㈠ 实验室做完实验的废水中重金属是通过什么样的方式处理掉的
近年来,为进一步开展各种科学研究,同时也为了给大学生提供一个更好的实践环境,越来越多的高校配备了更加众多的实验室,并且也购进了多种多样的实验设备及化学试剂。但是,实验过程中产生的大量实验室废水只经过了简单的处理,有的甚至都没有经过处理就排放到城市污水管网中,这给水环境甚至土壤环境都带来了不小的污染,同时也在食品安全与人体健康上埋下了隐患。
目前对含汞废水的处理方式多种多样,但成本相对偏高,而且并没有专门针对含汞废水的专利技术与设备,对于单个实验室的废水中少量的含汞废水来说,找到一个价格合理、方便快捷的汞处理手段现已是重中之重。
目前国家极其重视环境的治理,首当其冲就是废水的达标排放,对于实验室这种污染种类多、污染源浓度又不高的废水来说,必须找到快捷经济的专门处理方法才能保证废水的达标排放。
㈡ 重金属工业废气怎么处理
重金属工业废气的基本处理方法包括:过滤法、吸收法、吸附法、冷凝法和燃烧法。
汞及其化合物废气处理
一般处理方法:吸收法、吸附法、冷凝法和燃烧法。
冷凝法:
适合净化回收高浓度的汞蒸汽,常作为吸收法和吸附法净化汞蒸汽的前处理。
吸收法:
高锰酸钾溶液吸收法-适用于仪表电器厂的含汞蒸汽;
次氯酸钠溶液吸收法-适用于处理水银法氯碱厂含汞氢气;
硫酸-软锰矿吸收法-适用于处理炼汞尾气以及含汞蒸汽;
氨液吸收法适用于氯化汞生产废气的净化;
氯化法处理汞蒸汽
吸附法:
充氯活性炭吸附法适用于含汞废气处理;
活性炭吸附法适用于氯乙烯合成气中氯化汞的净化;
消化吸附法适用于雷汞的处理。
燃烧法:
适用于燃煤电厂含汞烟气的处理。采用循环流化床燃煤锅炉,燃烧过程中投加石灰石,烟气采用电除尘或袋除尘净化。
铅及其化合物废气处理
铅及其化合物废气适合用吸收法处理。
酸液吸收法:适用于净化氧化铅和蓄电池生产中产生的含铅烟气,也可用于净化熔化铅时所产生的含铅烟气。建议采取二级净化工艺:第一级采用袋滤器除去较大颗粒;第二级采用化学吸收。吸收剂一般采用醋酸。
碱液吸:收法适用于净化化铅锅、冶炼炉产生的含铅烟气。吸收剂一般采用NaOH溶液。
砷、铬、镉及其化合物废气处理
砷、铬、镉及其化合物废气通常采用吸收法和过滤法处理。
含砷烟气应采用冷凝(200度以下)-除尘(袋除尘器)-石灰乳吸收法处理工艺
铬、镉及其化合物废气宜采用袋式除尘器过滤处理(风速小于1m/min)。
㈢ 含汞废水怎样治理,含汞化合物有何特性
含汞废水的处理方法有:沉淀法、电解法、离子交换法、活性炭吸附法和组合工艺处内理容法。
废水中的汞除无机汞状态外,还以各种有机化合物形式存在的。环境中任何形式的汞(金属汞、无机二价汞、芳基汞和烷基汞等),在一定条件下,均可转化为具有剧毒的甲基汞。甲基汞有一甲基汞(Hg+-CH3)和二甲基汞(CH3-Hg-CH3)。1967年,瑞典学者S.Jensen和Jerndov等指出淡水水体底泥中厌氧细菌可使无机汞甲基化,形成甲基汞和二甲基汞。日本学者研究发现,在水中有醋酸、乙醛、甲醇、乙醇、木醇等有机化合物共存时,经紫外线、日光照射后产生甲基游离基可使氯化汞甲基化。
㈣ 二氯化汞废液处理方法
六安新闻网 > 六安房产 > 家具材料
室内空气中氨的检验方法
室内空气中氨的检验方法(一)
———— 靛酚蓝分光光度法
1 原理
空气中氨吸收在稀硫酸中,在亚硝基铁氰化钠及次氯酸钠存在下,与水杨酸生成蓝绿色的靛酚蓝染料,根据着色深浅,比色定量。
2 试剂和材料
本法所用的试剂均为分析纯,水为无氨蒸馏水,制备方法见附录A。
2.1 吸收液[c(H2SO4)=0.005mol/L]:量取2.8ml浓硫酸加入水中,并稀释至1L。临用时再稀释10倍。
2.2 水杨酸溶液(50g/L):称取10.0g水杨酸[C6H4(OH)COOH]和10.0g柠檬酸钠(Na3C6O7·2H2O),加水约50ml,再加55ml氢氧化钠溶液[c(NaOH)=2mol/L],用水稀释至200ml。此试剂稍有黄色,室温下可稳定一个月。
2.3 亚硝基铁氰化钠溶液(10g/L):称取1.0g亚硝基铁氰化钠[Na2Fe(CN)5·NO·2H2O],溶于100ml水中,贮于冰箱中可稳定一个月。
2.4 次氯酸钠溶液[c(CaClO)=0.05mol/L]:取1ml次氯酸钠试剂原液,用碘量法标准定其浓度(标定方法见附录B)。然后用氢氧化钠溶液[c(NaOH)=2mol/L]称释成0.05mol/L的溶液。贮于冰箱中可保存两个月。
2.5 氨标准溶液
2.5.1 标准贮备液:称取0.3142g经105℃干燥1h的氯化铵(NH4Cl),用少量水溶解,移入100ml容量瓶中,用吸收液(见2.1)稀释至刻度,此液1.00ml含1.00mg氨。
2.5.2 标准工作液:临用时,将标准贮备液(见2.5.1)用吸收液稀释成1.00ml含1.00μg氨。
3 仪器、设备
3.1 大型气泡吸收管:有10ml刻度线,出气口内径为1mm,与管底距离应为3~5mm。
3.2 空气采样器:流量范围0~2L/min,流量稳定。使用前后,用皂膜流量计校准采样系统的流量,误差应小于±5%。
3.3 具塞比色管:10ml。
3.4 分光光度计:可测波长为697.5nm,狭缝小于20nm。
4 采样
用一个内装10ml吸收液的大型气泡吸收管,以0.5L/min流量,采气5L,及时记录采样点的温度及大气压力。采样后,样品在室温下保存,于24h内分析。
5 分析步骤
5.1 标准曲线的绘制
取10ml具塞比色管7支,按表1制备标准系列管。
表1氨标准系列
管 号 0 1 2 3 4 5 6
标准工作液(2.5.2),mL 0 0.50 1.00 3.00 5.00 7.00 10.00
吸收液(2.1),mL 10.00 9.50 9.00 7.00 5.00 3.00 0
氨含量,μg 0 0.50 1.00 3.00 5.00 7.00 10.00
在各管中加入0.50ml水杨酸溶液(见2.2),再加入0.10ml亚硝基铁氰化钠溶液(2.3)和0.10ml次氯酸钠溶液(见2.4),混匀,室温下放置1h。用1cm比色皿,于波长697.5nm处,以水作参比,测定各管溶液的吸光度。以氨含量(μg)作横座标,吸光度为纵座标,绘制标准曲线,并用最小二乘法计算校准曲线的斜率、截距及回归方程(1)。
Y=bX+a ……………………………………………………(1)
式中:Y――标准溶液的吸光度;
X――氨含量,μg;
a――回归方程式的截距;
b――回归方程式斜率,吸光度/μg。
标准曲线斜率b应为0.081±0.003吸光度/μg氨。以斜率的倒数作为样品测定时的计算因子(Bs)。
5.2 样品测定
将样品溶液转入具塞比色管中,用少量的水洗吸收管,合并,使总体积为10ml。再按制备标准曲线的操作步骤(5.1)测定样品的吸光度。在每批样品测定的同时,用10ml未采样的吸收液作试剂空白测定。如果样品溶液吸光度超过标准曲线范围,则可用试剂空白稀释样品显色液后再分析。计算样品浓度时,要考虑样品溶液的稀释倍数。
6 结果计算
6.1 将采样体积按公式(2)换算成标准状态下的采样体积;
V0=Vt×T0/(273+t)×P/P0 ……………………………………(2)
式中:V0――标准状态下的采样体积,L;
Vt――采样体积,由采样流量乘以采样时间而得,L;
T0――标准状态下的绝对温度,273K;
P0――标准状态下的大气压力,101.3kPa;
P――采样时的大气压力,kPa;
t――采样时的空气温度,℃。
6.2 空气中氨浓度按公式(3)计算:
c(NH3)=(A-A0)Bs/V0 …………………………………………(3)
式中:c――空气中氨浓度,mg/m3;
A――样品溶液的吸光度;
A0――空白溶液的吸光度;
Bs――计算因子,μg/吸光度;
V0――标准状态下的采样体积,L。
7 测定范围、精密度的准确度
7.1 测定范围
测定范围为10ml样品溶液中含0.5~10μg氨。按本法规定的条件采样10min,样品可测浓度范围为0.01~2mg/m3。
7.2 灵敏度
10ml吸收液中含有1μg的氨应有0.081±0.003吸光度。
7.3 检测下限
检测下限为0.5μg/10ml,若采样体积为5L时,最低检出浓度为0.01mg/m3。
7.4 干扰和排除
对已知的各种干扰物,本法已采取有效措施进行排除,常见的Ca2+、Mg2+、Fe3+、Mn2+、Al3+等多种阳离子已被柠檬酸络合;2μg以上的苯氨有干扰,H2S允许量为30μg。
7.5 方法的精密度
当样品中氨含量为1.0,5.0,10.0μg/10ml,其变异系数分别为3.1%,2.9%,1.0%,平均相对偏差为2.5%。
7.6 方法的准确度
样品溶液加入1.0,3.0,5.0,7.0μg/的氨时,其回收率为95~109%,平均回收率为100.0%。
室内空气中氨的检验方法(二)
————纳氏试剂分光光度法
1 原理
空气中氨吸收在稀硫酸中,与纳氏试剂作用生成黄色化合物,根据着色深浅,比色定量。
2 试剂和材料
本法所用的试剂均为分析纯,水为无氨蒸馏水。制备方法见附录A。
2.1 吸收液[C(H2SO4=0.005mol/L)]:量取2.8ml浓硫酸加入水中,并稀释至1L。临用时再稀释10倍。
2.2 酒石酸钾钠溶液(500g/L):称取50g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100ml水中,煮沸,使约减少20ml为止,冷却后,再用水稀释至100ml。
2.3 纳氏试剂:称取17g二氯化汞(HgCl2)溶解300ml水中,另称取35g碘化钾(KI)溶解在100ml水中,然后将二氯化汞溶液缓慢加入到碘化钾溶液中,直至形成红色沉淀不溶为止。再加入600ml氢氧化钠溶液(200g/L)及剩余的二氯化汞溶液。将此溶液静置1~2天,使红色混浊物下沉,将上清液移入棕色瓶中,(或用5#玻璃砂芯漏斗过滤),用橡皮塞塞紧保存备用。此试剂几乎无色。(纳氏试剂毒性较大,取用时必须十分小心,接触到皮肤时,应立即用水冲洗;含纳氏试剂的废液,应集中处理,处理方法见附录B)。
2.4 氨标准溶液
2.4.1 标准贮备液:称取0.3142g经105℃干燥1h的氯化铵(NH4Cl),用少量水溶解,移入100ml容量瓶中,用吸收液(见2.1)稀释至刻度。此溶液1.00ml含1.00μg氨。
2.4.2 标准工作液:临用时,将标准贮备液(见2.4.1)用吸收液稀释成1.00ml含2.00μg氨。
3 仪器设备
3.1 大型气泡吸收管:有10ml刻度线。
3.2 空气采样器:流量范围0~2L/min,流量稳定。使用前后,用皂膜流量计校准采样系统的流量,误差应小于±5%。
3.3 具塞比色管:10ml。
3.4 分光光度计:可测波长为45nm,狭缝小于20nm。
4 采样
用一个内装10ml吸收液的大型气泡吸收管,以0.5L/min流量,采气5L,及时记录采样点的温度及大气压力。采样后,样品在室温下保存,于24h内分析。
5 分析步骤
5.1 标准曲线的绘制
取10ml具塞比色管7支,按表1制备标准系列管。
表1 氨标准系列
管 号 0 1 2 3 4 5 6
标准工作液(2.4.2),mL 1.00 1.00 2.00 4.00 6.00 8.00 10.00
吸收液(2.1),mL 10.00 9.00 8.00 6.00 4.00 2.00 0
氨含量,μg 0 0.50 4.00 8.00 12.00 16.00 20.00
在各管中加入0.1ml酒石酸钾钠溶液,再加入0.5ml纳氏试剂,混匀,室温下放置10min。用1cm比色皿,于波长425nm处,以水作参比,测定吸光度。以氨含量(μg)作横座标,吸光度为纵座标,绘制标准曲线,并用最小二乘法计算标准曲线的斜率、截距及回归方程(1)。
Y=bX+a …………………………………………(1)
式中:Y――标准溶液的吸光度;
X――氨含量,μg;
a――回归方程式的截距;
b――回归方程式斜率,吸光度/μg。
标准曲线斜率b应为0.014±0.002吸光度/μg氨。以斜率的倒数作为样品测定时的计算因子(Bs)。
5.2 样品测定
将样品溶液转入具塞比色管中,用少量的水洗吸收管,合并,使总体积为10ml。再按制备校准曲线的操作步骤测定样品的吸光度。在每批样品测定的同时,用10ml未采样的吸收液作试剂空白测定。如果样品溶液吸光度超过标准曲线范围,则可用试剂空白稀释样品显色液后再分析。计算样品浓度时,要考虑样品溶液的稀释倍数。
6 结果计算
6.1 将采样体积按公式(2)换算成标准状态下的采样体积:
V0=Vt×T0/(273+t)×P/P0………………………………(2)
式中:V0――标准状态下的采样体积,L;
Vt ――采样体积,由采样流量乘以采样时间而得,L;
T0――标准状态下的绝对温度,273K;
P0――标准状态下的大气压力,101.3kPa;
P ――采样时的大气压力,kPa;
t ――采样时的空气温度,℃。
6.2 空气中氨浓度按公式(3)计算:
c(NH3)=(A-A0)Bs/V0 ……………………………………(3)
式中:c ――空气中氨浓度,mg/m3;
A ――样品溶液的吸光度;
A0――空白溶液的吸光度;
Bs ――计算因子,μg/吸光度;
V0 ――标准状态下的采样体积,L。
7 测定范围、精密度和准确度
7.1 测定范围
测定范围为10ml样品溶液中含2~20μg氨。按本法规定的条件采样10min,样品可测浓度范围为0.4~4mg/m3。
7.2 灵敏度
10ml吸收液中含有2μg的氨应有0.027±0.002吸光度。
7.3 检测下限
检则下限为2μg/10ml,若采样体积为5L时,最低检出浓度为0.4mg/m3。
7.4 干扰和排除
对已知的各种干扰物,本法已采取有效措施进行排除,常见的Ca2+、Mg2+、Fe3+、Mn2+、Al3+等多种离子低于10μg不干扰。H2S的允许量为5μg,甲醛为2μg,丙酮和芳香胺也有干扰,但样品中少见。
7.5 方法的精密度
当样品中氨含量为6.5,10.0,15.0μg时,其变异系数分别为8.4%,5.9%,3.9%,平均相对偏差为6.3%。
7.6 方法的准确度
样品溶液加入2.0,5.0,10.0μg的氨时,其回收率为95.2~111.8%,平均回收率为101.8%。
㈤ 详细说明氯化汞的危害!
氯化汞的危害在于汞的危害,汞俗称水银,银白色,易流动,是在常温下唯一的液体金属。常温下汞不易被氧化,但易蒸发,汞蒸气有毒!加热时氧化为氧化汞。汞有溶解许多金属的能力,所构成的合金统称汞齐。汞不溶于水,易溶于硝酸,也溶于热浓硫酸,但与稀硫酸、盐酸、碱等都不起作用。焙烧含汞矿石可提炼出金属汞。汞的用途很广:在化学工业中用汞作阴极电解食盐溶液制取氯气和烧碱;用汞制造水银灯、真空泵、物理仪表(如气压计、温度计、血压计等);制造各种含汞药品、试剂、农药、炸药等;用汞齐法提取金银等贵重金属;工艺品或寺庙用金汞齐镀金或镏金。
事故案例
1953年日本的水俣市发生严重的汞中毒事件,造成41人死亡。经过调查,查明是当地一家化工厂常年向水俣湾排放含汞废水。汞在水体中经微生物作用生成甲基汞。甲基汞易在鱼、贝壳等海产品体内富集,体内形成很高浓度的甲基汞。人或动物食用了含有甲基汞的海产品,引起甲基汞中毒。由于中毒事件发生在日本的水俣市,而且当时中毒原因不清,故称“水俣病”。至1974年,日本的水俣病有1400余人。据日本媒体报道,在水俣市及其他地区,目前仍有尚未被发现的水俣病患者。
1982年9月18日,吉林某电石厂机修车间有8人用气焊切割管内残留有汞泥的废旧冷却器列管时,管中的汞受热蒸发,也有汞珠流到地上,造成5人重度急性汞中毒,3人轻度急性汞中毒。
职业危害
接触机会
在化学工业中水银法烧碱以汞为阴极,使用大量汞;采用乙炔法生产氯乙烯以氯化汞做催化剂,用大量氯化汞;乙炔法生产乙醛以硫酸汞做催化剂,消耗大量汞;油漆业用氧化汞做多种油漆的添加剂;多种汞盐试剂如硫酸汞、硝酸汞、碘化汞、溴化汞等生产、精制、包装都接触大量汞;农药如醋酸苯汞、氯化乙基汞、磷酸乙基汞,医药如氧化汞、水杨酸汞、汞撒利、氯汞脲等的生产都要接触汞;化工仪表如流量计、液面计、压力计等的生产、使用、维修都接触汞。此外,冶金业汞矿开采、冶炼汞;金矿、银矿用汞提取金、银;电气业制造水银灯、X线球管、水银电池、汞整流器等;国防工业生产雷汞和制造雷管;原子工业钚反应堆以汞做冷却剂。
以上接触汞的工业都会有汞中毒发生,而且汞一旦洒落可形成无数小汞珠,吸附在地板、墙面、器具上,扩大了挥发面,形成二次污染。
中毒表现
急性汞中毒:全身症状为头痛、头晕、乏力、底度发热,睡眠障碍,情绪激动,易兴奋等;呼吸道症状表现为胸痛、胸闷、气促、剧烈咳嗽、咳痰、呼吸困难;口腔炎可在早期出现,有流涎、口渴、齿龈红钟、疼痛,在龈缘可见“汞线”,口腔粘膜肿胀、糜烂、溃疡,牙齿松动、脱落;胃肠道症状为恶心、呕吐、食欲不振、腹痛,有时出现腹泻,水样便或大便带血。汞对肾脏损伤,可造成肾小管上皮细胞坏死。出现浮肿、腰痛、尿少,甚至尿闭。尿蛋白阳性,尿中有红细胞、脱落上皮细胞和管型等。少数病人可出现皮炎,如红色丘疹,水庖疹,重症者形成脓庖或糜烂。尿汞明显增高。
慢性汞中毒:
神经衰弱症候群 头昏、头痛、失眠、多梦、记忆力明显减退,全身乏力等。
易兴奋症 局促不安、忧郁、害羞、胆怯、易激动、厌烦、急躁、恐惧、丧失自信心、注意力不集中、思维紊乱,甚至出现幻觉、幻视、幻听,哭笑无常等。
植物神经功能紊乱 心悸、多汗、血压不稳、脸红。皮肤划纹征阳性。性欲减退、阳痿、月经失调等。
口腔炎及消化道症状 口腔内金属味,齿龈可有深蓝色的汞线,流涎、口渴、齿龈充血、肿胀,溢脓、溃疡、疼痛,牙齿松动易脱落。恶心、食欲不振、嗳气、腹泻或便秘。
汞毒性震颤 手指、舌、眼睑震颤。多为意向性,当注意力集中和精神紧张时震颤加重,难以完成精细动作。重症者可出现粗大震颤。语言不灵活,出现口吃,甚至饮食和行走困难。
其他 少数病人可有蛋白尿、管型,全身浮肿等肾脏损害。有的病人可有鼻炎、上呼吸道炎表现。少数病人眼晶状体出现“汞性”晶体炎。亦有末梢神经炎表现,如手套、袜套样感觉减退或过敏等。
急性中毒现场处理
患者应及时脱离汞作业现场,淋浴清洗头发,更换干净衣服。若口服汞盐者应及时用温盐水及0.2%活性炭交替洗胃,而后灌入牛奶或蛋清,服入15克硫酸镁导泻。
㈥ 剩余氯化汞水溶液咋处理
由于各种价态汞的毒性都很强,
在对含汞废液处理时,
不能将含汞废液经简单化
学处理后直接排入下水道.
只能采取将离子态汞还原为单质汞后纯化再用的方法。
废液中汞的最高容许排放浓度为
0.05mg/L(
以
Hg
计)常用的处理方法有:
1.
硫化物共沉淀法:
含汞盐的废液先调至
pH8
~
10
,
加入过量硫化钠,
使其生
成硫化汞沉淀,
再加入共沉淀剂硫酸亚铁,生成的硫化铁将水中的悬浮物硫化
汞微粒吸附而共沉淀,排出清液,残渣用焙烧法回收汞、或再制成汞盐。
2.
还原法:用铜屑、铁屑、锌粒、硼氢化钠等作还原剂,可以直接回收金属汞。
3.
将
5mol/L
的硫酸溶液加入剩余的二氯化汞(或溶液)中,生成硫酸汞和盐酸
(注意在通风柜中进行),待反应完后,在反应后溶液中加入铁,生成硫酸铁和
汞,将汞回收即可。
具体反应方程如下:
HgCl2+H2SO4=HgSO4+2HCl
HgSO4+Fe=FeSO4+Hg
(回收)
4.
为了避免含汞废液造成对环境的污染,应将废液中的汞进行处理。方法是:
将废液收集在塑料桶中,
当废水容量达到
20L
左右时,
以曝气方式混匀废液,
同
时加入
50ml
氢氧化钠
(
400g/L
)
溶液,
再加入
50g
硫化钠
(Na2S·9H2O)
,
10min
后,慢慢加入
200ml
市售过氧化氢,静置
24h
后,抽取上清液弃去。
㈦ 中学化学实验室废水处理
中学化学实验室废水处理
一、有机物类废水
以中学化学实验室现有的条件,较简便的金属回收方法是将金属离子以氢氧化物的形式沉淀分离。各种金属离子的排放形式:铬(重铬酸钾,硫酸铬);汞(氯化汞,氯化亚汞);铅(EDTA合铅(II));铜(EDTA合铜,硫酸铜),等等。其中,氯化汞和硫酸铬属于共同排放。总的来说,沉淀回收法的原理较为简单,可操作性也很强,对污染的消除效果相当不错。
酸或碱:对于含酸或碱类物质的废液,如浓度较大时,可利用废酸或废碱相互中和,再用pH试纸检验,若废液的pH值在5.8—8.6之间,如此废液中不含其它有害物质,则可加水稀释至含盐浓度在5% 以下排出。
铬:含铬废液中加入还原剂,如硫酸亚铁、亚硫酸钠、铁屑,在酸性条件下将六价铬还原成三价铬,然后加入碱,如氢氧化钠、氢氧化钙碳酸钠等,使三价格形成Or(OH),沉淀,清液可排放。沉淀干燥后可用焙烧法处理,使其与煤渣一起焙烧,处理后可填埋。
汞:废液中汞的最高容许排放浓度为0.05mg/L(以Hg计)。可以采用硫化物共沉淀法:先将含汞盐的废液的pH值调至8—1O,然后加入过量的Na2S,使其生成Hgs沉淀。再加入FeSO(共沉淀剂),与过量的S:一生成FeS沉淀,将悬浮在水中难以沉淀的HgS微粒吸附共沉淀.然后静置、分离,再经离心、过滤滤液的含汞量可降至0.05mg/L以下。
氰化物:少量的含氰废液可加入NaOH调至pH=10以上。再加入几克高锰酸钾使CN一氧化分解。量大的含氰废液碱液氯化法处理,先用碱调至pH=10以上,再加人次氯酸钠或漂白粉,使CN一氧化成氰酸盐,并进一步分解为CO 和N 。放置24小时排放。或加入氢氧化钠使呈硷性后再倒入硫酸亚铁溶液中(按质量计算:1份硫酸亚铁对1份氢氧化钠),生成无毒的亚铁氢化钠再排人下水管道。含氰化物物质,也不得乱倒或与酸混合,生成挥发性氰化氢气体有剧毒。
砷:在含砷废液中加入FeCI~,使Fe/As达到5O,然后用消石灰将废液的pH值控制在8一lO。利用新生氢氧化物和砷的化合物共沉淀的吸附作用,除去废液中的砷。放置一夜,分离沉淀,达标后,排放废液。
镉:在含镉的废液中投加石灰,调节pH值至10.5以上,充分搅拌后放置,使镉离子变为难溶的Cd(OH):沉淀.分离沉淀,将滤液中和至pH值约为7,然后排放。
铅:在废液中加入消石灰,调节至pH值大于11,使废液中的铅生成Pb(OH) 沉淀.然后加入 (s0 ),(凝聚剂),将pH值降至7—8,则Pb(OH):与^J(OH),共沉淀,分离沉淀,达标后,排放废液。
重金属离子:最有效和最经济的方法是加碱或加Na2S把重金属离子变成难溶性的氢氧化物或硫化物而沉积下来,从而过滤分离,少量残渣可埋于地下。混合废液:互不作用的废液可用铁粉处理。调节废液PH3— 4,加入铁粉,搅拌半小时,用碱调节PH 9左右,搅拌1O分钟。加入高分子混凝剂(聚合氯化铝和聚合氧化铁)沉淀,清液可排放,沉淀物作为废渣处理。废酸碱可中和处理。
二、有机物类废水
对有机酸或元机酸的酯类,以及一部份有机磷化合物等容易发生水解的物质,可加入氢氧化钠或氢氧化钙,在室温或加热下进行水解。水解后,若废液无毒害时,把它中和、稀释后,即可排放。如果含有有害物质时,用吸附等适当的方法加以处理。如废液包括:苯、已烷、二甲苯、甲苯、煤油、轻油、重油、润滑油、切削油、机器油、动植物性油脂及液体和固体脂肪酸等物质的废液。对其可燃性物质,用焚烧法处理。对其难于燃烧的物质及低浓度的废液,则用溶剂萃取法或吸附法处理。
三氯甲烷:将三氯甲烷废液一次用水、浓硫酸(三氯甲烷量的十分之一)、纯水、盐酸羟胺溶液(O.5% AR)洗涤。用重蒸馏水洗涤两次,将洗好的三氯甲烷用污水氯化钙脱水,放置几天,过滤,蒸馏。蒸馏速度为每秒l~2滴,收集沸程为6o一62摄氏度的馏出液(标框下),保存于棕色试剂瓶中(不可用橡胶塞)。CC14:反应式:Na2SO3+I2+H2O=Na2SO‘+2HI具体操作:在碘一CC1 溶液中加入Na2SO3,直至把I2转化为I一离子(检查:用淀粉试纸或淀粉溶液检查是否还存在有I2,然后转移到分液漏斗,加少量蒸馏水,振荡,分液(用AgN03,检查水样溶液是否有I2,若有黄色或白色沉淀,再用水洗涤ccl,溶液)。
酚:酚的处理主要有吸附法、萃取法、液膜分离法、扭捏及蒸馏气提法、生物法等,但对于实验室来说,以上的方法都不实用。低浓度含酚废液可加入次氯酸钠或漂白粉,使酚氧化水和二氧化碳。高浓度可使用丁酸乙脂萃取,在用少量氢氧化钠溶液反复萃取。调解PH后,进行重蒸馏,提纯后使用。或利用二氧化氯(C10:,强氧化消毒剂)水溶液进行苯酚废水处理,不仅方便、安全,操作也十分简单,直接将其按一定量加入废水中,搅拌均匀,维持一定的处理时间,即可达到良好的处理效果,不存在二次污染。
㈧ 重金属废水的处理方法
可分为两类:一是使废水中呈溶解状态的重金属转变成不溶的重金属化合物或元素,经沉淀和上浮从废水中去除,可应用中和沉淀法、硫化物沉淀法、上浮分离法、离子浮选法、电解沉淀或电解上浮法、隔膜电解法等;二是将废水中的重金属在不改变其化学形态的条件下进行浓缩和分离,可应用反渗透法、电渗析法、蒸发法、离子交换法等。第一类方法特别是中和沉淀法、硫化物沉淀法和电解沉淀法应用最广。从重金属废水回用的角度看,第二类方法比第一类优越,因为用第二类方法处理,重金属是以原状浓缩,不添加任何化学药剂,可直接回用于生产过程。而用第一类方法,重金属要借助于多次使用的化学药剂,经过多次的化学形态的转化才能回收利用。一些重金属废水如电镀漂洗水用第二类方法回收,也容易实现闭路循环。但是第二类方法受到经济和技术上的一些限制,目前还不适于处理大流量的工业废水如矿冶废水。这类废水仍以化学沉淀为主要处理方法,并沿着有利于回收重金属的方向改进。
电解法:比较广泛地用于处理含氰的重金属废水。以电解氧化使氰分解和使重金属形成氢氧化物沉淀的方式去除废水中的氰和重金属。硫化汞废渣用电解法处理能高效地回收纯汞或汞化物。
上浮法:废水中的重金属氢氧化物和硫化物还可用鼓气上浮法去除,其中以加压溶气上浮法最为有效。电解上浮法能有效地处理多种重金属废水,特别是含有重金属络合物的废水。这是因为在电解过程中能将重金属络合物氧化分解生成重金属氢氧化物,它们能被铝或铁阳极溶解形成的活性氢氧化铝或氢氧化铁吸附,在共沉作用下完全沉淀。废水中的油类和有机杂质也能被吸附,并借助阴极上产生的细小氢气泡浮上水面。此法处理效率高,在电镀废水处理中往往作为中和沉淀处理后的进一步净化处理措施。
离子浮选法:往重金属废水中投加阴离子表面活性剂,如黄原酸钠、十二烷基苯磺酸钠、明胶等,与其中的重金属离子形成具有表面活性的络合物或螯合物。不同的表面活性剂对不同的金属离子或同一种表面活性剂在不同的pH值等条件下对不同的重金属离子具有选择络合性,从而可对废水中的重金属进行浮选分离。此法可用于处理矿冶废水。
离子交换和吸附:废水中的重金属如果以阳离子形式存在,用阳离子交换树脂或其他阳离子交换剂处理;如果以阴离子形式存在,如氯碱工业的含汞废水中的氯化汞络合阴离子(HgCl4)-2,氰化电镀废水中的重金属氰化络合阴离子Zn(CN)厈、Cd(CN)+、Cu(CN),含铬废水中的铬酸根阴离子CrO-,则用阴离子交换树脂处理。
活性炭能在酸性(pH值2~3)条件下从低浓度含铬废水中有效地去除铬。含硫活性炭能有效地去除废水中的汞。活性炭还可用于处理含锌和铜的电镀废水。活性炭能吸附CN-,并在有Cu2+和O2存在的条件下使CN-氧化,从而使吸附CN-的部位得到再生。
膜法:主要有电渗析和反渗透法。电渗析的特点是浓缩倍数有限,须经多级电渗析处理,才能把废水中有用物质浓缩到可回用的程度。反渗透法用于处理镀镍、镀铜、镀锌、镀镉等电镀漂洗废水。对镍、铜、锌、镉等离子的去除率大都大于99%。因此重金属废水通过反渗透处理就能浓缩和回用重金属,反渗透水(产水)质量好时也可回用。
纳米重金属水处理技术:
纳米材料因其比表面积远超普通材料,故同一种物质将会显示出不同的物化特型,很多新型的纳米材料都不断地在水处理行业中实验、实践。被环保部、科技部、工信部、财政部四部委联合审批立项为“2011年国家重大科技成果转化项目”———纳米水处理工艺及系列产品,在江西铜业股份有限公司应用取得了历史性的突破,填补了国内空白 。
国内通常采用的重金属废水处理方法,包括石灰中和法和硫化法等。这些传统的处理工艺,虽然可以将废水中的重金属去除掉,但是处理效果并不稳定,处理后回收的清水水质仍难以确保稳定达标排放,而且还会产生二次污染。纳米重金属水处理技术不仅能使处理后的出水水质优于国家规定的排放标准且稳定可靠,投资成本和运行成本较低,与水中重金属离子反应快,吸附、处理容量是普通材料的10倍到1000倍,而且使沉淀的污泥量较传统工艺降低50%以上,污泥中杂质也少,有利于后续处理和资源回收。有数据显示,同样是每日处理300立方米重金属污水量,传统工艺每天要产生25吨石灰渣污泥,而采用纳米技术后每月只产生25吨纳米金属泥。尤其值得关注的是,这种污泥中的重金属单位含量提高了30倍。若以铜冶炼厂的废水处理为例,其回收的纳米铜泥品位已达到20%,完全可以作为铜矿资源再生利用。
㈨ 实验室有毒的氯化汞废液如何处理
由于各种价态汞的毒性都很强,在对含汞废液处理时,不能将含汞废液经简单化学处理后直接排入下水道.只能采取将离子态汞还原为单质汞后纯化再用的方法。废液中汞的最高容许排放浓度为0.05mg/L(以Hg计)常用的处理方法有:
1.硫化物共沉淀法:含汞盐的废液先调至pH8~10, 加入过量硫化钠, 使其生成硫化汞沉淀, 再加入共沉淀剂硫酸亚铁,生成的硫化铁将水中的悬浮物硫化汞微粒吸附而共沉淀,排出清液,残渣用焙烧法回收汞、或再制成汞盐。
2.还原法:用铜屑、铁屑、锌粒、硼氢化钠等作还原剂,可以直接回收金属汞。
3.将5mol/L的硫酸溶液加入剩余的二氯化汞(或溶液)中,生成硫酸汞和盐酸(注意在通风柜中进行),待反应完后,在反应后溶液中加入铁,生成硫酸铁和汞,将汞回收即可。
具体反应方程如下:HgCl2+H2SO4=HgSO4+2HCl
HgSO4+Fe=FeSO4+Hg(回收)
4. 为了避免含汞废液造成对环境的污染,应将废液中的汞进行处理。方法是:将废液收集在塑料桶中,当废水容量达到20L左右时,以曝气方式混匀废液,同时加入50ml氢氧化钠(400g/L)溶液,再加入50g硫化钠(Na2S·9H2O),10min后,慢慢加入200ml市售过氧化氢,静置24h后,抽取上清液弃去。
㈩ 甲基为什么不是官能团
原因:甲基不能决定有机物的化学性质,所以他不是官能团。
官能团对有机物的性质起决定作用,-X、-OH、-CHO、-COOH、-NO2、-SO3H、-NH2、RCO-,这些官能团就决定了有机物中的卤代烃、醇或酚、醛、羧酸、硝基化合物或亚硝酸酯、磺酸类有机物、胺类、酰胺类的化学性质。
因此,学习有机物的性质实际上是学习官能团的性质,含有什么官能团的有机物就应该具备这种官能团的化学性质,不含有这种官能团的有机物就不具备这种官能团的化学性质,这是学习有机化学特别要认识到的一点。
例如,醛类能发生银镜反应,或被新制的氢氧化铜悬浊液所氧化,可以认为这是醛类较特征的反应;但这不是醛类物质所特有的,而是醛基所特有的,因此,凡是含有醛基的物质,如葡萄糖、甲酸及甲酸酯等都能发生银镜反应,或被新制的氢氧化铜悬浊液所氧化。
(10)氯化汞废水处理扩展阅读:
甲基的应用:
随着分子遗传学的发展,生物甲基化和微生物抗汞的生态学研究已推向分子水平,近年来开展了微生物转化汞的遗传控制研究。1979年的研究指出,细菌的抗汞性能受遗传质粒和染色体的调节和控制,某些具有抗汞性的细菌质粒有移位的潜力,使不具有抗性的细菌细胞获得抗性。
这将进一步阐明底泥中细菌能使汞迁移转化和使废料中汞实行再循环的基础。为了提高微生物的抗汞能力,有的学者已应用质体转移新技术得到新的质粒(MER质粒),细菌具有这种新质粒,抗汞能力可提高40倍左右。
利用微生物还原汞的功能,可使金属汞沉淀回收,挥发的汞可用活性炭吸附。微生物除汞方法主要有:
①选育高效抗汞微生物处理含汞废水:如应用选育的高效抗汞菌——假单胞杆菌 K62可处理含甲基汞、乙基汞、硝酸汞、乙酸汞、硫酸汞、氧化汞和氯化汞等废水,金属汞回收率达80%以上,菌体能重复用三次。
②采用除汞:依靠活性污泥中的抗汞菌将汞还原为金属汞,活性污泥系统本身还可吸附汞。
③采用滤池法除汞:用驯化活性污泥挂膜处理生化需氧量 (BOD)低的含汞废水。
④使用硫化氢沉淀汞:借助于其他微生物产生的硫化氢与水溶性汞结合成硫化汞,硫化汞溶度积很小,可以在沉淀后除去。
近十几年来,汞的生物转化的研究受到学者们的重视。中国在这方面的研究还刚刚开始。关于汞的生物甲基化和微生物抗汞机理虽比其他金属转化机理清楚,但有不同的见解和学说。微生物法除汞的研究,目前仅限于配水和小型试验。
关于汞转化的遗传学控制研究在理论和实践上都具有重要意义。