工艺
生活污水脱氮基本上依靠硝化反硝化就能达到B标;除磷还是要靠药剂,一般是加铁盐,生物法的除磷属于传说,砖家们的东东咱不懂
5. 城市污水处理主要有哪几种工艺
城市污水处理有A-O或A-A-O工艺、SBR工艺、氧化沟工艺等类型。
1、A-O或A-A-O工艺也叫缺氧-好氧或厌氧-缺氧-好氧工艺。这一工艺的开发主要是为了满足脱氮除磷的需要,这是一种经济有效的生物脱氨除磷技术,我国南方不少污水厂就采用这一工艺。
2、SBR工艺也叫序批式活性污泥法工艺。这一工艺构筑物主要是一个池子既作曝气池又作二沉淀,管理简单,特别适合中小城镇的城市污水处理,对于较大水量的连续操作,处理一般要几 套池子组合运行。
3、氧化沟工艺是一种延时曝气的活性污泥法,由于负荷很低,而冲击负荷强,出水水质好,污 泥产量少且稳定,构筑物少运行管理简单。氧化沟可以按脱氮设计,也可以略加改造现脱氮 除磷。另外,城市污水处理还有传统活性污泥法的一些变型工艺,以及A-B工艺等一些工艺类型。
(5)城市污水处理厂生物脱氮除磷扩展阅读:
城市污水处理的污泥处理:
主要包括浓缩、消化、脱水、堆肥或家用填埋。浓缩有机械浓缩 或重力浓缩,后续的消化通常是厌氧中温消化,也就是厌氧技术。消化产生的沼气可作为能源燃烧或发电,或用于作化工产品等。消化产生的污泥性质稳定,具有肥效,经过脱水,减少体积成饼成形,有利运输。
为了进一步改善污泥的卫生学质量,污泥还可以进行人工堆肥或机械堆肥。堆肥 后的污泥是一种很好的土壤改良剂。对重金属含量超标的污泥,经脱水处理后要慎重处置,一般需要将其填埋封闭起来。
6. 拟新建一座污水处理厂,要求对该污水进行脱氮除磷处理
生活污水及工业污水的排放,对水体环境的好坏具有重要的影响。其中,污水中氮磷等营养物质的超标排放是造成水体富营养化的主要原因之一。水体富营养化造成了浮游藻类的迅速、大量繁殖,易形成藻类大面积爆发成灾事件。
有鉴于我国水环境污染的严重性,我国对于城镇污水处理厂的建设力度不断加强。有关污染物排放标准对于氮磷的排放要求也越来越严格。新建的污水处理厂需要考虑对氮磷的排放控制,而已建的污水处理厂则需要进行升级改造,增强或强化脱氮除磷的功能。
1氮磷对于水体环境的影响
适量的氮磷对于促进水生植物及微生物的生长具有重要作用,对保持水环境的平衡也具有一定的作用,但过量氮磷等营养物质进入水体中,则会使水体产生富营养化,使水体中的浮游藻类大量繁殖,甚至是爆发性繁殖,产生“水华”现象。“水华”现象即是水污染的明显表现,同时也会进一步加剧水体的污染。藻类的大量或爆发性繁殖,会在水面形成或厚或薄的覆盖性藻类漂浮物,造成水体缺氧,引起水生动物窒息而死。有些藻类还会产生有害毒素,使水生态系统受到破坏,造成生物多样性的减少。
水体富营养的指标三类,营养因子、环境因子与生物因子,其中,营养因子是水体富营养化的根本原因,而在营养因子中,氮磷则是最为关键的存在。因此,控制进入水体的氮磷含量,对于解决水体富营养化问题至关重要。
2水体中氮磷的主要来源
我国水体中的氮磷污染主要来自生活污染、农业污染以及工业污染源。
生活污染源主要是指来自城市中的污染物,如人的排泄物、食品废物以及各种合成洗涤剂。在此类废物中,含有大量的氮磷物质,若未经处理或处理不严格进入自然水体,则会成为水体中的氮磷污染源。
农业污染主要是指化肥的大量或是过量使用,流失率过高造成的污染。众所周知,化肥的主要成份就是氮磷,农业中不经控制大量或过量使用化肥,造成化肥的流失率极大,进入水体后极易成为水体氮磷污染源。
工业污染主要是指食品加工业、化肥生产企业形成的工业废水,其中含有大量的氮磷,若未经处理或是处理不当直接排入水体中,对于水体的氮磷污染具有重大的影响。
3我国污水处理厂脱氮除磷现状
我国对于城市污水处理厂的建设始于上世纪20年代的上海,新中国成立后的70-80年代我国开始进行大规模的城镇污水处理厂的建设。在初期建设的城镇污水处理厂,其处理工艺均采用了活性污泥法技术,主要是处理的是城市污水中的有机污染物及悬浮物,对于污水中氮磷的处理能力比较弱,去除率较低。之后在20世纪80年代初,一些污水处理的新工艺开始在污水处理厂中得到应用,但整体上来说,这一阶段我国污水处理厂在脱氮除磷工艺上还处于较低的水准。
进入20世纪90年代,随着我国水体环境污染的不断加剧,在污染治理上开始加大力度,先后出台了《地下水水质标准》、《地表水水质标准》以及《海水水质标准》等,对于水体中氮磷标准值提出了明确的要求。这一时期,我国在污水处理厂的建设上,对于脱氮除磷的工艺要求也越来越严格,新建污水处理厂必须考虑对氮磷的控制,而已经建成运行的污水处理厂,则需要进行相应的脱氮除磷工艺改造。
4脱氮除磷工艺在我国污水处理厂中的应用
4.1氧化沟工艺
氧化沟工艺是具有工艺流程简单、运行稳定、管理方便等特点,而且处理费用较低,与其它工艺相较,具有较强的耐冲击负荷能力、出水水质好、剩余污泥少、构筑物少等优势。在我国,氧化沟工艺应用较多的有卡鲁塞尔(Carrousel)氧化沟、奥贝尔(Orbal)氧化沟、三沟式氧化沟以及DE型氧化沟等。
卡鲁塞尔(Carousel)氧化沟是1967年由荷兰的DHV公司开发研制的,具有投资省、处理效率高、可靠性好、管理方便和运行维护费用低等优点,在世界各国都得到广泛的应用。我国的昆明第一污水处理厂、珠海香洲污水处理厂、中山污水处理厂以及重庆北碚污水处理厂都采用了此种工艺。
奥贝尔(Orbal)氧化沟工艺是美国USFilterEn-virex公司开发并拥有的工艺技术,该工艺非常适用于污水常规二级生物处理,目前,我国已经实现了该种工艺的自行设计与设备的国产化,北戴河西部污水处理厂以及温州中心区污水处理厂均应用了该种工艺。
三沟式氧化沟又称为T型氧化沟,是一种典型的氧化沟构造形式,这种工艺具有流程简单、建设投资小、运行费用低的特点,在结构设计上不需要另设一次、二次沉淀池和污泥回流装置,在一定程度上避免了氧化沟工艺占地面积大的弊端。我国邯郸东郊污水处理厂、苏州新区污水处理厂、深圳滨河污水处理厂以及罗芳污水处理厂二期都采用了这种工艺设计。
DE型氧化沟工艺是一种双沟系统,与三沟系统类似,不同之处在于DE型氧化沟系统有独立的污泥回流系统。西安北石桥污水处理厂就是采用了该种工艺。
氧化沟技术从问世以来就得到了广泛的关注,欧洲目前约有上千座氧化沟污水处理厂在运行,我国从上世纪八十年代开始引进国外氧化沟技术,消化吸收发展至今,氧化沟工艺已成为我国城市污水处理的主要工艺之一。
4.2A/O工艺的应用
A/0工艺具有较好的脱氮除磷效果,在20世纪80—90年代是城市污水处理中脱氮除磷的主流工艺。A/0工艺包括了A/0除磷工艺与A/0脱氮工艺,通常除磷效果可达到90%以上,脱氮效果在80%以上。该工艺不需外加碳源脱氮,又能充分实现反硝化且易于控制污泥膨胀,投资和运行费用较低,在我国早期的污水处理厂中具有广泛的应用。如天津东郊污水处理厂、北京高碑店污水处理厂以及杭州四堡污水处理厂、沈阳西郊污水处理厂等。
A/0工艺在污泥沉降和磷的去除上具有明显的效果,但因其工艺控制有限,在发生硝化作用时会降低除磷效果。此外,A/0工艺的温度及进水负荷低时,微生物的代谢能力会减弱,污泥生长会变慢,对于除磷效果具有较大影响。
4.3:A2/O及其改进工艺的应用
A2/0工艺是我国常用的同步脱氮除磷工艺,其在只有除磷功能的A/0工艺中加了一个缺氧池,实现了脱氮除磷的同步进行,操作简单、费用低廉,因此在我国的污水处理厂中得到了广泛的应用。昆明第二污水处理厂、广州大坦沙污水处理厂、西安邓家村污水处理厂都应用了该工艺。但采用此种工艺不能实现同时高效的脱氮除磷,其工艺本身存在的缺陷,即硝化菌、反硝化菌以及聚磷菌在有机负荷、碳源需求上存在着矛盾与竞争,很难在同一系统中实现氮磷的同时高效去除。
为解决A2/0工艺固有的缺陷,很多研究者们进行了多方面的研究对该工艺进行升级改进,其中,我国取得了两项专利技术,即倒置A2/0工艺与A—A2/0工艺。
倒置A2/0工艺是针对A2/0工艺缺氧池与厌氧池的排列位置而言,将其工艺位置倒置,将缺氧池置于厌氧池之前。倒置A2/0工艺在有没有硝酸盐回流条件下均可运行,工艺环境有利于微生物形成更强的吸磷动力,所有污泥都将经历完整的释磷和吸磷过程使除磷能力得到增强。该工艺应用效果较好的有江苏常州清潭污水处理厂、常州北城污水处理厂、青岛李村河污水处理厂等。
A—A2/0工艺是在厌氧池前增设缺氧池,原A2/0工艺通过分隔厌氧池与原污水,可以很容易的改造为A—A2/0工艺。A—A2/0工艺充足的回流污泥停留时间保证了RAS中硝酸盐的彻底反硝化,又能够保证足够的碳源,厌氧池中最低限度的硝酸盐含量使得除磷效果得到了加强。山东泰安污水处理厂、青岛团岛污水处理厂应用该工艺取得了良好的脱氮除磷效果。
4.4:SBR工艺及其改进型的应用
SBR工艺是通过自动控制程序,在时间序列上形成A2/0系统,具有经济高效、控制灵活的特点,在脱氮除磷方面效果良好,适用于中小水量的污水处理厂。
典型SBR工艺存在一定的技术问题,首先,间歇进水、间歇曝气方式,鼓风曝气机由于间歇运转,频繁启停,使得整个工艺的运行稳定性受到较大的影响,曝气阶段反应池的利用率也比较低;其次,由于间歇进水的原因,自控系统的设计与顺序进水闸阀的安装变得较为复杂,当进水量较大时,需要并联运行多套反应池,系统整体复杂性增大;第三,对于一些具有较高浓度的难降解有机废水反应时间比较长。为了解决以上问题,众多研究者们进行了对典型SBR工艺的改进变型,比较成熟的工艺有ICEAS工艺、DAT—IAT工艺、CASS工艺等。
ICEAS工艺最大的特点是在反应器的进水端加了一个预反应区,运行方式为连续进水、间歇排水,预反应区可起调节水流的作用,主反应区是曝气、沉淀的主体。ICEAS工艺也可看作是连续进水、间歇排水的SBR工艺。昆明第三污水处理厂便采用了此种工艺,运行效果良好。
DAT—IAT工艺在同一个反应池中设置DAT池和IAT池,以导流墙相隔。DAT池连续进水并连续曝气,保持了系统的水力均衡,有效提高了系统运行的稳定性,而且连续曝气加强了对难降解有机物的降解,缩短了对高浓度有机废水的处理时间,相应也缩短了鼓风曝气机的运行时间;此外,DAT池的连续进水,利用普通的污水泵就能实现该操作,大大降低了系统的复杂性。该工艺在天津经济技术开发区污水处理厂以及抚顺三宝屯污水处理厂取得到较好的应用效果。
CASS工艺做为SBR工艺的改进型,是在SBR池内进水端增加了一个生物选择区,也就是预反应区,实现了连续进水,间歇排水。整个工艺的曝气、沉淀、排水等过程在同一池子内周期循环运行,省去了常规活性污泥法的二沉池和污泥回流系统。北京航天城污水处理厂采用了此工艺。
5结束语
随着我国环境问题的日益突出,我国对于水体环境的治理也在不断加强,对于污水处理厂脱氮除磷的要求也越来越严格,也些早期建设的污水处理厂也面临着脱氮除磷功能的改造问题。综合对目前污水处理厂脱氮除磷工艺的应用状况,A2/0工艺及其改进型、氧化沟工艺、SBR工艺及其改进型是目前应用范围广且应用效果比较好的选择。
更多污水处理技术文章尽在易净水网
原文地址:http://www.ep360.cn/news/201608/3380.html
7. 城市污水处理的一般流程是什么
通常城市污水处理以一级处理为预处理,二级处理为主体,三级处理很少使用。一般工厂排出的污水,至少应采取两级处理。由于二级处理排出的污泥有可能造成二次污染,因此,还要进行污泥处理。
一般城市污水主要污染物是易降解有机物,所以绝大多数城市污水处理厂都采用好氧生物处理法。如果污水中废水比重很大,难降解有机物含量高,污水可处理性差,就应考虑增加厌氧处理改善可处理性的可能性,或采用物化法处理。
(7)城市污水处理厂生物脱氮除磷扩展阅读:
中国水资源人均占有量少,空间分布不平衡。随着中国城市化、工业化的加速,水资源的需求缺口也日益增大。在这样的背景下,污水处理行业成为新兴产业,与自来水生产、供水、排水、中水回用行业处于同等重要地位。
2007年,中国水污染治理投资达到3387.6亿元,比上年增加32%,占当年GDP的1.36%。中国水环境质量总体保持稳定。2007年,共取缔一级水源保护区内排污口942个,停建二级水源保护区内可能造成污染的建设项目1294个,限期治理931个。
8. 脱氮除磷的定义是什么
植物和其他生物的吸收、氨化作用、硝化作用、反硝化作用、氨的挥发作用、铵根离子的阳离子交换作用等。人工湿地对磷的去除机理包括:基质吸附、植物吸收和微生物去除,而磷最终从系统中去除依赖于湿地植物的收割和饱和基质的更换。氨氮通过好氧亚硝化、硝化作用生成亚硝酸根、硝酸根,亚硝酸根、硝酸根通过缺氧反硝化生产氮气,从水中逸出。除磷菌在厌氧条件下释放磷,再在好氧条件下过度吸磷,通过排泥除磷。在一般系统中,提高除磷效率往往伴随着脱氮率的下降,因此有研究者设想如果将反硝化与除磷这两个需碳源的过程合二为一,即在缺氧环境下利用亚硝酸盐作为电子受体,同时进行反硝化和超量聚磷,这样可大大减少碳源需求量。已有研究者观察到这种现象,并认为存在反硝化聚磷菌(DNPAO)可同时进行反硝化作用和超量聚磷,但在不同环境条件下,DNPAO的诱导增殖与代谢途径的变化规律等仍有待研究。
9. 有什么着重于除磷脱氮的污水处理工艺其优缺点是什么
A_2/O工艺着重于除磷脱氮
1.简介
A2 / O工艺是Anaerobic-Anoxic-Oxic的缩写,是厌氧 - 缺氧 - 好氧生物氮和磷去除工艺的缩写。该方法的效率通常可达到:BOD5和SS为90%至95%,总氮大于70%,磷为约90%。它通常适用于需要除氮和除磷的大中型城市污水处理厂。
但A2/O工艺的基本建设成本和运行成本高于传统活性污泥工艺,运行管理要求较高。因此,针对我国的现状,该工艺仅在处理后的污水排入封闭或缓慢流动的水体时采用,造成水体富营养化,影响供水水源。
2.工艺特点
(1)优点:
污染物去除率高,运行稳定,冲击负荷好。
污泥沉降性能好。
厌氧,缺氧,好氧三种不同的环境条件和不同类型的微生物菌群的有机配合可以同时去除有机物,氮和磷的去除。
混合液回流比影响脱氮效果,回流污泥中夹带的溶解氧和硝酸盐氧影响除磷效果,脱氮除磷效率不高。
同时脱氧、除磷过程中,工艺简单,总HRT小于同类工艺。
在厌氧 - 缺氧 - 好氧交替操作中,丝状细菌不会繁殖,并且SVI通常小于100,并且不会发生污泥膨胀。
污泥中磷含量高,一般大于2.5%。
(2)缺点:
反应池体积大于A/O反硝化过程。
污泥中的回流量大,能耗高。
中小型污水处理厂成本高。
沼气回收利用的经济效益较差。
污泥渗出物需要化学除磷。
10. 城市污水处理厂主要依靠何种方式除磷
生物除磷和化学除磷
生物除磷就是比如生化池中好氧池中的污泥在好氧的环境下吸收磷;化学除磷就是添加铁盐或铝盐来,和水中的磷酸根反应,产生磷酸铁或磷酸铝沉淀。