导航:首页 > 废水知识 > 翻译污水处理

翻译污水处理

发布时间:2022-02-24 04:49:55

1. 求翻译 污水处理 最佳答案再追加30分

工厂里(使用)的旋转生物接触器处理系统
由于它的优点是低运行成本和维护成本,红细胞和安装是由工厂选定的,并由工厂进行处置的。红细胞预处理单元,用连续放出的废水培养的。它由一个四个阶段红细胞组成。每个阶段都被装满塑料包装材料的形式提供一个完全表面光环。面积4000平方米(图11)。圆盘旋转大约在3 - 5转速转动,而且硬盘45%的表面积是淹没在废水中的。该系统总液体的体积是6 m3,
加载于RBC的液压负载是.d 0.02立方米/平方米。通过旋转裱在依附在主轴上的大磁盘的杯子,红细胞吸收水分。工厂红细胞的性能是被监测的。表2显示处理污水的特点。化学需氧量的剩余值和生化需氧量的变化。
从127到543和从25 到385的过程中,平均值相应地为139 到362O2/l 。 相应的平均去除值分别为86%和88%。
去除的平均比例总悬浮物是73%。相应的残余浓度是95毫克/升。平均残余价值的油和油脂27毫克/升)的去除和77%相应的去除值。处理污水的特点可以和以实验室单位的红细胞计算得到的结果相媲美。
结论
从已获得的结果可以说明:采用活性污泥法、旋转生物接触器和UASB技术来处理污水,被证明是有效的,而这些污水在味精生产厂中是没有改变的。
在废水处理各个过程中废水的特点与埃及的法律是相符的。埃及的法律规范了
工业废水排放到污水处理系统。因为相比从实验单位中获得的结果,污水处理中具有某些特点,因此工厂安装的红细胞是有效的,可信赖的。

2. 请翻译成英文 关于污水处理的

this is a split flow system project, water,rain water and sewage go into each pipe line respectively,
sanitary sewage;toilet sewage goes into community underground sewage pipeline after disposed in septic tank,kitchen waste water after separated in separation tank goes into underground sewage pipeline,
rain water;according to regulations,collect it into pool then discharge them into neighborhood rainwater pipeline,
instrial waste water;this equipment proces waste water by coating spraying process,sewage quantity about 128m3/d,the proction waste water first goes into sewage plant to be disposed by standard procere,then discharge into sewage pipeline,
the material and layout of drainage pipe ;pe double layer corrugated pipe is adopted for outside pipelines,and UPVC for inside pipeline,

3. 请帮我翻译一下 这段话 关于污水处理的

污水处理的目的一般是去除水中大量的固体物质,使得剩余的水排进受纳水专体后不会影响水体的属正常功能。去除的固体物质,主要是有机物,但也会含有无机物固体。“作为污泥排出的固体和液体也必须得到处理。最终,污水处理需要控制污水的气味,减缓污水中的生物活性,也需要消灭污水中的致病微生物。”

4. 污水处理英文文献翻译

该污水的特点是颜色深黑,化学需氧量(COD)偏高,表现为污水中含有难降解挥发性有机化合物,污水的生物降解度也低。

5. 谁能给我找篇关于污水处理的中英文翻译

1.1.2 编制原则
依靠科技、加强管理、优化网络、均衡施工。
1.1.3 编制指导思想
严格按照IS09001标准要求,与国际惯例接轨,参照了菲迪克条款对承建商的有关要求,力争使该施工组织设计能全面、系统、科学、有效地指导该工程的安装及调试直至试运行符合施工验收规范和业主要求,从而实现设计意图。
1.1.4 编制目的
确保某污水处理厂安装工程的施工进度、施工质量、施工安全、确保文明施工、环境保护、员工健康、实现业主愿望,确保用户满意。
1.2 工程概况
重庆市某污水处理厂二期工程是重庆市利用日本政府贷款建设的主城排水工程之一。本工程的实施将为重庆主城区的可持续发展创造安全的环境。
二期工程是在原一期工程的基础上,完成一级处理、二级生物处理、消毒及污泥处理工程,使污水处理达到国家一级排放标准后,排入长江。
重庆市某污水处理厂用来处理雨污合流的城市污水,二期工程设计旱季处理污水量为60万m3/d,雨季处理污水量为135万m3/d,二级生物处理过程。远期污水厂规模为处理污水量80万m3/d,雨季处理污水量165万m3/d,二级生物处理过程。
重庆市某污水处理厂二期工程由上海某设计研究院设计。
工期要求:合同生效后360天内(包括安装和完成预调试)。
1.3 工程特点
1.3.1该工程采取设备供货、安装及调试总承包方式招商,对投标人要求严,承建商负责按设计要求提供设备及各个单项设备的性能保证的供货,安装及试运行。同时负责污水处理厂出水水质达到国家一级排放标准,如果达不到所保证的性能,无论是在测试期还是在20个月的运行监理期间,承建商应对设备作必要的改进或更换以达到所保证的性能。
1.3.2安装技术要求高
工艺设备安装技术要求高。该工程将大量采用国内外先进设备及仪器仪表,安装精度的控制对调试致关重要,整个污水处理厂安装调试合格后将实现计算机管理。
1.3.3自动化程度高
本工程采用PLC集中与分散相接合的控制方式。对液位/界面、温度、压力、溶解氧、污泥浓度、酸碱度、流量、调节阀开启度、有害气体浓度、电压、电流、功率等实施测量控制,工艺设置CRT投影仪银幕进行显示。
1.3.4交叉作业多
地下管网、阀井、工艺设备预留孔与土建必须配合进行,存在大量交叉作业。
1.3.5露天作业多
露天作业受气候影响大,在施工中条件成熟的要抓紧时间实施,雨天作业要有相应的技术措施。
1.4工艺简介
采用A/A/O处理工艺
重庆市某污水处理厂二期处理程度为一级处理、二级生物处理、消毒及污泥处理,执行中华人民共和国国家标准GB8978—1996《污水综合排放标准》中的一级标准,即:BOD5≤20mg/1,SS≤20mg/1,CODcr≤60mg/1,NH3-N≤15mg/1,TP≤0.5mg/1。
该污水处理厂采用A/A/O生化处理工艺。它是在A/O工艺基础上增加了一个缺氧区,具有同步脱氮除磷的功能。
A/A/O工艺处理污水首先进入厌氧区,兼性厌氧发酵细菌将污水中可生物降解的有机物转化为VFA(挥发性脂肪酸类)这类低分子发酵中间产物。而聚磷菌可将其体内存储的聚磷酸盐分解,所释放的能量可供好氧的聚磷菌在厌氧环境下维持生存,另一部分能量还可供聚磷菌主动吸收环境中的VFA类低分子有机物,并以PHB(聚羟β丁酸)的形式在其体内储存起来。随后污水进入缺氧区,反硝化菌就利用好氧区回流混合液带来的硝酸盐,以及污水中可生物降解有机物作碳源进行反硝化,达到同时降低BOD5与脱氮的目的。接着污水进入曝气的好氧区,聚磷菌在吸收、利用污水中残剩的可生物降解有机物的同时,主要是通过分解体内储存的PHB释放能量来维持其生长繁殖。同时过量的摄取周围环境中的溶解磷,并以聚磷的形式在体内储积起来,使出水中溶解磷浓度达到最低。而有机物经厌氧区、缺氧区分别被聚磷和反硝化细菌利用后,到达好氧区时浓度已相当低,这有利于自养型硝化菌的生长繁殖,并通过硝化作用将氨氮转化为硝酸盐。非除磷的好氧性异养菌虽然也能存在,但他在厌氧区中受到严重的压抑,在好氧区又得不到充足的营养,因此在与其他生理类群的微生物竞争中处于相对劣势。排放的剩余污泥中,由于含有大量能超量储积聚磷的聚磷菌,污泥含磷量可以达到6%(干重)以上。从以上分析可以看出A/A/O工艺具有同步脱氮除磷的功能。
A/A/O工艺的优点是厌氧、缺氧、好氧交替运行,可以达到同时去除有机物、脱氮、除磷的目的,而且这种运行状况丝状菌不宜生长繁殖,基本不存在污泥膨胀问题。A/A/O工艺流程简单,总水力停留时间少于其他同类工艺,并且不需外加碳源,缺氧、缺氧段只进行缓速搅拌,运行费用低。
雨、污水经过上述处理合格,符合国家排放标准的污水直接排入长江。

6. 污水处理厂的英文翻译 急!!!!

sewage treatment works

7. 求小段的论文翻译,污水处理方面的

标题:Micro-exposure oxidation ditch process in municipal wastewater treatment application

Abstract:Breakthrough micro-exposure oxidation ditch aeration oxidation ditch traditional methods ,with deep water aeration and underwater propulsion microporous combination of technology,significant effect of energy saving,In the urban sewage treatment has broad application prospects。

Keywords:Micro-exposure oxidation ditch
Aeration equipment
Energy saving
Prospects

8. 求翻译 污水处理 最佳答案追加20分

废水特点
从管道末端排出的废水的物理及化学特点均罗列於表1,并以图6说明。这些结果显示,工厂所排出的最终流出物的化学需氧量和生物需氧量都很高,其最高值分别为每公升 6920和 3825毫克氧,而平均值则分别是4646和 2298 毫克氧。最终流出物属酸性,其酸碱度介乎4.1和5.6之间;而总悬浮固体则介乎每公升589至3268 毫克,平均值为每公升1790毫克。化验结果亦显示磷和氮的浓度偏低,两者的平均浓度分别是每公升 4.6 毫克磷和14.6 毫克氮。此外,废水中也含有相当数量的油脂,其最高值为每公升2186 毫克,而平均值则是每公升626 毫克。

初级处理
废水属酸性,而且含有相当数量的总悬浮粒子(每公升1790毫克)和油脂(每公升626毫克)。这些物质都会对微生物的活动造成不良影响。因此,在进行微生物处理程序前,必须先进行沉淀和调整酸碱度。这项前期处理工序是在一个多功能缓冲/化粪池内进行。废水会在池中停留4小时。经过前期处理之后的废水特点均罗列於表2 ,并以图7说明。平均而言,油脂浓度降低了74%,并达到每公升161毫克。此外,化学需氧量和生物需氧量也分别减少了 43% 和 47% ;而总悬浮粒子则减少80%。

氮和磷的总浓度分别是每公升 14.8毫克和 4.3 毫克。分析结果显示,经过前期处理后,废水的“生物需氧量:氮:磷”比率为100 : 1.2 : 0.4。这个结果显示:氮和磷的浓度都不足以进行生物处理过程,因此,需要加添氮盐和磷盐来调节浓度,务求能够准确地达到所需要的比率(即“生物需氧量:氮:磷”为100 : 5 :1)。

活性淤泥处理系统
经过初级处理后的废水会被输送至反应器内,并会处理约一小时至二十四小时不等,其中的“活性淤泥废水混合液”所含悬浮固体浓度约为每公升3毫克(请参阅图8)。在对这些已处理的流出物进行分析后,结果显示:能够把生物需氧量减少最多的处理时间是3小时。至於化学需氧量、生物需氧量、总悬浮固体和油脂的残余含量分别是每公升 109毫克氧、30毫克氧、22毫克和 42毫克(表1)。这些数值都符合埃及法律中,对需要排进排污系统的已处理废水所要求的标准。

9. 谁有关于污水处理或者组态软件的外文翻译(带原文),急用!

关键词:
人工湿地;硝化作用;反硝化作用;生活污水;脱氮;硝化细菌;反硝化细菌
2. 材料和方法
2.1 系统描述
我们研究队伍设计的人工湿地结构位于中国宁波某村。它包括三个部分,容积按照四十人排量设计。气候特点为年降水量1300-1400mm和累计年平均气温16.2℃。极高极低值分别为38.8℃和-4.2℃。较冷的时间段以十二月到二月为代表并且在这个时间段里出水比较接近于8℃(最低5℃)。第一部分和第三部分8m长6m宽1.0m深。反应床有三层构成,最底一层由厚20 cm的洗净的砾石(2–6 cm)构成,中间层由65 cm厚的细砂(0.5–2.0 cm)粒构成,最上层由15 cm厚的土壤(0.1–0.2 cm)构成。底面坡度大约1%。第三部分有三个环形的单元构成,直径分别为7m、5m和3m,由下向上每个0.6m深,表面积近似估算为38.5m2。由顶部向低处单元的溢流会立即产生的瀑布似的紊流可以增大溶解氧含量和维持含氧条件。
图1 塔式复合人工湿地水流示意图:1.进水区 2.塔式区 3.出水区 4.湿地植物 5.顶部环形区域 6.中部环形区域 7.底部环形区域 8.瀑布似溢流
湿地结构的底部用高密度的聚乙烯作为衬里,环形区域则是要铺衬5cm厚的砌砖墙,为了防止污水的渗漏及污水与地下水混合。由苗圃购得的池柏(Taxodium ascendens)的幼苗以间距0.8m间隔围绕整个湿地结构底部环形种植,湿地结构地层中部种植密度为56株/m2的蔺草(Schoenoplectus trigueter),于头年十一月种植第二年五月份收割。在蔺草收获后的六至十月份,以9株/m2的种植密度种植野茭白(Zizania aquatica)。在第二部分顶部的环形部分以近似6株/m2的种植密度种植睡莲(Nymphaea tetragona),在中间环形区域以的36株/m2种植密度种植香蒲(Typha angustifolia)。
表1 THCW进水和出水的物理化学特性
80%的原污水不断的流入湿地结构的第一部分。20%的污水由泵直接输入第二部分的环形结构最高层,溢流进入环形结构中间一层,之后流入最后一层。此时第二部分处理污水与第一部分处理后的污水一起流入湿地结构的第三部分并最终由其排出。水深由一个储水塔控制。在第一时段,前四个月(06年5月到8月)人工湿地结构以的16 cm/d水力负荷运行(水力停留时间5.4 d)。第二时段,之后八个月(06年9月到07年4月)人工湿地结构以的比较高的32 cm/d水力负荷运行(水力停留时间2.7 d)。这些生活污水在一个腐化池里先进行预处理(表一)。
2.2 分析方法
2.2.1 化学分析
需每天采集第一部分的进水,第二部分的出水(仅在后八个月),第三部分的出水,每周混合水样的测试数据和结果搜集分析,需检测TSS,COD,NH3-N,TN,TP。每周检测现场每部分和每个环形处理单元的水温,pH,DO,TSS,COD,TN,TP和NH3-N要坚决的按照标准方法来检测控制(APHA, 1998)。
野茭白(Z. aquatica))和蔺草(S. trigueter)在零六年十月和零七年五月分别被收割(砍掉植株所有水面上可见部分)。收割的植物在被蒸馏水洗过后在太阳下经过24小时的日照后投入105 ◦C下灼烧24小时。植物在干燥后的称重作为基本分析。被干燥和研磨过的植物碎末作为总氮(TKN)测量的准备,分析方法按照标准方法(APHA, 1998)。
2.2.2硝化及反硝化的测量
在湿地结构第三部分的前端沉淀物上层的五厘米处存在潜在的硝化反应。使用的试验介质中每公升包含:0.14g K2HPO4; 0.027 g KH2PO4; 0.59 g (NH4)2SO4;1.20 g NaHCO3;0.3 g CaCl2·2H2O;0.2 g MgSO4; 0.00625 g FeSO4;0.00625 g EDTA;1.06 gNaClO3;pH是7.5。氯化钠被用于抑制硝酸盐及亚硝酸盐的氧化。50mL沉淀污泥需要加入100mL试验介质25 ◦C在震荡器150 rpm转速下培养。这种经处理过的样本在被培养2,6,20和24小时后被收集。亚硝酸盐的浓度用光度计测量。由亚硝酸盐产量和培养时间数计算出的线性回归,评估出的角系数可以计算出潜在硝化反应的量。结果以在样品中的体积损耗规范化的计算出来,最后以干重(DW)及明确的每小时每克干物质产生nmol亚硝酸盐表示。
潜在亚硝化反应速率(PDR)被用乙炔抑制设备进行测量。 沉淀物样本在第三部分的后部的四个地点采集(两个分散采集,两个呈柱状采集直径3.5 cm),并且要立即用铝箔密封以防游离氧进入沉淀物样本。这四个样本分别投入四个容积为1500mL的锥形瓶中,加入添加营养元素的营养液进行培养(15 mg/L NO3-N,72 mg/L Ca,10 mg/L Mg,27 mg/L Na,39mg/L K和2.5 mg/L PO4-P)。烧瓶顶部用氮气吹洗半个小时。烧瓶被置于旋转振荡器中60 rpm转速震荡。样本在黑暗处20 ◦C培养八小时。每个小时使用注射器进行气体取样。顶部样本用气象色谱仪分析N2O的浓度(日本金岛公司气象色谱仪GC-14B),气象色谱仪带有一个电子捕获探测器操作温度340 ◦C。潜在亚硝化的反应速率以mg N2O-N/m2沉淀物每小时表示。
2.2.3 微生物数量的分析
人工湿地沉淀物中的硝化和反硝化微生物使用以下培养基用最大可能数量法计算(Carter and Gregorich, 2006)。计算硝化细菌的培养基配方如下:13.5 g Na2HPO4;0.7 g KH2PO4; 0.1g MgSO4·7H2O; 0.5 g NaHCO3; 2.5 g (NH4)2SO4;14.4mg FeCl3·6H2O; 18.4mg CaCl2·7H2O; 1 L 蒸馏水;pH=8.0。计算反硝化细菌的培养基配方如下:1.0 g KNO3; 0.1gNa2HPO4;;2.0 g Na2S2O7; 0.1g NaHCO3;;0.1 g MgCl2; 1 L 蒸馏水;pH 7.0。用一根内径为4.7cm的玻璃管采集测量硝化和反硝化细菌的数量应远离泥水分界面(0–2 cm)及过深的深度(5–8 cm)。附着在岩石及水生植物体上的细菌剥离下来之后,然后用混合器将其溶于冷水驱散混合。经十个无菌的蒸馏水样稀释的沉淀物样本被转移到96格的包含各自培养基的微量滴定板上在28 ◦C下硝化细菌培养21 d反硝化细菌培养5 d。为了确定沉淀物的干重,10 g的沉淀物在105 ◦C下被隔夜烘干直至产生衡重样本。在人工湿地结构运行期间,硝化和反硝化细菌的数量要每两月进行一次计算。
2.2.4 统计分析
所有带有方差测验的统计分析都使用统计分析软件SPSS进行分析(Statistic Package for Social Science)。当p < 0.05时误差被认为是有效的。有效的误差用邓肯测试法进行评估。皮尔森相关分析适用于评估潜在反硝化效率和水力负荷之间有效的的线性相关,以及反硝化和水力负荷之间的关系。
3.结果
第二部分第三部分的出水中物理化学指标的变化在表1中给出,水的pH没有太大的变化。由于人工湿地结构第二部分的瀑布式溢流的被动充氧的原因,出水的溶解氧含量(DO)相对较大。在第二部分入水的溶解氧平均值为:1.28±0.52 mg/L,出水中的平均值为:2.98±0.38mg/L。已观测到的对总悬浮物TSS的脱除率为84.60±9.6%。氮的脱除率是较高值的,脱除NH3-N和TN平均值为:83.11±10.2%,82.85±8.5%。在第二部分NH3-N和TN的脱除率分别为:72%和29%。在第二部分的硝化作用将很大部分的氮转化成了NO3-N,54%的由第三部分的反硝化作用和其他作用转移脱除。磷的脱除率观测到在64.15±7.9%。在第二时间段对于第一时间段各类超标污染物的脱除效率更高,因为第一时间短的水力负荷较低。但在两种不同的水力负荷下各类污染物的脱除效率是相似的(p < 0.02)。
图2显示了的研究调查期间12个月的入水和出水中CODcr,NH3-N,TN和TP脱除效率。在研究期间的时间段一和时间段二中,调研中的十二个月NH3-N和TN被有效脱除。脱氮效率在开始10周和最后10周是最高,由于温度较高的原因。人工湿地结构在冬季也显出了对于氮、磷和有机物的较高的脱除效率。另外由于硝化和反硝化作用而导致的氮素流失的量在夏季大于(p < 0.003)在冬季。当湿地中的pH值超过极大值7.7,氨的挥发可以被忽略,这个pH值下没有足够量的氨气的生成。在两种水力负荷下(16 cm/d和 32 cm/d)的脱除效率在统计上没有显著差异。
图2.实验期间THCW进水出水中的COD,NH3-N,TN和TP含量与脱除效率
图2中同样显示在湿地运行期间磷的脱除效率在最高的水力负荷下或是在冬季没有十分显著的波动。在冬季和夏季的运行中,出水的总磷TP浓度没有显著的差异。图3. 实验期间THCW第三部分沉淀物中潜在硝化及反硝化量
如图3所示,潜在硝化速率和潜在反硝化效率在最初的四个月里的随着时间增长。在水力负荷上升(16 cm/d到32 cm/d)之后的一个月,在2006年的十月到十二月之间潜在硝化速率下降,潜在反硝化速率在2006年的十月到2007年的二月之间下降。实验结束时潜在硝化反应速率没有明显上升,反硝化反应速率上升了一点。潜在硝化反应和潜在反硝化反应用硝化细菌和反硝化细菌的最有可能数目来分别计算,显出两条正相关关系很好的曲线(p < 0.05)。
表2 在THCW中硝化及反硝化细菌数量
由表2看出,在湿地结构沉淀物中的硝化细菌和反硝化细菌最可能数目大约在每克104–105数量级之间。对比硝化细菌及反硝化细菌的估算定量,湿地结构中相应的潜在硝化反应和潜在反硝化反应(图3)显示出更多数量的硝化细菌和反硝化细菌,更高的潜在硝化活动。

为了测定植物收获后在脱氮方面的效果,在06年十月和07年五月收获的植物烘干后测量其凯氏氮(TKN)的含量,显示出在蔺草(S. trigueter)中积累的氮的含量远大于野茭白(Z. aquatica)中的积累,在蔺草(S. trigueter)和野茭白(Z. aquatica)的烘干样中平均固氮的量是6.8±0.3/kg和4.7±0.2/kg,总氮的平均吸收率分别是17.18 kg/(ha·d)和12.63 kg/(ha·d)。

4.讨论

硝化反应是不能从水中脱氮。但是伴随着反硝化反应却是许多人工湿地结构的主要脱除机理。硝化反应发生在氧气处于一个可以使严格好氧硝化细菌生长的足够高的浓度氧气含量下。硝化反应存在于所有的人工湿地结构中,但这一反应的大小又由溶解氧的量决定。因为NH3-N在许多废水中是占优势的种类,硝化反应通常在各类湿地系统中是一个限制环节。反硝化作用被认为是大多数人工湿地结构中主要的脱氮机理。无论如何,通常在废水中硝酸盐的浓度是非常低的,因此反硝化反应必须伴随硝化反应而进行。硝化反应和反硝化反应对于氧的不同需求成为了许多要求到高脱氮效率的人工湿地的障碍。

人们普遍认为当溶解氧浓度(DO)达到1.5mg/L以上时硝化反应可以发生。研究中湿地结构的出水溶解氧浓度(DO)平均值为2.22±0.13 mg/L,这个可能是由于人工湿地结构中部的塔式结构的瀑布式溢流造成的,这个溶解氧浓度是对硝化作用有利的;这个推论与沉淀物中的更多的硝化细菌的数目相一致(表2)。高的溶解氧浓度与充足由入水的支路直接注入人工湿地第二部分的有机物,减少了异养生物和硝化细菌之间对营养的争夺。因此更多的缓慢生长的硝化细菌转移到了沉淀物的表面和植物根部。

5.结论

该研究显示,塔式复合人工湿地结构可以有效处理许多污染物,第一部分的处理目标为总悬浮物TSS和生物需氧量,第二个塔式部分的处理目标是硝化,第三部分的目标是反硝化。使用塔式结构的瀑布式水流而带来被动充氧以及由旁路直接注入第二部分的原污水,在促进硝化和反硝化方面的显示出了很大的促进。对于总悬浮物TSS,化学需氧量COD,氨氮NH3-N,总氮TN,总磷TP的脱除效率分别为:88.57±16.3%,84.60±9.6%,83.11±10.2%,82.85±8.5%,64.15±7.9%。显然,我们设计的系统在高的水力负荷下对于初级生活污水有一个高的脱氮能力。湿地结构污泥里的硝化细菌的数量较高,但反硝化细菌数量对于其他报道来说相对偏低。潜在硝化反应和潜在反硝化反应的数目是与硝化细菌和反硝化细菌数目相一致的。在湿地结构中硝化反应和反硝化反应是脱氮运行的主要机理。湿地种植物的含氮量显示出本土植物蔺草是最适合湿地结构的植物,因为它有冬季生长和工业可以利用的特点。对于环境教育项目,塔式复合人工湿地结构也提供了一个额外的好处,即美学的观赏价值。对于湿地结构的超过两年的现场检测研究,最佳化的入水分布和结构设计将会在将来的研究中逐一进行。

提高塔式复合人工湿地处理农村生活污水的脱氮效率[1]

摘要:

努力保护水源,尤其是在乡镇地区的饮用水源,是中国污水处理当前面临的主要问题。氮元素在水体富营养化和对水生物的潜在毒害方面的重要作用,目前废水脱氮已成为首要关注的焦点。人工湿地作为一种小型的,处理费用较低的方法被用于处理乡镇生活污水。比起活性炭在脱氮方面显示出的广阔前景,人工湿地系统由于溶解氧的缺乏而在脱氮方面存在一定的制约。为了提高脱氮效率,一种新型三阶段塔式混合湿地结构----人工湿地(thcw)应运而生。它的第一部分和第三部分是水平流矩形湿地结构,第二部分分三层,呈圆形,呈紊流状态。塔式结构中水流由顶层进入第二层及底层,形成瀑布溢流,因此水中溶解氧浓度增加,从而提高了硝化反应效率,反硝化效率也由于有另外的有机物的加入而得到了改善,增加反硝化速率的另一个原因是直接通过旁路进入第二部分的废水中带入的足量有机物。常绿植物池柏(Taxodium ascendens),经济作物蔺草(Schoenoplectus trigueter),野茭白(Zizania aquatica),有装饰性的多花植物睡莲(Nymphaea tetragona),香蒲(Typha angustifolia)被种植在湿地中。该系统对总悬浮物、化学需氧量、氨氮、总氮和总磷的去除率分别为89%、85%、83%、 83% 和64%。高水力负荷和低水力负荷(16 cm/d 和 32 cm/d)对于塔式复合人工湿地结构的性能没有显著的影响。通过硝化活性和硝化速率的测定,发现硝化和反硝化是湿地脱氮的主要机理。塔式复合人工湿地结构同样具有观赏的价值。

关键词:

人工湿地;硝化作用;反硝化作用;生活污水;脱氮;硝化细菌;反硝化细菌
研究目的:

1.评价新型人工湿地的性能,塔式复合人工湿地(THCW),尤其是在高水力负荷的情况下脱氮效率。这种人工湿地结构设计通过瀑布形式的水流进行被动充氧从而提高废水中溶解氧浓度进而提高硝化速率,依靠直接在湿地中间部分加入原废水提高反硝化速率,从而促进硝化反硝化过程。

2.对于在人工湿地结构中常绿多年生木本植物和草本植物共同脱除氮的效率的评价,尤其是在冬季的阶段,且在湿地里植物的生长量对于氮的脱除是有帮助作用的。

3.研究表面水平流、自由水流相结合的系统是否在脱除和转化废水中污染物方面表现出更好的性能,尤其是脱氮方面。

2. 材料和方法

2.1 系统描述

我们研究队伍设计的人工湿地结构位于中国宁波某村。它包括三个部分,容积按照四十人排量设计。气候特点为年降水量1300-1400mm和累计年平均气温16.2℃。极高极低值分别为38.8℃和-4.2℃。较冷的时间段以十二月到二月为代表并且在这个时间段里出水比较接近于8℃(最低5℃)。第一部分和第三部分8m长6m宽1.0m深。反应床有三层构成,最底一层由厚20 cm的洗净的砾石(2–6 cm)构成,中间层由65 cm厚的细砂(0.5–2.0 cm)粒构成,最上层由15 cm厚的土壤(0.1–0.2 cm)构成。底面坡度大约1%。第三部分有三个环形的单元构成,直径分别为7m、5m和3m,由下向上每个0.6m深,表面积近似估算为38.5m2。由顶部向低处单元的溢流会立即产生的瀑布似的紊流可以增大溶解氧含量和维持含氧条件。

图1 塔式复合人工湿地水流示意图:1.进水区 2.塔式区 3.出水区 4.湿地植物 5.顶部环形区域 6.中部环形区域 7.底部环形区域 8.瀑布似溢流

湿地结构的底部用高密度的聚乙烯作为衬里,环形区域则是要铺衬5cm厚的砌砖墙,为了防止污水的渗漏及污水与地下水混合。由苗圃购得的池柏(Taxodium ascendens)的幼苗以间距0.8m间隔围绕整个湿地结构底部环形种植,湿地结构地层中部种植密度为56株/m2的蔺草(Schoenoplectus trigueter),于头年十一月种植第二年五月份收割。在蔺草收获后的六至十月份,以9株/m2的种植密度种植野茭白(Zizania aquatica)。在第二部分顶部的环形部分以近似6株/m2的种植密度种植睡莲(Nymphaea tetragona),在中间环形区域以的36株/m2种植密度种植香蒲(Typha angustifolia)。

表1 THCW进水和出水的物理化学特性

80%的原污水不断的流入湿地结构的第一部分。20%的污水由泵直接输入第二部分的环形结构最高层,溢流进入环形结构中间一层,之后流入最后一层。此时第二部分处理污水与第一部分处理后的污水一起流入湿地结构的第三部分并最终由其排出。水深由一个储水塔控制。在第一时段,前四个月(06年5月到8月)人工湿地结构以的16 cm/d水力负荷运行(水力停留时间5.4 d)。第二时段,之后八个月(06年9月到07年4月)人工湿地结构以的比较高的32 cm/d水力负荷运行(水力停留时间2.7 d)。这些生活污水在一个腐化池里先进行预处理(表一)。

2.2 分析方法

2.2.1 化学分析

需每天采集第一部分的进水,第二部分的出水(仅在后八个月),第三部分的出水,每周混合水样的测试数据和结果搜集分析,需检测TSS,COD,NH3-N,TN,TP。每周检测现场每部分和每个环形处理单元的水温,pH,DO,TSS,COD,TN,TP和NH3-N要坚决的按照标准方法来检测控制(APHA, 1998)。

野茭白(Z. aquatica))和蔺草(S. trigueter)在零六年十月和零七年五月分别被收割(砍掉植株所有水面上可见部分)。收割的植物在被蒸馏水洗过后在太阳下经过24小时的日照后投入105 ◦C下灼烧24小时。植物在干燥后的称重作为基本分析。被干燥和研磨过的植物碎末作为总氮(TKN)测量的准备,分析方法按照标准方法(APHA, 1998)。

2.2.2硝化及反硝化的测量

在湿地结构第三部分的前端沉淀物上层的五厘米处存在潜在的硝化反应。使用的试验介质中每公升包含:0.14g K2HPO4; 0.027 g KH2PO4; 0.59 g (NH4)2SO4;1.20 g NaHCO3;0.3 g CaCl2·2H2O;0.2 g MgSO4; 0.00625 g FeSO4;0.00625 g EDTA;1.06 gNaClO3;pH是7.5。氯化钠被用于抑制硝酸盐及亚硝酸盐的氧化。50mL沉淀污泥需要加入100mL试验介质25 ◦C在震荡器150 rpm转速下培养。这种经处理过的样本在被培养2,6,20和24小时后被收集。亚硝酸盐的浓度用光度计测量。由亚硝酸盐产量和培养时间数计算出的线性回归,评估出的角系数可以计算出潜在硝化反应的量。结果以在样品中的体积损耗规范化的计算出来,最后以干重(DW)及明确的每小时每克干物质产生nmol亚硝酸盐表示。

潜在亚硝化反应速率(PDR)被用乙炔抑制设备进行测量。 沉淀物样本在第三部分的后部的四个地点采集(两个分散采集,两个呈柱状采集直径3.5 cm),并且要立即用铝箔密封以防游离氧进入沉淀物样本。这四个样本分别投入四个容积为1500mL的锥形瓶中,加入添加营养元素的营养液进行培养(15 mg/L NO3-N,72 mg/L Ca,10 mg/L Mg,27 mg/L Na,39mg/L K和2.5 mg/L PO4-P)。烧瓶顶部用氮气吹洗半个小时。烧瓶被置于旋转振荡器中60 rpm转速震荡。样本在黑暗处20 ◦C培养八小时。每个小时使用注射器进行气体取样。顶部样本用气象色谱仪分析N2O的浓度(日本金岛公司气象色谱仪GC-14B),气象色谱仪带有一个电子捕获探测器操作温度340 ◦C。潜在亚硝化的反应速率以mg N2O-N/m2沉淀物每小时表示。

2.2.3 微生物数量的分析

人工湿地沉淀物中的硝化和反硝化微生物使用以下培养基用最大可能数量法计算(Carter and Gregorich, 2006)。计算硝化细菌的培养基配方如下:13.5 g Na2HPO4;0.7 g KH2PO4; 0.1g MgSO4·7H2O; 0.5 g NaHCO3; 2.5 g (NH4)2SO4;14.4mg FeCl3·6H2O; 18.4mg CaCl2·7H2O; 1 L 蒸馏水;pH=8.0。计算反硝化细菌的培养基配方如下:1.0 g KNO3; 0.1gNa2HPO4;;2.0 g Na2S2O7; 0.1g NaHCO3;;0.1 g MgCl2; 1 L 蒸馏水;pH 7.0。

用一根内径为4.7cm的玻璃管采集测量硝化和反硝化细菌的数量应远离泥水分界面(0–2 cm)及过深的深度(5–8 cm)。附着在岩石及水生植物体上的细菌剥离下来之后,然后用混合器将其溶于冷水驱散混合。经十个无菌的蒸馏水样稀释的沉淀物样本被转移到96格的包含各自培养基的微量滴定板上在28 ◦C下硝化细菌培养21 d反硝化细菌培养5 d。为了确定沉淀物的干重,10 g的沉淀物在105 ◦C下被隔夜烘干直至产生衡重样本。在人工湿地结构运行期间,硝化和反硝化细菌的数量要每两月进行一次计算。

2.2.4 统计分析

所有带有方差测验的统计分析都使用统计分析软件SPSS进行分析(Statistic Package for Social Science)。当p < 0.05时误差被认为是有效的。有效的误差用邓肯测试法进行评估。皮尔森相关分析适用于评估潜在反硝化效率和水力负荷之间有效的的线性相关,以及反硝化和水力负荷之间的关系。

3.结果

第二部分第三部分的出水中物理化学指标的变化在表1中给出,水的pH没有太大的变化。由于人工湿地结构第二部分的瀑布式溢流的被动充氧的原因,出水的溶解氧含量(DO)相对较大。在第二部分入水的溶解氧平均值为:1.28±0.52 mg/L,出水中的平均值为:2.98±0.38mg/L。已观测到的对总悬浮物TSS的脱除率为84.60±9.6%。氮的脱除率是较高值的,脱除NH3-N和TN平均值为:83.11±10.2%,82.85±8.5%。在第二部分NH3-N和TN的脱除率分别为:72%和29%。在第二部分的硝化作用将很大部分的氮转化成了NO3-N,54%的由第三部分的反硝化作用和其他作用转移脱除。磷的脱除率观测到在64.15±7.9%。在第二时间段对于第一时间段各类超标污染物的脱除效率更高,因为第一时间短的水力负荷较低。但在两种不同的水力负荷下各类污染物的脱除效率是相似的(p < 0.02)。

图2显示了的研究调查期间12个月的入水和出水中CODcr,NH3-N,TN和TP脱除效率。在研究期间的时间段一和时间段二中,调研中的十二个月NH3-N和TN被有效脱除。脱氮效率在开始10周和最后10周是最高,由于温度较高的原因。人工湿地结构在冬季也显出了对于氮、磷和有机物的较高的脱除效率。另外由于硝化和反硝化作用而导致的氮素流失的量在夏季大于(p < 0.003)在冬季。当湿地中的pH值超过极大值7.7,氨的挥发可以被忽略,这个pH值下没有足够量的氨气的生成。在两种水力负荷下(16 cm/d和 32 cm/d)的脱除效率在统计上没有显著差异。

图2.实验期间THCW进水出水中的COD,NH3-N,TN和TP含量与脱除效率

图2中同样显示在湿地运行期间磷的脱除效率在最高的水力负荷下或是在冬季没有十分显著的波动。在冬季和夏季的运行中,出水的总磷TP浓度没有显著的差异。

5.结论

该研究显示,塔式复合人工湿地结构可以有效处理许多污染物,第一部分的处理目标为总悬浮物TSS和生物需氧量,第二个塔式部分的处理目标是硝化,第三部分的目标是反硝化。使用塔式结构的瀑布式水流而带来被动充氧以及由旁路直接注入第二部分的原污水,在促进硝化和反硝化方面的显示出了很大的促进。对于总悬浮物TSS,化学需氧量COD,氨氮NH3-N,总氮TN,总磷TP的脱除效率分别为:88.57±16.3%,84.60±9.6%,83.11±10.2%,82.85±8.5%,64.15±7.9%。显然,我们设计的系统在高的水力负荷下对于初级生活污水有一个高的脱氮能力。湿地结构污泥里的硝化细菌的数量较高,但反硝化细菌数量对于其他报道来说相对偏低。潜在硝化反应和潜在反硝化反应的数目是与硝化细菌和反硝化细菌数目相一致的。在湿地结构中硝化反应和反硝化反应是脱氮运行的主要机理。湿地种植物的含氮量显示出本土植物蔺草是最适合湿地结构的植物,因为它有冬季生长和工业可以利用的特点。对于环境教育项目,塔式复合人工湿地结构也提供了一个额外的好处,即美学的观赏价值。对于湿地结构的超过两年的现场检测研究,最佳化的入水分布和结构设计将会在将来的研究中逐一进行。
太多了,发不了

10. 急求环境工程污水处理中英文对照翻译

小弟,自己做下吧,以后总不能靠别人~

阅读全文

与翻译污水处理相关的资料

热点内容
污水泵站运行安全 浏览:32
ro膜和超滤膜的tds 浏览:414
生活用水过滤器 浏览:974
家里什么位置适合放饮水机 浏览:953
钢结构屋面防水处理办法 浏览:953
丰田奕泽cHr空气滤芯怎么换 浏览:982
空气过滤棉海关编码 浏览:318
污水处理项目属于什么项目工程 浏览:1
蚯蚓加工的污水怎么处理 浏览:268
湖北公共场所用净水机哪个好 浏览:492
高分子吸水树脂如何展示 浏览:65
污水管道测量报告 浏览:483
饮水机的水为什么不停 浏览:440
离子交换树脂洗不到中性 浏览:438
1万吨污水厂是什么规模 浏览:429
大货车空气滤芯灯亮怎么回事 浏览:41
滤芯ro膜上错了型号 浏览:732
花伞除垢小妙招 浏览:186
污水排污费收费标准 浏览:809
09款凯美瑞空调滤芯原装什么牌子 浏览:94