导航:首页 > 废水知识 > 酸性矿井水处理与回用技术导则实施情况

酸性矿井水处理与回用技术导则实施情况

发布时间:2022-03-24 22:54:16

『壹』 国外矿井水处理研究现状,有谁知道谢谢了

矿井水是一种具有行业特点的水资源。将矿井水净化处理后作为矿区生活用水和工业用水,不仅节约了水资源,而且避免了未经处理直接外排污染地表水环境,经济、环境和社会效益明显。不同的煤矿、不同的地质条件、不同的煤种、不同的开采方式,矿井水涌水量和水质各不相同,矿井水净化处理必须根据某一特定煤矿的矿井水水量和水质特点采用相应的处理技术。 一体化中水处理设备采用膜生物反应器技术是生物处理技术与膜分离技术相结合的一种新工艺,取代了传统工艺中的二沉池,它可以高效地进行固液分离,得到直接使用的稳定中水。又可在生物池内维持高浓度的微生物量,工艺剩余污泥少,极有效地去除氨氮,出水悬浮物和浊度接近于零,出水中细菌和病毒被大幅度去除,能耗低,占地面积小。适宜住宅小区、办公楼、商场、宾馆、饭店、机关、学校、部队、工厂等生活污水和与之类似的工业有机废水,如纺织、啤酒、造纸、制革、食品、化工等行业的有机污水处理。 龙派(河南)水暖环保有限公司专业高效生产水处理设备、中水回用设备、污水处理设备、净水处理设备、供水设备、换热器、中央空调等设备及其工程。龙派水处理设备销售全国各地,得到大家一致认可,全国送货、全国上门指导安装。0371-63578666 了解更多有关水处理 http://www.longpai.com.cn/chanpin/Default_2_1.html
麻烦采纳,谢谢!

『贰』 水资源保护及水污染防治

矿山开采和矿石选冶对水资源地的破坏和水污染都是严重的。开矿不可避免地要疏干、排泄一定的地下水,使地下水水位较原始水位大幅度下降,降低原有水源的供水能力。开矿也会不同程度地污染地表及地下水系,使之降低了使用功能。废石与尾矿露天堆放,氧化淋溶可形成酸性水,酸性水及其携带的有害物质流入地表水系或渗入地下潜水层,污染水资源。选矿厂的废水同样也会对地表、地下水源造成污染。

陕西凤县四方金矿选矿厂的尾矿中有毒有害物质对水、土、植被造成了污染,危害人体健康。尾矿在尾矿库中蒸发、渗透、沉淀、澄清、自然净化,通过库内溢流排到坝前回水池,在回水池用活性炭处理后,大部分经回水泵站用管道输送至选矿厂磨矿、浸出供生产系统循环利用。为防止尾矿水污染环境,对外排放的尾矿水应采用石灰、次氯酸钠和沉淀池处理法,在碱性条件下,使氰化物氧化、生成二氧化碳和氮气逸出,降低CN-浓度,金属离子生成氢氧化物沉淀后达标再排放,采矿废水经沉淀处理,采取以上措施可做到达标排放。对回用尾矿水采用活性炭处理,去除影响金浸出的部分重金属,保证尾矿水循环利用于生产中,并同时回收了微量金,每年回收金达1 kg以上。该工艺设备简单,投资少,成本低,且活性炭经处理可循环利用,从源头上减轻了对西河的污染。

地表水系的污染往往是直接的,尤其是流动的径流,会很快通过径流自净化作用而降低或消除污染。如果河床底泥中污染物达到饱和,污染河段就会加长,污染的范围就会扩大,但总体而言,治理相对容易。而地下水的污染涉及到巨厚的渗透层及下渗通道的污染饱和,加之过程十分缓慢,因而地下水污染具有隐蔽性和难以恢复性。由于地下水的流速、补给、交换缓慢,切断污染源后,仍需几十年甚至数千年的时间,才有可能恢复。因此,地下水一旦遭到污染,便很难治理及恢复。如果人们饮用了受有害或有毒组分污染的地下水或食用了受污染土地生长的植物,对人体的影响将是慢性的长期效应,不易觉察。

神东矿区采用生物固沙和工程防护措施,在矿区乌兰木伦河的支流考考赖沟、哈拉沟、石圪台沟等主要生产生活水源地实施了水源治理保护工程,在源头层层设防,束水归槽,完成了治理面积1467ha。经测定,治理前后,考考赖沟水源地水中含沙量由6.4 kg/t下降到0.2kg/t,哈拉沟和石圪台沟水源地水中含沙量由14.7kg/t下降到0.15kg/t,每年可节约水厂排沙费166万元,两年多即可收回治理投资。4个水源地每天涌水量41000t,治理后每年减少入河泥沙量15.6×104t。

为解决矿山废水所造成的危害问题,必须采取各种措施和方法,严格控制废水排放,尽量减少对周围环境的水污染。

5.4.4.1 改善和处理废水污染工艺技术

矿山废水排放的特性,决定了废水处理的原则是:采用有效简便和经济的处理方法,使处理后的水和重金属等物质都能回收利用。故应做到以下几点基本要求:

——改进工艺,减少污染源:改进工艺是最根本、最有效的杜绝或减少污染源产生的途径。如某铅锌矿,过去一直采用氰化钠作为铅锌分选的抑制剂,致使尾矿水和铅锌精矿浓缩溢流水含氰量大大超过排放标准,先后污染了几千亩农田,造成了大量牲畜及水生物的死亡,现改成无毒浮选工艺,采用硫酸锌代替氰化钠,不仅减少了污染危害,而且也提高了选矿厂的经济效益。

——循环用水,一水多用:采用循环供水系统,使废水在生产过程中多次重复利用,既能减少废水的排放量,减轻环境污染,又能减少新水的补充,节省水资源。如河北某铜矿,每天排放废水达两千余吨,过去直接排入渤海,引起近海水资源的污染,后来该矿进行了选矿工艺改进,加高了尾矿坝,开凿了1000多米地下隧道,架设了几百米的污泥管道,使尾矿溢流水利用高差自流到选矿厂循环利用,使水的回收率达到90%以上,基本实现了废水闭路循环使用。

5.4.4.2 控制矿山废水排放量的有效措施

采取“防”、“治”、“管”相结合的方法,严格控制废水的形成和排放,是控制和减轻水污染的积极措施。

(1)选择适当的矿床开采方法:地下采矿时,选择使顶板及上部岩层少产生裂隙或不产生裂隙的采矿方法,是防止地表水通过裂隙进入矿井而形成废水的有效措施。露天开采时,应尽量避免采用陡峭边坡的开采方法,以减轻边坡遭水蚀及冲刷现象;及时覆盖黄铁矿的废石,以防止氧化;下边坡应留矿壁以防止地面水流入采场;可能情况下应回填采空区,以免积水;合理布置采矿场排水沟。

(2)控制水蚀及渗透:地下水、老窿水、地表水及大气降雨渗入废石堆后,流出的将是受严重污染的水。因此,堵截给水、降低废石堆的透水性,是防止和减少水渗透的有效措施。高速水流经废石堆时会出现水蚀现象,使水受污染。将废石堆整平、压实,修建导水渠,是防止废石堆水蚀的有效方法。此外,利用某种化学物质喷洒硫化矿废石堆表面,使之与空气和水隔绝也是控制水污染的有效措施。

(3)控制废水排放量:在干燥地区可建造池浅而面积大的废水池蒸发废水,这对排水量大的矿山是减少废水处理量的合理措施。

(4)平整矿区及植树绿化:平整遭受破坏的土地,可以收到掩盖污染源、减少水土流失、防止滑坡及消除积水的效果。植被可以稳定土石,降低地表水流速度,因而能在一定程度上减少水土流失、水蚀及渗透。让废水流经某些种植植物的地面后排入河流,也能使矿井水得到一定程度的净化。

5.4.4.3 废水处理系统和工艺流程

正确选择废水处理系统和工艺流程应从以下几点入手:

——废水的水质及水量特征是正确选择处理系统的出发点。从废水的种类来说,需要考虑采用混合处理还是单独处理方式,或是单独处理一定程度后再混合处理;从排水量及排水规律来说,需要考虑是否要设置蓄水池、混合池,是连续还是间歇运行等;从污染物质种类和浓度来说,需要考虑和分析的内容就更多,因为这是选择处理方法和处理设备的主要依据,例如,当污染物为胶体时,要考虑采用混凝、气浮、生物絮凝等方法;当污染物为溶质时,就要考虑采用化学沉淀、萃取、离子交换等物理化学方法;如果有几种污染物存在,就要考虑用一种方法还是用几种方法联合处理问题;若污染物浓度足够高,具有回收价值,就应选择能回收利用有价值成分的方法。

——废水处理后的利用或排放以及对水质的具体要求是决定和选择处理系统的关键。提出若干技术上可行的处理方案,进行技术经济综合比较,认真分析和论证,确定出最优和次优方案,以备选用。

5.4.4.4 酸性矿井水污染治理方案择优

某矿井排放的酸性水,水质pH值为2.6,总铁含量为300mg/L,出水量为40~100t/h,该水如不经处理就外排,将会污染附近河流和农田,影响农作物生长,引发矿山与当地居民的矛盾。

对该矿所排酸性水污染可用以下三个方案加以治理。

(1)P1方案——石灰乳中和法:酸性水用耐酸泵提升到中和反应池,同时加入5%的石灰乳,与酸性水接触反应,调节石灰乳加入量,控制pH值为6.5左右,再进斜管沉淀池进行泥水分离,上层清水排入清水池,或直接外排,污泥排放到污泥池,再用泥浆泵泵入污泥干化池,进行干化处理。此法操作较困难。

(2)P2方案——石灰石中和滚筒法:酸性水用耐酸泵提升到装有一定粒径(粗粒、细粒)的石灰石的中和滚筒内,与石灰石充分反应后其pH值达6.2左右。出水加入絮凝剂,进入沉淀池进行泥水分离,上层清水排入清水池回用或外排,污泥排放到污泥池,再用泥浆泵泵入污泥干化池,进行干化处理,此法操作较简单。

(3)P3方案——石灰乳-石灰石中和塔法:酸性水先与石灰乳中和到pH值为4 左右,使铁基本上形成Fe(OH)2,然后进入石灰石中和塔进行中和反应,出水pH值达6.0以上,然后进入沉淀池进行泥水分离,上层清水排入清水池回用或外排,污泥排放到污泥池,再用污泥泵泵入污泥池,进行干化处理,此法适合处理各种酸性矿井水,尤其是水中含Fe2+较多时适用,可减少石灰用量,劳动条件也有所改善。

用多目标模糊决策法对上述三个可行方案进行择优,即三个被评价方案的集合为:U={P1,P2,P3}

选用以下4个评价因素指标:①工程总投资 fl;②运行费用 f2;③出水 pH 值 f3;④工作条件f4

其中工作条件一项属定性指标,由专家给出评分,好的记0.85 分,较好的记0.55分,不太好的记0.25分。

各因素的重要程度权值模糊子集:A=(a1,a2,a3,a4)

各因素的重要程度权值a1、a2、a3和a4,可用以下三种方法确定:①德尔斐法(专家评估法);②专家调查法;③判断矩阵分析法。不论用哪种方法,对参与专家要求有渊博的专业知识,且富有实际工作经验,熟悉并掌握所研究问题的全部具体情况。

根据以上所提出的有关数据可得各方案的因素指标矩阵F(表5-8)。

表5-8 各方案因素指标矩阵F

5.4.4.4.1 加权相对偏差距离最小法择优

各因素指标权值模糊子集:

A=(a1,a2,a3,a4)=(0.10,0.30,0.40,0.20)

我们把第i个方案的第j个因素指标值记为fij,则得m个方案的n个因素指标矩阵F。

中国西北地区矿山环境地质问题调查与评价

由各方案的因素指标矩阵F 得知,各因素指标的标准值(三个方案中最有利的值)向量为:

fi°=(f1°,f2°,f3°,f4°)=(86.9,0.39,6.5,0.85)

式中: fimax为各方案第i 项因素指标中最大指标值,即 fimax=max(fi1,fi2,fi3,…,fim)

fimin为各方案第i 项因素指标中最小指标值,即 fimax=min(fi1,fi2,fi3,…,fim)

中国西北地区矿山环境地质问题调查与评价

正指标是指指标值越大方案越优的因素指标,负指标是指因素指标值越小方案越优的因素指标,我们把δij称为相对偏差值,称f°为标准值。

得出相对偏差模糊矩阵Δ:

中国西北地区矿山环境地质问题调查与评价

例如:

,根据加权相对偏差距离公式,即

中国西北地区矿山环境地质问题调查与评价

代入数据:

中国西北地区矿山环境地质问题调查与评价

同理算出d2=1.114,d3=1.791

加权相对偏差距离最小法是以dj最小的方案为最优,因为min(d1,d2,d3)=d2,所以P2方案为最优,P1方案次之,P3方案最差。

5.4.4.4.2 定量指标综合决策法择优

据三个方案各因素定量指标矩阵:

中国西北地区矿山环境地质问题调查与评价

式中:di为第i项因素级差值,

γij为就第i项因素着眼对j个方案的评价值。

代入有关数据算出d1=30.222,d2=0.044,d3=0.556,d4=0.667,进而算出各个γij值,三个方案的4个评定值组成一个评价模糊矩阵:

中国西北地区矿山环境地质问题调查与评价

已知因素重要程度权值模糊子集

=(a1,a2,a3,a4)=(0.10,0.30,0.40,0.20)

采用加权平均模型M(·,+)对方案进行评价:

=

=(b1,b2,b3)

其中

代入数据:b1=0.10×1+0.30×0.1+0.40×1.0+0.20×0.1=0.550

同理算出:b2=0.604,b3=0.406

max(b1,b2,b3)=b2,b2对应方案P2。模糊综合评价中,按照最大隶属度原则,方案P2为最优,方案P1次之,方案P3最差,这一结果与加权相对偏差距离最小法所求得的结果相同。

『叁』 酸性矿井水的防治

含硫化矿物较多的各种矿床分布区,由于硫化矿物在采矿和天然因素影响下易氧化,故矿区地下水通常形成酸性水。

酸性水的形成取决于成矿特点、构造条件和地下水的特征等。如含硫量多和富矿体的部位易生成酸性水;裂隙和带状结构的矿石比致密块状的易氧化;急倾斜矿层比缓倾斜、浅水平比深水平、地下水循环快的比慢的易形成酸性水。几种不同成分的水混合后,也可形成具腐蚀性的酸性水。

酸性水对矿区各种金属设备的腐蚀性破坏很强。要充分利用各种条件尽量避免形成酸性水,已形成的要积极地治理。

1. 从开采布局上避免酸性水的形成

一般做法是,对同一矿层,在布局上是先采下部后采上部,以免过早地形成酸性水或缩短排放酸性水的时间;在矿层(体)露头部位留够保护矿柱和进行地面防水,以减少降水和地表水的渗入;先采含硫少的矿段,后采含硫多的矿段;对积存有强酸性水的采空区,可采取暂时隔离措施等。

2. 区分不同情况,处理已形成的酸性水

主要措施有以下几方面。

冲淡酸性水:若酸性水涌水量小,非酸性水涌水量大,可按一定比例混合冲淡。

中和酸性水:在酸性水中加生石灰(CaO)等碱性物质,中和降低酸性。

调整排水设施:排酸性水时,水泵扬程和水压愈大,水泵被腐蚀速度也愈快。应采取分级排水降低扬程的办法抽排酸性水。当酸性水所处的位置较高时,应在中途拦截排出,不使其流到低处。也可采用提高排水管路和水泵水箱的耐酸性等措施。

『肆』 矿井 井下水如何处理

矿井井下水处理方法根据水质的不同而定:

1、含悬浮物煤矿矿井水处理技术主要有混凝、沉淀和澄清、过滤和消毒。

①矿井水混凝阶段所处理的对象主要是煤粉、岩粉等悬浮物及胶体杂质,它是矿井水处理工艺中一个十分重要的环节。实践证明,混凝过程的程度对矿井水后续处理如沉淀、过滤影响很大。所以,在矿井水的处理中,应给予足够的重视。

②沉淀和澄清:在煤矿矿井水处理中所采用的主要有平流式沉淀池、竖流式沉淀池和斜板(管式)沉淀池。澄清池主要有机械搅拌、水力循环和脉冲等。

③在煤矿矿井水处理过程中,过滤一般是指以石英砂等粒状滤料层截留水中悬浮物。去除化学澄清和生物过程未能去除的细微颗粒和胶体物质,提高出水水质。矿井水处理可以采用过滤池。过滤池有普通快滤池、双层滤料滤池、无阀滤池和虹吸滤池等。常采用滤料有石英砂、无烟煤、石榴石粒、磁铁矿粒、白云石粒、花岗岩粒等。

④水净化处理后,细菌、病毒、有机物及臭味等并不能得到较好的去除。所以,必须进行消毒处理。消毒的目的在于杀灭水中的有害病原微生物(病原菌、病毒等),防止水致传染病的危害。在以煤矿矿井水为生活水源水处理中,目前主要采用的是氯消毒法。消毒剂主要有:液氯、漂白粉、氯胺、次氯酸钠等。

2、高矿化度煤矿矿井水处理技术

煤矿高矿化度矿井水的含盐量一般在1000~3000mg/l⑴之间,属于我国大部分地区的苦咸水含盐量范围,所以,有些煤矿也称高矿化度矿井水为苦咸水。苦咸水脱盐方法主要有电渗析和反渗透技术。目前电渗析技术已成为一个大规模的化工单元过程,广泛地用于各个行业。当进水含盐量在500~4000mg/l时,采用电渗析是技术可行、经济合理的;当进水含盐量小于500mg/l时,应结合具体条件,通过技术经济比较确定是采用电渗析还是采用离子交换或者两者联合。反渗透技术自从上世纪五十年代末六十年代初发展成为实用的化工单元操作以来正不断地拓展其应用领域和规模,目前已广泛地应用于各行业。国内外已广泛应用于海水、苦咸水淡化,锅炉补给水、饮用水纯化,在食品、制药、化工、医疗、环保、矿井用水等行业中制备纯透反渗水、超纯水,以及各种水溶液的脱盐、分离和浓缩。

3、煤泥水处理技术

含有煤泥等轻度污染的矿井水,这类矿井水水量不大稳定,常采用一体化净水器进行处理,该净水器是一种新型重力式自动冲洗式一体化净水器,适合进水浊度≤3000mg/L,出水浊度≤3mg/l。该净水器集絮凝、反应、沉淀、排污、反冲、污泥浓缩、集水过滤于一体,自动排泥、自动反冲洗。本装置处理效果好,出水水质优良,自耗水量少,动力消耗省,占地面积小,节水、节电,无需人员管理。处理后的水质达到生产和生活用水的要求。

4、煤矿生活污水处理技术

煤矿生活污水的净化工艺:净化装置包括以下几个主要环节:隔栅、破碎机、砂石捕集器、初级沉淀池、生物净化装置、次级沉淀池、加药剂、消毒、再净化、沉渣加工。在相应流程中各个环节的组合取决于污水的数量、污染组分的浓度和组成,对净化水质量的要求以及其它条件。

5、酸性煤矿矿井水处理技术

酸性矿井水是指PH小于6.5的矿井排水,一般PH值在3.0-6.5之。其处理技术有石灰石中和法、石灰中和法、生物化学处理法、湿地生态工程处理法。

『伍』 煤矿污水处理

煤矿废水应该可以使用污水源热泵系统进行换热,从而为煤矿上专的建筑进行供暖,可以说算属是废水利用了吧,但是估计使用的话要使用离心式污水换热器了,煤矿废水中应该含有很高比例的杂质。

你可以去咨询一下雷诺公司,他们公司专业从事污水源热泵系统和污水换热器,应该能给你更专业的回复。

『陆』 哪种燃煤添加剂能使煤泥化验提高600卡

一、 概述
煤炭在我国能源结构中占70%以上,煤炭开采过程中排放大量废水,若不经处理直接排放,势必对环境造成严重污染,同时造成水资源的大量浪费,无法实现循环经济的目标。据统计我国40%的矿区严重缺水,已制约了煤炭生产的发展。西北矿区多处于山区,水资源更为缺乏,地表水又多为间歇性河流,枯洪水季节流量相当悬殊,常年流量稀释能力差,排入河流的污水造成严重污染。因此,开发、管理、利用好煤矿水资源,对煤炭工业可持续发展具有重要意义。
1、煤废水污染严重

据包括10多位院士在内的专家学者鉴定通过的一项课题研究表明,山西每年挖5亿吨煤,使12亿立方米的水资源受到破坏。这相当于山西省整个引黄河水入晋工程的总引水量。专家呼吁,应当从技术、人才、资金投入和经营机制等多方面解决这一世纪难题,帮助山西省等煤炭主产区摆脱“产煤致旱、因煤致渴”的困扰。

这项关于山西省煤炭产业可持续发展的研究表明,山西省采煤造成严重的水资源破坏,加剧了水资源短缺问题。这项课题研究表明,山西每挖1吨煤损耗2.48吨的水资源。每年挖5亿吨煤,使12亿立方米的水资源受到破坏。这相当于山西省整个引黄工程的总引水量。因此,这对于山西这个人均水资源量仅占全国平均水平不到五分之一的地区来说是个非常严重的问题。

目前,由于煤炭开采对地下水系破坏非常严重。据统计,山西采煤对水资源的破坏面积已达20352平方公里,占全省总面积的13%。山西省大部分农村人畜吃水靠煤系裂隙水,而煤矿开采恰好破坏了该层段的含水层。据统计,全省由于采煤排水引起矿区水位下降,导致泉水流量下降或断流,使近600万人及几十万头大牲畜饮水严重困难。

2、煤炭采掘业废水治理技术问题

99%的采煤项目废水没有进行治理,从主观上应该说是环保监管不力。从客观上说是我们环保部门对采煤项目废水治理技术持谨慎态度。采煤废水治理技术多如牛毛,那种技术最适用、工艺最成熟、操作管理最方便、投资最省、运行费用最低,一直是我们环保部门在寻求的。由于采煤废水复杂多变,在同一矿井废水中,同时含有铁、锰等重金属,硫、氟、氯等非金属及有机污染物和悬浮物,有的矿井废水呈弱酸性(如织金县珠藏、凤凰山等),再就是即使是同一矿井,所采层不同,废水性质也不同,甚至是差别很大。这就给煤矿废水治理技术的选用带来很大的困难。通常情况是某一技术只能有效处理某一污染物,不可能把所有超标的污染物都处理好。一个煤矿不可能投入很多资金对污染物进行单项处理,这就是采煤废水治理在技术上的难点。有的业主自行修了一两个池子,把矿井废水往池子一放,就是对废水进行处理了。事实上不是这样简单,可能连悬浮物也处理不了,金属和非金属就更不可能处理了。

3、煤矿废水处理要求

1.1煤矿废水包括矿井涌水、煤场和矸石场淋溶废水等。在进行处理前,应先委托地区环境监测站进行监测,以监测资料作为废水处理工程设计的依据。DFMC煤矿废水治理技术和成套设备是目前经实践证明的实用技术,50万吨以下、小时涌水量50m3以下的煤矿可采用此技术和设备。对于酸性煤矿废水还需新增设备和药剂。煤矿废水经处理达标后尽可能循环使用,循环使用率不低于50%,经处理后排放的废水列为总量控制指标进行考核。

1.2新建煤矿必须执行“三同时”规定,试产三个月必须申请地区环保局验收,验收达标的发给排污许可证,不达标的停产治理。

1.3原有煤矿分期分批进行治理,2005年50%左右的原有煤矿治理完工并通过达标验收。列入家2005年治理计划的煤矿不治理的,依法予以处罚;治理不达标的,停产治理。治理计划由各县市环保局商煤炭局提出,报地区环保局综合平衡后以治理计划下达执行。

表1 某A煤矿废水处理监测结果 单位:mg/l

指标 排放

标准 处理前

浓度 超标倍数(倍) 处理后

浓度 比排放标准低(%) 悬浮物 70 258 2.7 11.5 83.6 铁 1 2.58 1.6 0.68 32 硫化物 1 2.8 1.8 0.5 50 COD 100 281.9 1.8 7 93 锰 2 0.13 未超标 0.1 —

表2某B煤矿废水处理监测结果单位:mg/ l

指标 排放

标准 处理前

浓度 超标 倍数 (倍) 处理后

浓度 比排放标准低(%) 悬浮物 70 318 3.5 4.5 93.6 铁 1 2.28 1.3 0.74 26 硫化物 1 3.21 2.2 0.5 50 COD 100 228.4 1.3 18.8 81.2 锰 2 0.37 未超标 0.18 — 1.4、煤矿废水中铁含量高,如浓度大于100mg/l,其处理设备投资和运行费用将要增加。因为铁含量过高,要达到1mg/l的排放标准,一级除铁是不行的,必须三至四级除铁。

1.5、酸度高的煤矿废水应使达标(6~9)。

1.6、煤矿要对煤场、矸石场进行硬化处理,建导流沟,把因大气降水产生的这一部分淋溶水引入废水处理系统进行处理。

1.7、 预防事故和自然因素引起的非正常排放

为预防因降暴雨致使废水次理池溢流,工程设计必须考虑废水处理池有足够的容积。为防止事故性排放,必须建事故调节池。四、煤矿生活废水处理要求洗煤厂和煤矿生活废水处理采用深圳开发研制的微型生活废水处理装置进行处理。生活废水经处理达标后可排放。五、煤矿废水治理技术选用

实践证明是可行的 DFMC煤矿废水治理技术和成套设备可选用。未经试点的技术只能试点,不能推广。经试点并由A地区环境监测站监测、提出监测报告,从治理效果、投资、运行费用等全面评价后由地区环保局决定是否推广。

二、废水主要处理技术

我国煤矿矿井水处理技术起始于上世纪70年代末,大多污水治理工作都只停留在为排放而治理。然而回用才是当今污水治理发展的必然趋势,将防治污染和回用结合起来,既可缓解水源供需矛盾,又可减轻地表水体受到污染。现国内使用的处理技术主要有:沉淀、混凝沉淀、混凝沉淀过滤等。处理后直接排放的矿井水,通常采用沉淀或混凝沉淀处理技术;处理后作为生产用水或其它用水的,通常采用混凝沉淀过滤处理技术;处理后作为生活用水,过滤后必须再经过除酚等对人体有害物质及消毒处理;有些含悬浮物的矿井水含盐量较高 ,处理后作为生活饮用水还必须在净化后再经过淡化处理。

三、矿井水处理回用的条件

1、矿井废水的产生及特点

煤矿矿井废水包括:煤炭开采过程中地下地质性涌渗水到巷道为安全生产而排出的自然地下水,井下采煤生产过程中洒水、降尘、灭火灌浆、消防及液压设备产生的含煤尘废水。因此,它既具有地下水特征,但又受到人为污染。矿井废水的特性取决于成煤的地质环境和煤系低层的矿物化学成分,其中井田水文地质条件及充水因素对于矿井开采过程矿井废水的水质、水量有决定性的影响。因此,对矿井废水处理要考虑开采过程中水质、水量的变化。某矿区M煤矿矿井废水水质取矿井正常排水时井口水样,结果见表1。

M煤矿矿井废水污染物监测表

表1 单位:mg/L

序号 监测项目 日均值浓度范围 序号 监测项目 日均值浓度范围 1 肉眼可见物 微粒悬浮物 9 总氮 5.600~5.854 2 PH值 8.41~8.55 10 砷(ng/L) 3.4~5.2 3 CODcr 66.4~131.7 11 总磷 0.085~0.104 4 硫化物 1.09~1.67 12 粪大肠菌 260~393 5 悬浮物 360~500 13 铜 0.0207~0.0294 6 酚 0.006~0.051 14 铅 -- 7 BOD5 14.10~24.73 15 镉 -- 8 LAS 0.198~0.220 16 锌 0.0381~0.0407

通过网络调查和资料查找,收集了多年来某矿区有关矿井水和地下水的化验数据资料,以及环境监测站监测数据(表1)综合分析,该煤矿矿井废水含煤泥为主要悬浮物,有机物略有超标,粪大肠菌群超标,挥发酚超标。

2、矿井废水回用途径

煤矿矿井水处理后可作生产用水或生活用水,矿井生产用水主要是井下采掘设备液压用水、消防降尘洒水,生活用水主要是冲厕、洗浴水以及深度处理后用于饮用水。水质标准分别为:

a、防尘洒水《煤矿工业矿井设计规范》(GB50215-94)

SS≤150mg/L,粒径d<0.3mm;PH值为6~9;大肠菌群≤3个/L。

b、空压机、液压支柱用水水质SS≤10~200mg/L,粒径d <0.15mm;硬度(碳酸盐)2~7mg/L;pH值为6.5~9;浊度<20。

c、矿井洗浴水水质达到《地表水环境质量标准》(GB3838-2002)的Ⅲ类水体标准。

d、中水水质达到《生活杂用水水质标准》(CJ/T 48-1999)。

5、生活饮用水达到《生活饮用水卫生标准》(GB5749-85)。

四、处理工艺

从上表可知,M煤矿矿井废水处理工程的设计处理能力为800~1000m3/d,处理后作为生产和生活用水,采用混凝反应、过滤、活性炭吸附及消毒工艺,流程见图1。

图1矿井废水处理工艺流程

矿井废水由井下排水泵提升至灌浆水池,部分用于黄泥灌浆,其余废水自流进入曝气池,气浮除油后进入斜板沉淀池进行初步沉淀,由提升泵提升进入混凝沉淀设备,同时加入混凝剂,经过斜管沉淀后,将絮状物沉淀到底部而被去除,清水从上部溢流出水自流进入砂滤罐,出水自流进入清水池,清水池前投加二氧化氯进行杀菌消毒。砂滤罐的反冲冼水自流进入污泥池,上清液自流进入曝气池,以提高矿井废水资源的利用率。出水若用作生活用水,则砂滤罐出水进入活性炭吸附装置处理后流入清水池用作生活用水。

五、主要处理单元

1、预沉池曝气

矿井废水中含有少量的有机物,通过曝气接触氧化去除废水中的有机物。另外,井下液压支柱等设备产生少量油类,通过气浮除油,使废水中油类达标。

2、混凝沉淀

煤矿矿井水主要污染物为悬浮物,处理悬浮物主要采用混凝沉淀法,用铝盐或铁盐做混凝剂,混凝剂混合方式采用管道混合器混合。混凝沉淀装置采用倒喇叭口作为反应区,水流在反应区中流速逐渐降低,使废水和混凝剂药液的反应在反应器中逐渐全部完成。完全反应的废水流出反应区后开始形成混凝状物质,经过布水区进入斜管填料,由于斜管填料采用PVC六角峰窝状填料,利用多层多格浅层沉淀,提高了沉淀效率。将絮状物沉淀到底部而被去除,清水从上部溢流排出。

3、砂滤净化

矿井废水经混凝沉淀后,水中还含有较小颗粒的悬浮物和胶体,利用砂滤设备将悬浮颗粒和胶体截留在滤料的表面和内部空隙中,它是混凝沉淀装置的后处理过程,同时也是活性炭吸附深度处理过程的预处理。砂滤罐为重力式无阀滤池,采用自动虹吸原理达到反冲洗,不需要人工单独管理,操作简便,管理和维护方便。砂滤罐通常采用不同等级的石英砂多层滤料。

4、活性炭吸附

该煤矿矿井废水主要含有挥发酚,酚类属于高毒物质,它可以通过皮肤、粘膜、口腔进入人体内,低浓度可使细胞蛋白变性,高浓度可使蛋白质沉淀。长期饮用被酚污染的水源,会引起蛋白质变性和凝固,引起头晕、出疹、贫血及各种神经症状,甚至中毒。处理中水用作生活饮用水,必须用活性炭吸附装置处理。活性炭的比表面积可达800~2000m2/g,具有很强的吸附能力。该装置采用连续式固定床吸附操作方式,活性炭吸附剂总厚度达3.5m,废水从上向下过滤,过滤速度在4~15m/h,接触时间一般不大于30~60min。随着运行时间的推移,活性炭吸附了大量的吸附质,达到饱和丧失吸附能力,活性炭需更换或再生。

5、消毒

废水中含有一定的病菌、大肠菌群,处理后回用于洗浴时,若不经过消毒,对人体皮肤伤害严重。所以矿井废水处理后作为生活用水必须经过消毒处理,本工艺采用二氧化氯消毒,现场用盐酸和氯酸钠反应产生二氧化氯,二氧化氯无毒、稳定、高效、杀菌能力是氯的5倍以上。

六、处理工艺特点

1、以上可知A煤矿矿井废水处理工程是根据矿井水水质特点确定工艺技术参数,采用一次提升到混凝沉淀装置,再自流进入后续各处理构筑物,出水水质稳定可靠,动力设备较少,能耗较低。

2、采用混凝沉淀装置与砂滤罐相结合的工艺技术,主要处理构筑物采用组合式钢结构,具有占地面积小、使用寿命长、工程投资省、工艺简单、操作管理方便、运行成本低等特点。砂滤罐设计采用重力式无阀滤池,反冲洗完全自动,操作管理方便。

3、该煤矿矿井废水处理系统实现了自动加药、自动反冲洗的全过程监控,包括电控系统、上位监控系统和仪表检测系统。仪表检测系统包括加药流量、处理流量 、水池液位和加药箱液位、进水和出水浊度等连续自动检测。

『柒』 胡文容的著作论文

1.著作:
胡文容编著,煤矿矿井水处理技术,同济大学出版社,1996年9月。
2.教材:
① 胡文容主编,煤矿矿井水及废水处理利用技术(煤炭工业部统编教材),煤炭工业出版社,1998年2月。
3.论文(第一作者发表论文30多篇,下面是其中的一部分):
⑴ 胡文容,刘培启,裴海燕,O3和ClO2杀藻作用特征与机理分析,科学通报,Vol.48,No.5,2003。
⑵ Hu Wenrong,Liu Peiqi,Pei Haiyan,Characteristics and Mechanism Analysis of O3 and ClO2 as Algicides on Inactivating Algae,(正在校稿).
⑶ 胡文容,陈超,新型生物活性滤池的净水效能及生物相特征,中国给水排水,Vol.19,No.4,2003。
⑷ Hu Wenrong,Pei Haiyan,Study on Decomposed Characteristic of Azo Dyes by Ozonization with Ultrasonic Enhancement,Science Bulletin,Vol.46,No.13,2002.
⑸ 胡文容,裴海燕,超声强化O3氧化偶氮染料的特性研究,科学通报,Vol.46,No.24,2001。
⑹ 胡文容,裴海燕,超声强化O3氧化能力的机理探讨,工业用水与废水,Vol.32,No.5,2001。
⑺ 胡文容,微絮凝过滤、O3消毒工艺处理微污染水库水,中国给水排水,Vol.17,No.9,2001。
⑻ 胡文容,王士芬,超声强化O3杀菌能力的实验研究,中国给水排水,Vol.15,No.4,1999。
⑼ Hu Wenrong,(胡文容),The mechanism of sonochemical enhancement of ozone oxidization ability,The 8th IASWS symposium,1999.9。
⑽ 胡文容,高廷耀,超声强化O3氧化偶氮染料的脱色效能研究,中国给水排水,Vol.15,No.11,1999。
⑾ 胡文容,高廷耀,煤矿酸性矿井水除铁研究,中国给水排水,Vol.11,No.1,1995。
⑿ 胡文容,高廷耀,频繁倒换电极电渗析技术淡化煤矿苦咸水的研究,中国给水排水,VOL. 12,NO.5, 1996。
⒀ 胡文容,石灰石曝气流化床处理煤矿酸性矿井水的研究,工业水处理,VOL.16,NO.6, 1996。
⒁ 胡文容,铝盐沉淀法去除矿井水中SO42-的研究, 煤矿环境 保护,VOL.10,NO.5, 1996。
⒂ 胡文容,酸性矿井水中和除铁出水脱盐利用研究,给水排水,Vol.23,NO.4.1997。
⒃ 胡文容,高廷耀,超声强化O3降解水中有机物的机理及应用进展,环境导报,97年5期
⒄ 胡文容,矿井水回用中卤代烃的生成和去除研究,洁净煤技术,97年4期。
⒅ 胡文容,刘培启,李力,固定化生物系统强化除藻及机制浅析,山东大学学报,Vol.31,No.6,2001。

『捌』 矿井 井下水如何处理

矿井井下水处理方法根据水质的不同而定:
1、含悬浮物煤矿矿井水处理技术主要有混凝、沉淀和澄清、过滤和消毒。
①矿井水混凝阶段所处理的对象主要是煤粉、岩粉等悬浮物及胶体杂质,它是矿井水处理工艺中一个十分重要的环节。实践证明,混凝过程的程度对矿井水后续处理如沉淀、过滤影响很大。所以,在矿井水的处理中,应给予足够的重视。
②沉淀和澄清:在煤矿矿井水处理中所采用的主要有平流式沉淀池、竖流式沉淀池和斜板(管式)沉淀池。澄清池主要有机械搅拌、水力循环和脉冲等。
③在煤矿矿井水处理过程中,过滤一般是指以石英砂等粒状滤料层截留水中悬浮物。去除化学澄清和生物过程未能去除的细微颗粒和胶体物质,提高出水水质。矿井水处理可以采用过滤池。过滤池有普通快滤池、双层滤料滤池、无阀滤池和虹吸滤池等。常采用滤料有石英砂、无烟煤、石榴石粒、磁铁矿粒、白云石粒、花岗岩粒等。
④水净化处理后,细菌、病毒、有机物及臭味等并不能得到较好的去除。所以,必须进行消毒处理。消毒的目的在于杀灭水中的有害病原微生物(病原菌、病毒等),防止水致传染病的危害。在以煤矿矿井水为生活水源水处理中,目前主要采用的是氯消毒法。消毒剂主要有:液氯、漂白粉、氯胺、次氯酸钠等。
2、高矿化度煤矿矿井水处理技术
煤矿高矿化度矿井水的含盐量一般在1000~3000mg/l⑴之间,属于我国大部分地区的苦咸水含盐量范围,所以,有些煤矿也称高矿化度矿井水为苦咸水。苦咸水脱盐方法主要有电渗析和反渗透技术。目前电渗析技术已成为一个大规模的化工单元过程,广泛地用于各个行业。当进水含盐量在500~4000mg/l时,采用电渗析是技术可行、经济合理的;当进水含盐量小于500mg/l时,应结合具体条件,通过技术经济比较确定是采用电渗析还是采用离子交换或者两者联合。反渗透技术自从上世纪五十年代末六十年代初发展成为实用的化工单元操作以来正不断地拓展其应用领域和规模,目前已广泛地应用于各行业。国内外已广泛应用于海水、苦咸水淡化,锅炉补给水、饮用水纯化,在食品、制药、化工、医疗、环保、矿井用水等行业中制备纯透反渗水、超纯水,以及各种水溶液的脱盐、分离和浓缩。
3、煤泥水处理技术
含有煤泥等轻度污染的矿井水,这类矿井水水量不大稳定,常采用一体化净水器进行处理,该净水器是一种新型重力式自动冲洗式一体化净水器,适合进水浊度≤3000mg/L,出水浊度≤3mg/l。该净水器集絮凝、反应、沉淀、排污、反冲、污泥浓缩、集水过滤于一体,自动排泥、自动反冲洗。本装置处理效果好,出水水质优良,自耗水量少,动力消耗省,占地面积小,节水、节电,无需人员管理。处理后的水质达到生产和生活用水的要求。
4、煤矿生活污水处理技术
煤矿生活污水的净化工艺:净化装置包括以下几个主要环节:隔栅、破碎机、砂石捕集器、初级沉淀池、生物净化装置、次级沉淀池、加药剂、消毒、再净化、沉渣加工。在相应流程中各个环节的组合取决于污水的数量、污染组分的浓度和组成,对净化水质量的要求以及其它条件。
5、酸性煤矿矿井水处理技术
酸性矿井水是指PH小于6.5的矿井排水,一般PH值在3.0-6.5之。其处理技术有石灰石中和法、石灰中和法、生物化学处理法、湿地生态工程处理法。

『玖』 煤矿2035综采工作面是什么意思

一、 概述
煤炭在我国能源结构中占70%以上,煤炭开采过程中排放大量废水,若不经处理直接排放,势必对环境造成严重污染,同时造成水资源的大量浪费,无法实现循环经济的目标。据统计我国40%的矿区严重缺水,已制约了煤炭生产的发展。西北矿区多处于山区,水资源更为缺乏,地表水又多为间歇性河流,枯洪水季节流量相当悬殊,常年流量稀释能力差,排入河流的污水造成严重污染。因此,开发、管理、利用好煤矿水资源,对煤炭工业可持续发展具有重要意义。
1、煤废水污染严重

据包括10多位院士在内的专家学者鉴定通过的一项课题研究表明,山西每年挖5亿吨煤,使12亿立方米的水资源受到破坏。这相当于山西省整个引黄河水入晋工程的总引水量。专家呼吁,应当从技术、人才、资金投入和经营机制等多方面解决这一世纪难题,帮助山西省等煤炭主产区摆脱“产煤致旱、因煤致渴”的困扰。

这项关于山西省煤炭产业可持续发展的研究表明,山西省采煤造成严重的水资源破坏,加剧了水资源短缺问题。这项课题研究表明,山西每挖1吨煤损耗2.48吨的水资源。每年挖5亿吨煤,使12亿立方米的水资源受到破坏。这相当于山西省整个引黄工程的总引水量。因此,这对于山西这个人均水资源量仅占全国平均水平不到五分之一的地区来说是个非常严重的问题。

目前,由于煤炭开采对地下水系破坏非常严重。据统计,山西采煤对水资源的破坏面积已达20352平方公里,占全省总面积的13%。山西省大部分农村人畜吃水靠煤系裂隙水,而煤矿开采恰好破坏了该层段的含水层。据统计,全省由于采煤排水引起矿区水位下降,导致泉水流量下降或断流,使近600万人及几十万头大牲畜饮水严重困难。

2、煤炭采掘业废水治理技术问题

99%的采煤项目废水没有进行治理,从主观上应该说是环保监管不力。从客观上说是我们环保部门对采煤项目废水治理技术持谨慎态度。采煤废水治理技术多如牛毛,那种技术最适用、工艺最成熟、操作管理最方便、最省、运行费用最低,一直是我们环保部门在寻求的。由于采煤废水复杂多变,在同一矿井废水中,同时含有铁、锰等重金属,硫、氟、氯等非金属及有机污染物和悬浮物,有的矿井废水呈弱酸性(如织金县珠藏、凤凰山等),再就是即使是同一矿井,所采层不同,废水性质也不同,甚至是差别很大。这就给煤矿废水治理技术的选用带来很大的困难。通常情况是某一技术只能有效处理某一污染物,不可能把所有超标的污染物都处理好。一个煤矿不可能投入很多资金对污染物进行单项处理,这就是采煤废水治理在技术上的难点。有的业主自行修了一两个池子,把矿井废水往池子一放,就是对废水进行处理了。事实上不是这样简单,可能连悬浮物也处理不了,金属和非金属就更不可能处理了。

3、煤矿废水处理要求

1.1煤矿废水包括矿井涌水、煤场和矸石场淋溶废水等。在进行处理前,应先委托地区环境监测站进行监测,以监测资料作为废水处理工程设计的依据。DFMC煤矿废水治理技术和成套设备是目前经实践证明的实用技术,50万吨以下、小时涌水量50m3以下的煤矿可采用此技术和设备。对于酸性煤矿废水还需新增设备和剂。煤矿废水经处理达标后尽可能循环使用,循环使用率不低于50%,经处理后排放的废水列为总量控制指标进行考核。

1.2新建煤矿必须执行“三同时”规定,试产三个月必须申请地区环保局验收,验收达标的发给排污许可证,不达标的停产治理。

1.3原有煤矿分期分批进行治理,2005年50%左右的原有煤矿治理完工并通过达标验收。列入家2005年治理计划的煤矿不治理的,依法予以处罚;治理不达标的,停产治理。治理计划由各县市环保局商煤炭局提出,报地区环保局综合平衡后以治理计划下达执行。

表1 某A煤矿废水处理监测结果 单位:mg/l

指标 排放

标准 处理前

浓度 超标倍数(倍) 处理后

浓度 比排放标准低(%) 悬浮物 70 258 2.7 11.5 83.6 铁 1 2.58 1.6 0.68 32 硫化物 1 2.8 1.8 0.5 50 COD 100 281.9 1.8 7 93 锰 2 0.13 未超标 0.1 —

表2某B煤矿废水处理监测结果单位:mg/ l

指标 排放

标准 处理前

浓度 超标 倍数 (倍) 处理后

浓度 比排放标准低(%) 悬浮物 70 318 3.5 4.5 93.6 铁 1 2.28 1.3 0.74 26 硫化物 1 3.21 2.2 0.5 50 COD 100 228.4 1.3 18.8 81.2 锰 2 0.37 未超标 0.18 — 1.4、煤矿废水中铁含量高,如浓度大于100mg/l,其处理设备和运行费用将要增加。因为铁含量过高,要达到1mg/l的排放标准,一级除铁是不行的,必须三至四级除铁。

1.5、酸度高的煤矿废水应使达标(6~9)。

1.6、煤矿要对煤场、矸石场进行硬化处理,建导流沟,把因大气降水产生的这一部分淋溶水引入废水处理系统进行处理。

1.7、 预防事故和自然因素引起的非正常排放

为预防因降暴雨致使废水次理池溢流,工程设计必须考虑废水处理池有足够的容积。为防止事故性排放,必须建事故调节池。四、煤矿生活废水处理要求洗煤厂和煤矿生活废水处理采用深圳开发研制的微型生活废水处理装置进行处理。生活废水经处理达标后可排放。五、煤矿废水治理技术选用

实践证明是可行的 DFMC煤矿废水治理技术和成套设备可选用。未经试点的技术只能试点,不能推广。经试点并由A地区环境监测站监测、提出监测报告,从治理效果、、运行费用等全面评价后由地区环保局决定是否推广。

二、废水主要处理技术

我国煤矿矿井水处理技术起始于上世纪70年代末,大多污水治理工作都只停留在为排放而治理。然而回用才是当今污水治理发展的必然趋势,将防治污染和回用结合起来,既可缓解水源供需矛盾,又可减轻地表水体受到污染。现国内使用的处理技术主要有:沉淀、混凝沉淀、混凝沉淀过滤等。处理后直接排放的矿井水,通常采用沉淀或混凝沉淀处理技术;处理后作为生产用水或其它用水的,通常采用混凝沉淀过滤处理技术;处理后作为生活用水,过滤后必须再经过除酚等对人体有害物质及消毒处理;有些含悬浮物的矿井水含盐量较高 ,处理后作为生活饮用水还必须在净化后再经过淡化处理。

三、矿井水处理回用的条件

1、矿井废水的产生及特点

煤矿矿井废水包括:煤炭开采过程中地下地质性涌渗水到巷道为安全生产而排出的自然地下水,井下采煤生产过程中洒水、降尘、灭火灌浆、消防及液压设备产生的含煤尘废水。因此,它既具有地下水特征,但又受到人为污染。矿井废水的特性取决于成煤的地质环境和煤系低层的矿物化学成分,其中井田水文地质条件及充水因素对于矿井开采过程矿井废水的水质、水量有决定性的影响。因此,对矿井废水处理要考虑开采过程中水质、水量的变化。某矿区M煤矿矿井废水水质取矿井正常排水时井口水样,结果见表1。

M煤矿矿井废水污染物监测表

表1 单位:mg/L

序号 监测项目 日均值浓度范围 序号 监测项目 日均值浓度范围 1 肉眼可见物 微粒悬浮物 9 总氮 5.600~5.854 2 PH值 8.41~8.55 10 砷(ng/L) 3.4~5.2 3 CODcr 66.4~131.7 11 总磷 0.085~0.104 4 硫化物 1.09~1.67 12 粪大肠菌 260~393 5 悬浮物 360~500 13 铜 0.0207~0.0294 6 酚 0.006~0.051 14 铅 -- 7 BOD5 14.10~24.73 15 镉 -- 8 LAS 0.198~0.220 16 锌 0.0381~0.0407

通过网络调查和资料查找,收集了多年来某矿区有关矿井水和地下水的化验数据资料,以及环境监测站监测数据(表1)综合分析,该煤矿矿井废水含煤泥为主要悬浮物,有机物略有超标,粪大肠菌群超标,挥发酚超标。

2、矿井废水回用途径

煤矿矿井水处理后可作生产用水或生活用水,矿井生产用水主要是井下采掘设备液压用水、消防降尘洒水,生活用水主要是冲厕、洗浴水以及深度处理后用于饮用水。水质标准分别为:

a、防尘洒水《煤矿工业矿井设计规范》(GB50215-94)

SS≤150mg/L,粒径d<0.3mm;PH值为6~9;大肠菌群≤3个/L。

b、空压机、液压支柱用水水质SS≤10~200mg/L,粒径d <0.15mm;硬度(碳酸盐)2~7mg/L;pH值为6.5~9;浊度<20。

c、矿井洗浴水水质达到《地表水环境质量标准》(GB3838-2002)的Ⅲ类水体标准。

d、中水水质达到《生活杂用水水质标准》(CJ/T 48-1999)。

5、生活饮用水达到《生活饮用水卫生标准》(GB5749-85)。

四、处理工艺

从上表可知,M煤矿矿井废水处理工程的设计处理能力为800~1000m3/d,处理后作为生产和生活用水,采用混凝反应、过滤、活性炭吸附及消毒工艺,流程见图1。

图1矿井废水处理工艺流程

矿井废水由井下排水泵提升至灌浆水池,部分用于黄泥灌浆,其余废水自流进入曝气池,气浮除油后进入斜板沉淀池进行初步沉淀,由提升泵提升进入混凝沉淀设备,同时加入混凝剂,经过斜管沉淀后,将絮状物沉淀到底部而被去除,清水从上部溢流出水自流进入砂滤罐,出水自流进入清水池,清水池前投加二氧化氯进行杀菌消毒。砂滤罐的反冲冼水自流进入污泥池,上清液自流进入曝气池,以提高矿井废水资源的利用率。出水若用作生活用水,则砂滤罐出水进入活性炭吸附装置处理后流入清水池用作生活用水。

五、主要处理单元

1、预沉池曝气

矿井废水中含有少量的有机物,通过曝气接触氧化去除废水中的有机物。另外,井下液压支柱等设备产生少量油类,通过气浮除油,使废水中油类达标。

2、混凝沉淀

煤矿矿井水主要污染物为悬浮物,处理悬浮物主要采用混凝沉淀法,用铝盐或铁盐做混凝剂,混凝剂混合方式采用管道混合器混合。混凝沉淀装置采用倒喇叭口作为反应区,水流在反应区中流速逐渐降低,使废水和混凝剂液的反应在反应器中逐渐全部完成。完全反应的废水流出反应区后开始形成混凝状物质,经过布水区进入斜管填料,由于斜管填料采用PVC六角峰窝状填料,利用多层多格浅层沉淀,提高了沉淀效率。将絮状物沉淀到底部而被去除,清水从上部溢流排出。

3、砂滤净化

矿井废水经混凝沉淀后,水中还含有较小颗粒的悬浮物和胶体,利用砂滤设备将悬浮颗粒和胶体截留在滤料的表面和内部空隙中,它是混凝沉淀装置的后处理过程,同时也是活性炭吸附深度处理过程的预处理。砂滤罐为重力式无阀滤池,采用自动虹吸原理达到反冲洗,不需要人工单独管理,操作简便,管理和维护方便。砂滤罐通常采用不同等级的石英砂多层滤料。

4、活性炭吸附

该煤矿矿井废水主要含有挥发酚,酚类属于高毒物质,它可以通过皮肤、粘膜、口腔进入人体内,低浓度可使细胞蛋白变性,高浓度可使蛋白质沉淀。长期饮用被酚污染的水源,会引起蛋白质变性和凝固,引起头晕、出疹、贫血及各种神经症状,甚至中毒。处理中水用作生活饮用水,必须用活性炭吸附装置处理。活性炭的比表面积可达800~2000m2/g,具有很强的吸附能力。该装置采用连续式固定床吸附操作方式,活性炭吸附剂总厚度达3.5m,废水从上向下过滤,过滤速度在4~15m/h,接触时间一般不大于30~60min。随着运行时间的推移,活性炭吸附了大量的吸附质,达到饱和丧失吸附能力,活性炭需更换或再生。

5、消毒

废水中含有一定的病菌、大肠菌群,处理后回用于洗浴时,若不经过消毒,对人体皮肤伤害严重。所以矿井废水处理后作为生活用水必须经过消毒处理,本工艺采用二氧化氯消毒,现场用盐酸和氯酸钠反应产生二氧化氯,二氧化氯无毒、稳定、高效、杀菌能力是氯的5倍以上。

六、处理工艺特点

1、以上可知A煤矿矿井废水处理工程是根据矿井水水质特点确定工艺技术参数,采用一次提升到混凝沉淀装置,再自流进入后续各处理构筑物,出水水质稳定可靠,动力设备较少,能耗较低。

2、采用混凝沉淀装置与砂滤罐相结合的工艺技术,主要处理构筑物采用组合式钢结构,具有占地面积小、使用寿命长、工程省、工艺简单、操作管理方便、运行成本低等特点。砂滤罐设计采用重力式无阀滤池,反冲洗完全自动,操作管理方便。

3、该煤矿矿井废水处理系统实现了自动加、自动反冲洗的全过程监控,包括电控系统、上位监控系统和仪表检测系统。仪表检测系统包括加流量、处理流量 、水池液位和加箱液位、进水和出水浊度等连续自动检测。

『拾』 酸性矿井废水污泥量计算

根据水量算污泥量,我们做污泥处理设备

阅读全文

与酸性矿井水处理与回用技术导则实施情况相关的资料

热点内容
污水处理300问免费下载 浏览:51
生活污水治理系统企业网址怎么填 浏览:819
污水处理厂运行主要指标 浏览:317
不锈钢内胆保温暖瓶如何除垢 浏览:379
污水罐30立方多少钱 浏览:264
塔城污水处理设备怎么样 浏览:639
脲醛树脂玻璃钢 浏览:986
酚醛树脂黄色液体 浏览:484
酚醛树脂和甲醇比例 浏览:950
阳新污水处理厂属于什么单位 浏览:302
马自达福美来空调滤芯怎么装 浏览:481
玻璃废水深度处理方法 浏览:953
刮膜式分子蒸馏器示意图 浏览:37
反渗透每吨水处理费用 浏览:490
挖掘机负控提升器怎样调试 浏览:319
对甲苯胺树脂合成 浏览:355
滤芯用完怎么加水 浏览:466
净水器接头什么牌子最好 浏览:402
活性炭滤芯耗材多少钱 浏览:971
超滤管国产 浏览:141