⑴ 求助英文文献
油田污水处理技术
Waste Water Treatment Technology
Sewage-treated Technology
Oil-field Wastewater treatment
Sewage Treatment Technology for Oilfield
Technique for Waste Water Treatment in the Oilfields
oilfield sewage treatment technology
------------------------------------------------
http://www.paper.e.cn/download_doctor_paper.php?serial_number=D200708-3183
http://en.wikipedia.org/wiki/Wastewater_treatment
http://zh.wikipedia.org/wiki/%E6%B1%A1%E6%B0%B4%E8%99%95%E7%90%86
http://books.google.com.sg/books?hl=en&id=Ja4AxcKIvQUC&dq=Wastewater+treatment&printsec=frontcover&source=web&ots=LTuxIUa4Hi&sig=2NCtO3LeBneL75Tgej7cxrAnl50
http://en.wikipedia.org/wiki/List_of_waste_water_treatment_technologies
http://zh.wikipedia.org/wiki/%E5%BB%A2%E6%B0%B4%E8%99%95%E7%90%86%E6%8A%80%E8%A1%93%E5%88%97%E8%A1%A8
http://books.google.com.sg/books?hl=en&id=BbjkzblQAOQC&dq=Wastewater+treatment&printsec=frontcover&source=web&ots=dfiLXTX0QY&sig=STHy-Q-rVvteHthlFoWr64HGVW4
http://books.google.com.sg/books?hl=en&id=02Lb2wTIzUwC&dq=Wastewater+treatment&printsec=frontcover&source=web&ots=8ltbrIs0XR&sig=HhyuTKetQKyQ3FUOptLnxJUQGxU
http://books.google.com.sg/books?hl=en&id=yomR2U_pBqIC&dq=Wastewater+treatment&printsec=frontcover&source=web&ots=OLccTwFgzp&sig=cgS4JKR4BVuc4wBPTuQS1mJNQo0
http://books.google.com.sg/books?hl=en&id=cVdK6rexgd0C&dq=Wastewater+treatment&printsec=frontcover&source=web&ots=jbtXiMbcAD&sig=wp4eElURlMB7zw9DSzgQMOJqhIk
http://www.aqwise.com/UserFiles/File/Aquize/PDF%20files/Papares%20and%20Abstracts/Hydraulics.pdf
http://www.ncbi.nlm.nih.gov/pubmed/11561628?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_Discovery_RA&linkpos=1&log$=relatedarticles&dbfrom=pubmed
http://www.cababstractsplus.org/google/abstract.asp?AcNo=20043057837
反渗透系统的维护与清洗
反渗透水处理是一种先进的脱盐技术,即可应版用于生水脱盐、权纯净水制备,也可用于废水处理、污水回收。它和离子除盐的本质区别在于它是一种物理脱盐,具有操作简单、运行经济、没有污染有利于环境保护等特点,同时可大大降低生产人员的劳动强度,提高生产效率。
反渗透膜元件的维护:
膜元件的维护归纳为两个大的方面:一是反渗透的预处理,二是反渗透设备的冲洗、清洗及保养。
反渗透设备的预处理
反渗透系统的预处理,首先要根据原水水质情况配置预处理设备,这一点对整个系统的安全性至关重要。
⑶ 关于环境污水处理Cyclic Activated Sludge System(CASS)的英语文献
给你些很不错的英语文献和网站吧
http://web.deu.e.tr/atiksu/ana58/cass.html
CASS™ (Cyclic Activated Sludge System)...
Brief History of Sequencing Batch Reactors...
Activated sludge is the most widely used biological wastewater treatment process in the developed world, treating both sewage and a variety of instrial wastewaters. Batch operation of the activated sludge process is nothing new. During the early development of the activated sludge process in the United Kingdom by Adern and Lockett around 1914, plants were operated using fill-and-draw or interrupted batch feed methods. These researchers firmly established the concept of operating a single reactor basin using repetitive cycles of aeration, settlement and discharge of treated effluent. Around 1956, ring the development of oxidation ditch technology, Pasveer incorporated interrupted and continuously fed batch treatment principles. Further advancements to the oxidation ditch fed-batch treatment then too place by incorporating a rectangular basin configuration. By the late 1970's, the generic sequencing batch reactor (SBR) was well established and many small plants were in operation. A major development took place in 1978 with the incorporation of a pre-react zone within the SBR to control filamentous sludge bulking. Further refinements of SBR processes took place mainly in Australia and the United States and has led to the wide scale application of the technology worldwide. The shortfalls of the original design have led to the development of the present state-of-the-art CASS™ Sequencing Batch Reactor. While SBRs have generally been classified by the water instry for small or medium scale applications, CASS™ has found application in large scale municipalities ( 50 MGD or 400,000 + population equivalent ) and the molar expansion, retrofit or upgrading of existing wastewater treatment facilities.
CASS™ Process Components...
CASS™ is a combination of a biological selector and variable volume process reactor. The process operates with a single sludge in a single reactor basin to accomplish both biological treatment and solids-liquid separation. CASS™ is by design and operation with municipal wastewaters, a biological nutrient removal process, configured to function with filamentous sludge bulking control. A simple repeated sequence of aeration and non-aeration is used to provide aerobic, anoxic and anaerobic process conditions, which in combination with the aeration intensity, favor nitrification, denitrification and biological phosphorus removal.
The essential features of the CASS™ technology are the plug-flow initial reaction conditions and the complete-mix reactor basin. Each CASS™ reactor basin is divided by baffle walls into three sections (Zone 1: Selector, Zone 2: Secondary Aeration, Zone 3: Main Aeration). For typical domestic wastewater treatment applications, these sections are in the approximate proportions of 5%, 10%, and 85%. Sludge biomass is continuously recycled from Zone 3 to the Zone 1 selector to remove the readily degradable soluble substrate and favor the growth of floc-forming microorganisms. System design is such that the sludge return rate causes an approximate daily cycling of biomass in the main aeration zone through the selector zone. The mechanisms of Zone 1 and the internal sludge recycle eliminate the requirement for separate fill-ratio selectivity, anoxic, and anaerobic mixing periods. The selector is self-regulating for any load condition and operates under anoxic and anaerobic reaction conditions ring non-aerated periods. Polishing denitrification and enzymatic transfer of available substrate ring enhanced biological phosphorus removal is also achieved in the selector zone. The complete-mix nature of the main reactor provides flow and load balancing and a tolerance to shock or toxic loadings, and the process prevents solids washout ring peak or wet weather hydraulic surges.
Process Cyclic Operation...
CASS™ utilizes a simple repeated time-based sequence which incorporates :
FILL-AERATION (for biological reactions)
FILL-SETTLE (for solids-liquid separation)
DECANT (to remove treated effluent)
Completion of these three operations constitute a cycle which is then repeated. The sequence above can also include a FILL, FILL-MIX, FILL-REACT, and REACT if required.
During the period of a cycle, the liquid level inside the reactor basin rises from a set bottom water level in response to a varying wastewater flow rate. Aeration ceases at a predetermined period of the cycle to allow the biomass to flocculate and settle under quiescent conditions. After a specific settling period, the treated effluent supernatant is removed (decanted), using a moving weir decanter. This operation returns the liquid level in the reactor basin to the bottom water level. Surplus solids are wasted as required to maintain the biomass MLSS at the required level. Solids wasting after settling enables waste sludge concentrations in excess of 10,000 mg/L to be removed.
Fill - Aeration...
The FILL-AERATION (react) operation refers to the air-on time of the process cycle. During this period, influent is received into the basin through the selector zone where it contacts with the biomass recycled from the main aeration zone. Complete-mix reaction conditions occur in Zone 3 ring this variable volume operational period.
Fill - Settle...
This refers to the first part of the air-off time period when quiescent settling conditions are created in Zone 3 for solids-liquid separation. The activated sludge solids form a sludge-level interface which progressively falls toward the floor of the basin. The flocs adhere together and the mass settles as a blanket leaving a clear supernatant. At the end of the aeration period, the sludge is at a uniform concentration. During the initial settling period, the sludge undergoes internal flocculation e to the resial mixing energy within the basin. As this energy dissipates the sludge interface forms and settles as a blanket. Dense solids fall through the formed mass to settle on the basin floor. There is an initial slow settling velocity which increases and then graally falls off e to the compressive accumulation of solids on the basin floor. Zone settling velocity is a function of the initial solids concentration, basin depth, total area of the basin and nature of the biological solids. A top water level solids concentration of around 3,500 mg/L will typically settle to form a layer of sludge having a mean concentration of around 10,000 mg/L. CASS™ facilities are sized and configured to operate with inflow into the basin ring the settle phase of the cycle. Biomass is returned from the main aeration zone to the selector zone to promote selectivity and create anoxic/anaerobic conditions.
Decant ( Effluent Removal )...
Inflow to the basin undergoing decanting (effluent withdrawal) is interrupted and directed to an alternate basin in a multi-basin facility or stored in a pump well in a single basin facility. The weir trough of the decanter is situated above top water level for both aeration and settling phases to prevent the accidental discharge of mixed liquor suspended solids. When operated ring the decant phase of the cycle, the decanter travels down at an initial fast speed. Interaction with the liquid level is detected by a level indicator float switch which causes the skimmer to proceed at its design rate of travel procing a constant rate of discharge of treated effluent from the basin. On reaching designated bottom water level, the decanter is reversed to its rest position at the initial fast speed.
Idle...
In practice, decanting will always be less than the allocated time available. This resial time is designated as IDLE and can be used as a period of inflow without aeration or reaction. The IDLE sequence begins 4 minutes after the skimmer has traveled in the reverse up direction and finishes at the end of the designated decant period. Biomass is recycled from Zone 3 to the selector zone to promote selectivity and create anoxic/anaerobic conditions.
Respiration Rate Control (RRC™)...
Dissolved oxygen is a necessary requirement for the biological oxidation reactions which take place with the CASS™ process. Resial dissolved oxygen occurs as a result of oxygen which is not used by the microorganisms in the biomass. Too much dissolved oxygen in the CASS™ process is wasteful of energy and may inhibit biological nutrient removal mechanisms. A simple control method has been developed to ensure optimum biological reaction conditions take place and valuable energy is not wasted. Advantage is taken of the fact that the CASS™ process conforms to a complete-mix reaction model. This also means that CASS™ provides a very stable reaction environment when compared to other conventional plug-flow activated sludge, extended aeration, contact stabilization, or sequencing batch reactor systems. A dissolved oxygen sensor is used to measure changes in biomass oxygen demand. For example, a rection in the oxygen load demand to a CASS™ basin will automatically cause a lowering of the aeration intensity (air supply) so that the excessive dissolved oxygen concentrations are prevented. Conversely, an increase in load demand will cause an increase in aeration intensity so that the metabolic activity of the biomass, as registered by its propensity to use oxygen, is matched with the corresponding aeration intensity rate of air feed into the reaction basin.
RRC™ directly interacts with the best sensor which is available for the control of air into the process. The system is an in-basin respirometer. Simply stated, low oxygen demand caused by low loadings ring diurnal, or other variations can now be directly matched to energy use. The biomass senses the oxygen requirements which are needed for the process. The dissolved oxygen sensor interprets that message and causes interaction with the rate of introction of air into the reaction basin.
The CASS™ RRC™ is simple and direct. RRC™ has direct benefits :
- Saves operating costs.
- Rection of waste activated sludge.
- Improved nutrient removal performance.
http://www.energymanagertraining.com/textiles/pdf/Cyclic%20Activated%20Sludge%20Technology.pdf
http://www.sbrcass.com/process.htm
http://www.freepatentsonline.com/7083324.html
http://books.google.com.sg/books?id=lyM6SgHXimEC&pg=PA657&lpg=PA657&dq=cyclic+activated+sludge+system&source=web&ots=RZhwp9iKY3&sig=wpKRxcRFOj0qWKz5pJSqZApCgBU&hl=en
http://www.sawea.org/Workshops/Presentation2005/MainSession/Nov30/LUCAS%20ACTIVATED%20SLUDGE%20TECH.%20-%20WATERLEAU.pdf
http://books.google.com.sg/books?id=Cnic0Co2V2QC&pg=PA351&lpg=PA351&dq=cyclic+activated+sludge+system&source=web&ots=wTkt1_5Rji&sig=lv5pGQArXqqESB7M1wr2AoE3zfI&hl=en
⑷ 世界油页岩产业发展趋势及存在问题
(一)世界油页岩干馏技术发展趋势
20世纪干馏理论研究、科学试验的成果和工业化生产取得的经验促使地面干馏技术不断完善,形成了一批先进的干馏技术方法,如ATP工艺;也形成了地下原位干馏技术,如ICP原地转化干馏技术。这些新进展将引导和推动21世纪油页岩干馏技术不断进步和发展。
从油页岩干馏技术发展过程看,试验已证实地下原位干馏技术可行且具有很好的发展前景。尽管地下原位干馏如ICP尚未在商业规模上加以验证,但它具有地面干馏技术无法相比的优点。因此,地下原位干馏技术将是未来发展趋势,但地面干馏工艺仍是近期干馏技术应用主体。
成本、技术、环保是发展油页岩产业的关键。技术革命可以突破成本、环境的瓶颈。目前及今后世界油页岩产业发展方向主要围绕三个方面:一是利用新技术提高页岩炼油的油收率,并以规模化生产来降低单位成本;二是提高油页岩的综合利用率,通过整条生产链将其“吃干榨尽”,从而摊薄成本;三是发展地下原位干馏技术。
油页岩干馏技术发展趋势主要体现以下几个方面:
1.简化工艺
地下原位干馏工艺简单且有效,适应性强,将是今后技术发展的主要方向,如ICP原地转化干馏技术,在某些方面与常规石油钻井采油过程类似,过程简单,无需采矿、处理尾矿,有助于大规模干馏、降低成本和提高生产效率。
2.降低成本
实现成本最佳效益,是未来干馏技术重要发展方向。如地面干馏一方面通过改进工艺、提高单炉处理能力,扩大生产规模,降低生产成本;另一方面通过油页岩综合优化利用的方法,将干馏炉制取页岩油和燃气所生成的油页岩半焦废弃物经破碎与油页岩炼油过程中废弃的颗粒细渣进行混合构成混合物料,供给循环流化床锅炉燃烧,燃烧产生的热量转化为蒸汽,一部分作为外供取暖,一部分驱动汽轮机带动发电机发电。混合物料经循环流化床燃烧后产生的灰渣,进一步用来生产水泥、陶粒和建筑砌块,提高附加值,增强市场竞争能力。
3.保护环境
对环境友好、实现零排放,也是油页岩干馏技术发展的一个重要趋势。研发出有利于环保的技术方法和控制手段,避免或减轻对环境的影响。重视监测空气、地表水、地下水、土壤及生物质量,回收和利用有毒物质、废物和废水,进行土地复垦等方面工作。
4.技术综合
各种技术渗透、综合、集成和应用新技术是当今干馏技术发展的主要方向之一。如信息技术大量应用在工艺监测和控制,工艺过程模拟和建模研究上,这些经验技术可以降低工艺各个环节成本,准确地推断和描述干馏产物组成、性质、工艺参数,优化工艺流程,提高生产效率。
(二)世界页岩油产能预测
世界有关能源机构和专家对世界油页岩产业发展的预测有很大的不同,但一致认为今后会有较快发展。
1.美国科罗拉多矿业学院油页岩工艺研究中心的预测
美国科罗拉多矿业学院油页岩工艺研究中心主任Dr.Jeremy Boak在2009年6月爱沙尼亚塔林国际油页岩会议上做了一个报告(Boak,2009)。报告认为,除了当前正在进行页岩油生产的国家爱沙尼亚、中国和巴西将增产以外,潜在的有较大资源、且今后可能生产页岩油的国家有美国、摩洛哥、约旦、澳大利亚和俄罗斯等。他还提出了世界范围内大规模发展油页岩产业的设想(图1-3),认为当前世界页岩油生产约1.5~2万桶/d(75~100×104t/a),今后如果以每年增产15%~20%计,则在10年后,至2020年世界页岩油产量约可达12万桶/d(600×104t/a);在25年以后,至2035年,世界页岩油的产量约可达100万桶/d(5000×104t/a)。该设想是基于目前的发展状况推测,很保守。
不过,美国科罗拉多矿业学院的专家也向美国政府提出了一项十分乐观的建议,即建议美国减少石油战略储备量,从而将节省下来的1000亿美元用于建立页岩油产业,可以年产2×108t页岩油(Sewalk等,2008)。
2.美国能源部的预测
美国能源部则对美国未来的油页岩产业做出了大胆设想。2004年3月美国能源部的研究报告预计,从2011年开始开发油页岩资源,到2020年使页岩油年产量达到200万桶/d(1×108t/a),2040年达到300万桶/d(1.5×108t/a),最终建成年产1000万桶/d(5×108t/a)的页岩油生产能力(图1-4)。该预测是基于美国资源现状推测的,未免太乐观。
图1-5 美国页岩油产能预测
3.欧洲科学院对欧盟油页岩发展的研究报告
欧盟议会于2007年委托欧洲科学院进行了欧盟油页岩发展的研究。研究报告表明世界页岩油资源高达3万亿桶,北美高达2万亿桶,欧洲也有3700亿桶,主要是在意大利,占73%,爱沙尼亚占19%,法国占7%。报告认为油页岩可以作为潜在的能源,列入欧盟的能源发展政策(Taher,2009;Siirde等,2009)。
4.爱沙尼亚Eesti能源公司对油页岩发展的规划
爱沙尼亚Eesti能源公司规划增建改进的Galoter干馏装置,至2015年,页岩油日产3万桶(年产150×104t)。并增建油页岩循环流化燃烧装置两套,每套400MW(Live,2009)。
5.跨国公司参与油页岩发展
当前世界大型跨国石油公司很多参与油页岩的开发。壳牌公司在美国科罗拉多州、休斯敦等地开展地下干馏现场中试。埃克森美孚公司和雪佛龙公司等都在美国开展地下干馏模拟研究。最近法国TOTAL与约旦等国家签署协作协议,参与油页岩开发(Allix,2008)。
(三)世界油页岩产业发展存在的问题
油页岩产业的发展主要取决于经济、环保、资源、技术和政策等问题。对于具体国家而言,由于国情的不同,主要的问题也不同。
关于爱沙尼亚,欧盟支持爱沙尼亚油页岩产业的发展,但对环境保护提出了严格的要求。因此,爱沙尼亚在今后增产页岩油和油页岩发电的同时,需要采用对环境影响较小的加工工艺。例如,选择了Galoter装置干馏炼油,该工艺污水较Kiviter工艺为少,可以直接送往电站烧掉。而且Galoter装置产出的页岩灰较Kiviter产出的页岩半焦,其污染物也较少(Allix,2008)。爱沙尼亚在油页岩发电方面增建油页岩循环流化燃烧工艺,其烟气的排放可以符合欧盟的标准,以局部代替悬浮式燃烧、污染物排放超标的老工艺(Ots,2009;Sarkki,2009;Weber,2009)。
关于美国,有世界上最丰富的油页岩资源,品位也较高。发展页岩油可以减少美国大量石油的进口,而且会有很好的经济效益及增加就业机会。但是美国对环境保护很严格,而且绿河地区可以提供的水源不足以支持当地大量页岩油的生产需求。虽然美国能源部等机构积极宣传和支持油页岩的开发,但只有解决了环保和水源问题后,美国才能建立大规模页岩油产业(Killen,2009)。
关于澳大利亚,有着丰富的探明油页岩储量,澳大利亚的公司(SPP/CPM)也曾经放大了加拿大Taciuk工艺数十倍进行了澳大利亚油页岩干馏示范性的工业炉试验(6000t/d),但由于诸多工艺和工程问题,试车数年未获成功,导致经营失败,后来装置和资源售予美国一能源公司(李术元等,2009)。澳大利亚停止ATP生产的原因不是技术问题,而是当时国际原油价格低、民间环保组织阻扰、停停修修成本高、公司债务缠身等综合原因,不得已把这套ATP装置卖给债主了。
但是澳大利亚仍然有开发油页岩资源的愿望。最近,澳大利亚地方政府发出了20a的油页岩禁开令,明确提出在油页岩技术没有达到昆士兰州的环保要求之前,不准开发利用油页岩资源。
关于巴西,由于近年来在海上发现了大量天然石油储量,因此对于页岩油的发展没有增产的计划(Epifanio,2009)。
关于俄罗斯,由于本国有着丰富的油气资源,因此对于发展页岩油未提上日程。
关于加拿大,多年来由于成功的开发利用了储量丰富的油砂,从油砂中抽提稠油,加氢生产成合格的汽、柴油。2008年产量达6500×104t稠油,获得了巨大的经济和社会效益(Ekelund,2009)。油砂炼油作为一种非常规油源,对于油页岩的开发有很大的启示。加拿大也在不断勘探油页岩资源,作为一种后备能源(Butler,2009)。
关于约旦,约旦虽地处中东,却没有天然石油,但有着丰富的油页岩资源,而且品位较高,可露天开采。约旦曾送油页岩至中国、德国等用各国技术进行约旦油页岩的干馏炼油试验,取得较好结果。约旦政府拟建立页岩油产业,但缺乏资金,希望能与有关国家或公司合作。但是,由于约旦地处政治不稳定的地区,至今没有投资方的合作(Madanat等,2009)。
关于德国,建立起以油页岩为原料的小规模水泥厂。对油页岩进行流化燃烧发电和页岩灰制水泥的综合利用,已有四十余年的成功经验。由于当地的油页岩资源的限制,扩大生产的余地不大。