『壹』 如何用组态王实现对污水处理系统的监控
通俗的讲就是将PLC中的数据显示在电脑上,并做一系列的处理(如报警,记录)等。我做过这方面的系统。
『贰』 污水处理系统的全过程
现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。
一级处理
主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。
二级处理
主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准。
三级处理
进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法等。 整个过程为通过粗格栅的原污水经过污水提升泵提升后,经过格栅或者筛率器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。
『叁』 请问现在污水处理软件主流的有哪些,我们想做污水厂全厂模拟,不要那种小软件,GPS-X 和Biowin 有啥区别啊
为什么选择GPS-X模拟抄软件?
GPS-X是第一个商业化的污水处理厂动态模拟软件,仍然是今天首选的解决方案。
它的最主要的一个优势是可以实现在线模拟。
GPS-X的优点
·污水进水特征顾问:在进行模拟以前验证你的进水数据的精度和一致性。
·快速显示区域:你需要的工程参数可以自动的总结并显示,实时的更新,只要简单的一个点击就可输出到Excel文件。
·动态模拟:GPS-X提供污水处理模拟领域最快速的动态模拟,能快速的完成其它模拟软件需要长时间才能完成的模拟工作。
·用户界面:直观,友好。
·综合的污水处理厂单元工艺模型库(下图):提供给用户设计和优化各种污水处理工艺的建模工具,包括MBR, IFAS, UASB,反消化滤池,污泥预处理,厌氧消化,以及先进的侧流工艺的全污水处理厂的工艺模型以及先进的侧流工艺的全污水处理厂的工艺模型。
『肆』 关于组态王的污水处理系统
没有软件是画不出来的。
『伍』 CAD里面污水处理系统中这个表示什么意思
应该是法兰连接的截止阀
『陆』 用三维力控组态软件设计污水处理界面
针对水务行业市场需求,图扑软件 推出智慧水务物联网解决方案。
通过水质、水压、温度等数据的实时回传,实现精细化、可视化管理,提升管理能力。
通过物联网传感设备,对于水泵、水闸、取水栓、污水处理器等水务设备状态实现统一远程管理。可实现无人现场值守,管理员和技术员可随时随地远程监控水务系统的实时状态;
设备异常提前知晓、故障主动上报,及时发现和尽快维护,避免该设备故障导致上下游设备和工况环境的连锁故障,最大化降低设备非计划性停机频率和故障损失。
图扑软件(Hightopo)是由厦门图扑软件科技有限公司独立自主研发,基于HTML5标准技术的Web前端2D和3D图形界面开发框架。非常适用于实时监控系统的界面呈现,广泛应用于电信网络拓扑和设备管理,以及电力、燃气等工业自动化 (HMI/SCADA) 领域。Hightopo提供了一套独特的 WebGL 层抽象,将 Model–View–Presenter (MVP) 的设计模型延伸应用到了 3D 图形领域。使用 Hightopo 您可更关注于业务逻辑功能,不必将精力投入复杂 3D 渲染和数学等非业务核心的技术细节。
多年来数百个工业互联网可视化项目实施经验形成了一整套实践证明的高效开发流程和生态体系,可快速实现现代化的、高性能的、跨平台桌面Mouse/移动Touch/虚拟现实VR图形展示效果及交互体验。
『柒』 污水处理常用什么设计软件
我建议用鸿业水处理设计软件,此是鸿业公司研制的CAD系列软件之一,由给排水专业人员和计算机专业人员共同开发而成。可完成工艺流程图、水处理构筑物的设计,材料自动汇总而且可实现图面材料与材料表的自动对应标注。管道、管件、阀类、设备等真实表示,针对不同构筑物特点,采用参数化绘制和工具集式绘制,达到设计的快速性和灵活性相结合。适用于规划院、工业院、市政院、环保公司等。鸿业水处理设计软件的CAD操作平台为美国AutoDesk公司的AutoCAD R2006~2009。
软件特点
1.参数化构筑物绘制配水井、沉淀池、污泥浓缩池、氧化沟等平面、剖面、详图
2.参数化和工具集相结合绘制AAO/SBR池 、CASS池、
3.丰富构筑物设计工具、水处理设备、标注工具绘制污水泵房、脱水机房等
4.双线管道表示,真实尺寸表示三通、弯头、异径管
5.丰富的流程图建构筑物图库、设备库、阀类库
6.标准化的构筑物计算书
7.自动绘制材料表、设备表、图例表,自动标注编号
8.真实表示设备,动态拖动设备尺寸
流程图设计
1.进行工艺流程图和水力剖面图的设计。丰富的构筑物和设备图块,可以满足设计人员快速完成图形绘制。
2.流程图管线种类齐全,而且可以根据自己的需要任意添加。
3.快速实现管道遮挡断线,快速标注构筑物特征点标高、管道直径、管道代号。
4.自动绘制流程图图例表。
『捌』 谁有关于污水处理或者组态软件的外文翻译(带原文),急用!
关键词:
人工湿地;硝化作用;反硝化作用;生活污水;脱氮;硝化细菌;反硝化细菌
2. 材料和方法
2.1 系统描述
我们研究队伍设计的人工湿地结构位于中国宁波某村。它包括三个部分,容积按照四十人排量设计。气候特点为年降水量1300-1400mm和累计年平均气温16.2℃。极高极低值分别为38.8℃和-4.2℃。较冷的时间段以十二月到二月为代表并且在这个时间段里出水比较接近于8℃(最低5℃)。第一部分和第三部分8m长6m宽1.0m深。反应床有三层构成,最底一层由厚20 cm的洗净的砾石(2–6 cm)构成,中间层由65 cm厚的细砂(0.5–2.0 cm)粒构成,最上层由15 cm厚的土壤(0.1–0.2 cm)构成。底面坡度大约1%。第三部分有三个环形的单元构成,直径分别为7m、5m和3m,由下向上每个0.6m深,表面积近似估算为38.5m2。由顶部向低处单元的溢流会立即产生的瀑布似的紊流可以增大溶解氧含量和维持含氧条件。
图1 塔式复合人工湿地水流示意图:1.进水区 2.塔式区 3.出水区 4.湿地植物 5.顶部环形区域 6.中部环形区域 7.底部环形区域 8.瀑布似溢流
湿地结构的底部用高密度的聚乙烯作为衬里,环形区域则是要铺衬5cm厚的砌砖墙,为了防止污水的渗漏及污水与地下水混合。由苗圃购得的池柏(Taxodium ascendens)的幼苗以间距0.8m间隔围绕整个湿地结构底部环形种植,湿地结构地层中部种植密度为56株/m2的蔺草(Schoenoplectus trigueter),于头年十一月种植第二年五月份收割。在蔺草收获后的六至十月份,以9株/m2的种植密度种植野茭白(Zizania aquatica)。在第二部分顶部的环形部分以近似6株/m2的种植密度种植睡莲(Nymphaea tetragona),在中间环形区域以的36株/m2种植密度种植香蒲(Typha angustifolia)。
表1 THCW进水和出水的物理化学特性
80%的原污水不断的流入湿地结构的第一部分。20%的污水由泵直接输入第二部分的环形结构最高层,溢流进入环形结构中间一层,之后流入最后一层。此时第二部分处理污水与第一部分处理后的污水一起流入湿地结构的第三部分并最终由其排出。水深由一个储水塔控制。在第一时段,前四个月(06年5月到8月)人工湿地结构以的16 cm/d水力负荷运行(水力停留时间5.4 d)。第二时段,之后八个月(06年9月到07年4月)人工湿地结构以的比较高的32 cm/d水力负荷运行(水力停留时间2.7 d)。这些生活污水在一个腐化池里先进行预处理(表一)。
2.2 分析方法
2.2.1 化学分析
需每天采集第一部分的进水,第二部分的出水(仅在后八个月),第三部分的出水,每周混合水样的测试数据和结果搜集分析,需检测TSS,COD,NH3-N,TN,TP。每周检测现场每部分和每个环形处理单元的水温,pH,DO,TSS,COD,TN,TP和NH3-N要坚决的按照标准方法来检测控制(APHA, 1998)。
野茭白(Z. aquatica))和蔺草(S. trigueter)在零六年十月和零七年五月分别被收割(砍掉植株所有水面上可见部分)。收割的植物在被蒸馏水洗过后在太阳下经过24小时的日照后投入105 ◦C下灼烧24小时。植物在干燥后的称重作为基本分析。被干燥和研磨过的植物碎末作为总氮(TKN)测量的准备,分析方法按照标准方法(APHA, 1998)。
2.2.2硝化及反硝化的测量
在湿地结构第三部分的前端沉淀物上层的五厘米处存在潜在的硝化反应。使用的试验介质中每公升包含:0.14g K2HPO4; 0.027 g KH2PO4; 0.59 g (NH4)2SO4;1.20 g NaHCO3;0.3 g CaCl2·2H2O;0.2 g MgSO4; 0.00625 g FeSO4;0.00625 g EDTA;1.06 gNaClO3;pH是7.5。氯化钠被用于抑制硝酸盐及亚硝酸盐的氧化。50mL沉淀污泥需要加入100mL试验介质25 ◦C在震荡器150 rpm转速下培养。这种经处理过的样本在被培养2,6,20和24小时后被收集。亚硝酸盐的浓度用光度计测量。由亚硝酸盐产量和培养时间数计算出的线性回归,评估出的角系数可以计算出潜在硝化反应的量。结果以在样品中的体积损耗规范化的计算出来,最后以干重(DW)及明确的每小时每克干物质产生nmol亚硝酸盐表示。
潜在亚硝化反应速率(PDR)被用乙炔抑制设备进行测量。 沉淀物样本在第三部分的后部的四个地点采集(两个分散采集,两个呈柱状采集直径3.5 cm),并且要立即用铝箔密封以防游离氧进入沉淀物样本。这四个样本分别投入四个容积为1500mL的锥形瓶中,加入添加营养元素的营养液进行培养(15 mg/L NO3-N,72 mg/L Ca,10 mg/L Mg,27 mg/L Na,39mg/L K和2.5 mg/L PO4-P)。烧瓶顶部用氮气吹洗半个小时。烧瓶被置于旋转振荡器中60 rpm转速震荡。样本在黑暗处20 ◦C培养八小时。每个小时使用注射器进行气体取样。顶部样本用气象色谱仪分析N2O的浓度(日本金岛公司气象色谱仪GC-14B),气象色谱仪带有一个电子捕获探测器操作温度340 ◦C。潜在亚硝化的反应速率以mg N2O-N/m2沉淀物每小时表示。
2.2.3 微生物数量的分析
人工湿地沉淀物中的硝化和反硝化微生物使用以下培养基用最大可能数量法计算(Carter and Gregorich, 2006)。计算硝化细菌的培养基配方如下:13.5 g Na2HPO4;0.7 g KH2PO4; 0.1g MgSO4·7H2O; 0.5 g NaHCO3; 2.5 g (NH4)2SO4;14.4mg FeCl3·6H2O; 18.4mg CaCl2·7H2O; 1 L 蒸馏水;pH=8.0。计算反硝化细菌的培养基配方如下:1.0 g KNO3; 0.1gNa2HPO4;;2.0 g Na2S2O7; 0.1g NaHCO3;;0.1 g MgCl2; 1 L 蒸馏水;pH 7.0。用一根内径为4.7cm的玻璃管采集测量硝化和反硝化细菌的数量应远离泥水分界面(0–2 cm)及过深的深度(5–8 cm)。附着在岩石及水生植物体上的细菌剥离下来之后,然后用混合器将其溶于冷水驱散混合。经十个无菌的蒸馏水样稀释的沉淀物样本被转移到96格的包含各自培养基的微量滴定板上在28 ◦C下硝化细菌培养21 d反硝化细菌培养5 d。为了确定沉淀物的干重,10 g的沉淀物在105 ◦C下被隔夜烘干直至产生衡重样本。在人工湿地结构运行期间,硝化和反硝化细菌的数量要每两月进行一次计算。
2.2.4 统计分析
所有带有方差测验的统计分析都使用统计分析软件SPSS进行分析(Statistic Package for Social Science)。当p < 0.05时误差被认为是有效的。有效的误差用邓肯测试法进行评估。皮尔森相关分析适用于评估潜在反硝化效率和水力负荷之间有效的的线性相关,以及反硝化和水力负荷之间的关系。
3.结果
第二部分第三部分的出水中物理化学指标的变化在表1中给出,水的pH没有太大的变化。由于人工湿地结构第二部分的瀑布式溢流的被动充氧的原因,出水的溶解氧含量(DO)相对较大。在第二部分入水的溶解氧平均值为:1.28±0.52 mg/L,出水中的平均值为:2.98±0.38mg/L。已观测到的对总悬浮物TSS的脱除率为84.60±9.6%。氮的脱除率是较高值的,脱除NH3-N和TN平均值为:83.11±10.2%,82.85±8.5%。在第二部分NH3-N和TN的脱除率分别为:72%和29%。在第二部分的硝化作用将很大部分的氮转化成了NO3-N,54%的由第三部分的反硝化作用和其他作用转移脱除。磷的脱除率观测到在64.15±7.9%。在第二时间段对于第一时间段各类超标污染物的脱除效率更高,因为第一时间短的水力负荷较低。但在两种不同的水力负荷下各类污染物的脱除效率是相似的(p < 0.02)。
图2显示了的研究调查期间12个月的入水和出水中CODcr,NH3-N,TN和TP脱除效率。在研究期间的时间段一和时间段二中,调研中的十二个月NH3-N和TN被有效脱除。脱氮效率在开始10周和最后10周是最高,由于温度较高的原因。人工湿地结构在冬季也显出了对于氮、磷和有机物的较高的脱除效率。另外由于硝化和反硝化作用而导致的氮素流失的量在夏季大于(p < 0.003)在冬季。当湿地中的pH值超过极大值7.7,氨的挥发可以被忽略,这个pH值下没有足够量的氨气的生成。在两种水力负荷下(16 cm/d和 32 cm/d)的脱除效率在统计上没有显著差异。
图2.实验期间THCW进水出水中的COD,NH3-N,TN和TP含量与脱除效率
图2中同样显示在湿地运行期间磷的脱除效率在最高的水力负荷下或是在冬季没有十分显著的波动。在冬季和夏季的运行中,出水的总磷TP浓度没有显著的差异。图3. 实验期间THCW第三部分沉淀物中潜在硝化及反硝化量
如图3所示,潜在硝化速率和潜在反硝化效率在最初的四个月里的随着时间增长。在水力负荷上升(16 cm/d到32 cm/d)之后的一个月,在2006年的十月到十二月之间潜在硝化速率下降,潜在反硝化速率在2006年的十月到2007年的二月之间下降。实验结束时潜在硝化反应速率没有明显上升,反硝化反应速率上升了一点。潜在硝化反应和潜在反硝化反应用硝化细菌和反硝化细菌的最有可能数目来分别计算,显出两条正相关关系很好的曲线(p < 0.05)。
表2 在THCW中硝化及反硝化细菌数量
由表2看出,在湿地结构沉淀物中的硝化细菌和反硝化细菌最可能数目大约在每克104–105数量级之间。对比硝化细菌及反硝化细菌的估算定量,湿地结构中相应的潜在硝化反应和潜在反硝化反应(图3)显示出更多数量的硝化细菌和反硝化细菌,更高的潜在硝化活动。
为了测定植物收获后在脱氮方面的效果,在06年十月和07年五月收获的植物烘干后测量其凯氏氮(TKN)的含量,显示出在蔺草(S. trigueter)中积累的氮的含量远大于野茭白(Z. aquatica)中的积累,在蔺草(S. trigueter)和野茭白(Z. aquatica)的烘干样中平均固氮的量是6.8±0.3/kg和4.7±0.2/kg,总氮的平均吸收率分别是17.18 kg/(ha·d)和12.63 kg/(ha·d)。
4.讨论
硝化反应是不能从水中脱氮。但是伴随着反硝化反应却是许多人工湿地结构的主要脱除机理。硝化反应发生在氧气处于一个可以使严格好氧硝化细菌生长的足够高的浓度氧气含量下。硝化反应存在于所有的人工湿地结构中,但这一反应的大小又由溶解氧的量决定。因为NH3-N在许多废水中是占优势的种类,硝化反应通常在各类湿地系统中是一个限制环节。反硝化作用被认为是大多数人工湿地结构中主要的脱氮机理。无论如何,通常在废水中硝酸盐的浓度是非常低的,因此反硝化反应必须伴随硝化反应而进行。硝化反应和反硝化反应对于氧的不同需求成为了许多要求到高脱氮效率的人工湿地的障碍。
人们普遍认为当溶解氧浓度(DO)达到1.5mg/L以上时硝化反应可以发生。研究中湿地结构的出水溶解氧浓度(DO)平均值为2.22±0.13 mg/L,这个可能是由于人工湿地结构中部的塔式结构的瀑布式溢流造成的,这个溶解氧浓度是对硝化作用有利的;这个推论与沉淀物中的更多的硝化细菌的数目相一致(表2)。高的溶解氧浓度与充足由入水的支路直接注入人工湿地第二部分的有机物,减少了异养生物和硝化细菌之间对营养的争夺。因此更多的缓慢生长的硝化细菌转移到了沉淀物的表面和植物根部。
5.结论
该研究显示,塔式复合人工湿地结构可以有效处理许多污染物,第一部分的处理目标为总悬浮物TSS和生物需氧量,第二个塔式部分的处理目标是硝化,第三部分的目标是反硝化。使用塔式结构的瀑布式水流而带来被动充氧以及由旁路直接注入第二部分的原污水,在促进硝化和反硝化方面的显示出了很大的促进。对于总悬浮物TSS,化学需氧量COD,氨氮NH3-N,总氮TN,总磷TP的脱除效率分别为:88.57±16.3%,84.60±9.6%,83.11±10.2%,82.85±8.5%,64.15±7.9%。显然,我们设计的系统在高的水力负荷下对于初级生活污水有一个高的脱氮能力。湿地结构污泥里的硝化细菌的数量较高,但反硝化细菌数量对于其他报道来说相对偏低。潜在硝化反应和潜在反硝化反应的数目是与硝化细菌和反硝化细菌数目相一致的。在湿地结构中硝化反应和反硝化反应是脱氮运行的主要机理。湿地种植物的含氮量显示出本土植物蔺草是最适合湿地结构的植物,因为它有冬季生长和工业可以利用的特点。对于环境教育项目,塔式复合人工湿地结构也提供了一个额外的好处,即美学的观赏价值。对于湿地结构的超过两年的现场检测研究,最佳化的入水分布和结构设计将会在将来的研究中逐一进行。
提高塔式复合人工湿地处理农村生活污水的脱氮效率[1]
摘要:
努力保护水源,尤其是在乡镇地区的饮用水源,是中国污水处理当前面临的主要问题。氮元素在水体富营养化和对水生物的潜在毒害方面的重要作用,目前废水脱氮已成为首要关注的焦点。人工湿地作为一种小型的,处理费用较低的方法被用于处理乡镇生活污水。比起活性炭在脱氮方面显示出的广阔前景,人工湿地系统由于溶解氧的缺乏而在脱氮方面存在一定的制约。为了提高脱氮效率,一种新型三阶段塔式混合湿地结构----人工湿地(thcw)应运而生。它的第一部分和第三部分是水平流矩形湿地结构,第二部分分三层,呈圆形,呈紊流状态。塔式结构中水流由顶层进入第二层及底层,形成瀑布溢流,因此水中溶解氧浓度增加,从而提高了硝化反应效率,反硝化效率也由于有另外的有机物的加入而得到了改善,增加反硝化速率的另一个原因是直接通过旁路进入第二部分的废水中带入的足量有机物。常绿植物池柏(Taxodium ascendens),经济作物蔺草(Schoenoplectus trigueter),野茭白(Zizania aquatica),有装饰性的多花植物睡莲(Nymphaea tetragona),香蒲(Typha angustifolia)被种植在湿地中。该系统对总悬浮物、化学需氧量、氨氮、总氮和总磷的去除率分别为89%、85%、83%、 83% 和64%。高水力负荷和低水力负荷(16 cm/d 和 32 cm/d)对于塔式复合人工湿地结构的性能没有显著的影响。通过硝化活性和硝化速率的测定,发现硝化和反硝化是湿地脱氮的主要机理。塔式复合人工湿地结构同样具有观赏的价值。
关键词:
人工湿地;硝化作用;反硝化作用;生活污水;脱氮;硝化细菌;反硝化细菌
研究目的:
1.评价新型人工湿地的性能,塔式复合人工湿地(THCW),尤其是在高水力负荷的情况下脱氮效率。这种人工湿地结构设计通过瀑布形式的水流进行被动充氧从而提高废水中溶解氧浓度进而提高硝化速率,依靠直接在湿地中间部分加入原废水提高反硝化速率,从而促进硝化反硝化过程。
2.对于在人工湿地结构中常绿多年生木本植物和草本植物共同脱除氮的效率的评价,尤其是在冬季的阶段,且在湿地里植物的生长量对于氮的脱除是有帮助作用的。
3.研究表面水平流、自由水流相结合的系统是否在脱除和转化废水中污染物方面表现出更好的性能,尤其是脱氮方面。
2. 材料和方法
2.1 系统描述
我们研究队伍设计的人工湿地结构位于中国宁波某村。它包括三个部分,容积按照四十人排量设计。气候特点为年降水量1300-1400mm和累计年平均气温16.2℃。极高极低值分别为38.8℃和-4.2℃。较冷的时间段以十二月到二月为代表并且在这个时间段里出水比较接近于8℃(最低5℃)。第一部分和第三部分8m长6m宽1.0m深。反应床有三层构成,最底一层由厚20 cm的洗净的砾石(2–6 cm)构成,中间层由65 cm厚的细砂(0.5–2.0 cm)粒构成,最上层由15 cm厚的土壤(0.1–0.2 cm)构成。底面坡度大约1%。第三部分有三个环形的单元构成,直径分别为7m、5m和3m,由下向上每个0.6m深,表面积近似估算为38.5m2。由顶部向低处单元的溢流会立即产生的瀑布似的紊流可以增大溶解氧含量和维持含氧条件。
图1 塔式复合人工湿地水流示意图:1.进水区 2.塔式区 3.出水区 4.湿地植物 5.顶部环形区域 6.中部环形区域 7.底部环形区域 8.瀑布似溢流
湿地结构的底部用高密度的聚乙烯作为衬里,环形区域则是要铺衬5cm厚的砌砖墙,为了防止污水的渗漏及污水与地下水混合。由苗圃购得的池柏(Taxodium ascendens)的幼苗以间距0.8m间隔围绕整个湿地结构底部环形种植,湿地结构地层中部种植密度为56株/m2的蔺草(Schoenoplectus trigueter),于头年十一月种植第二年五月份收割。在蔺草收获后的六至十月份,以9株/m2的种植密度种植野茭白(Zizania aquatica)。在第二部分顶部的环形部分以近似6株/m2的种植密度种植睡莲(Nymphaea tetragona),在中间环形区域以的36株/m2种植密度种植香蒲(Typha angustifolia)。
表1 THCW进水和出水的物理化学特性
80%的原污水不断的流入湿地结构的第一部分。20%的污水由泵直接输入第二部分的环形结构最高层,溢流进入环形结构中间一层,之后流入最后一层。此时第二部分处理污水与第一部分处理后的污水一起流入湿地结构的第三部分并最终由其排出。水深由一个储水塔控制。在第一时段,前四个月(06年5月到8月)人工湿地结构以的16 cm/d水力负荷运行(水力停留时间5.4 d)。第二时段,之后八个月(06年9月到07年4月)人工湿地结构以的比较高的32 cm/d水力负荷运行(水力停留时间2.7 d)。这些生活污水在一个腐化池里先进行预处理(表一)。
2.2 分析方法
2.2.1 化学分析
需每天采集第一部分的进水,第二部分的出水(仅在后八个月),第三部分的出水,每周混合水样的测试数据和结果搜集分析,需检测TSS,COD,NH3-N,TN,TP。每周检测现场每部分和每个环形处理单元的水温,pH,DO,TSS,COD,TN,TP和NH3-N要坚决的按照标准方法来检测控制(APHA, 1998)。
野茭白(Z. aquatica))和蔺草(S. trigueter)在零六年十月和零七年五月分别被收割(砍掉植株所有水面上可见部分)。收割的植物在被蒸馏水洗过后在太阳下经过24小时的日照后投入105 ◦C下灼烧24小时。植物在干燥后的称重作为基本分析。被干燥和研磨过的植物碎末作为总氮(TKN)测量的准备,分析方法按照标准方法(APHA, 1998)。
2.2.2硝化及反硝化的测量
在湿地结构第三部分的前端沉淀物上层的五厘米处存在潜在的硝化反应。使用的试验介质中每公升包含:0.14g K2HPO4; 0.027 g KH2PO4; 0.59 g (NH4)2SO4;1.20 g NaHCO3;0.3 g CaCl2·2H2O;0.2 g MgSO4; 0.00625 g FeSO4;0.00625 g EDTA;1.06 gNaClO3;pH是7.5。氯化钠被用于抑制硝酸盐及亚硝酸盐的氧化。50mL沉淀污泥需要加入100mL试验介质25 ◦C在震荡器150 rpm转速下培养。这种经处理过的样本在被培养2,6,20和24小时后被收集。亚硝酸盐的浓度用光度计测量。由亚硝酸盐产量和培养时间数计算出的线性回归,评估出的角系数可以计算出潜在硝化反应的量。结果以在样品中的体积损耗规范化的计算出来,最后以干重(DW)及明确的每小时每克干物质产生nmol亚硝酸盐表示。
潜在亚硝化反应速率(PDR)被用乙炔抑制设备进行测量。 沉淀物样本在第三部分的后部的四个地点采集(两个分散采集,两个呈柱状采集直径3.5 cm),并且要立即用铝箔密封以防游离氧进入沉淀物样本。这四个样本分别投入四个容积为1500mL的锥形瓶中,加入添加营养元素的营养液进行培养(15 mg/L NO3-N,72 mg/L Ca,10 mg/L Mg,27 mg/L Na,39mg/L K和2.5 mg/L PO4-P)。烧瓶顶部用氮气吹洗半个小时。烧瓶被置于旋转振荡器中60 rpm转速震荡。样本在黑暗处20 ◦C培养八小时。每个小时使用注射器进行气体取样。顶部样本用气象色谱仪分析N2O的浓度(日本金岛公司气象色谱仪GC-14B),气象色谱仪带有一个电子捕获探测器操作温度340 ◦C。潜在亚硝化的反应速率以mg N2O-N/m2沉淀物每小时表示。
2.2.3 微生物数量的分析
人工湿地沉淀物中的硝化和反硝化微生物使用以下培养基用最大可能数量法计算(Carter and Gregorich, 2006)。计算硝化细菌的培养基配方如下:13.5 g Na2HPO4;0.7 g KH2PO4; 0.1g MgSO4·7H2O; 0.5 g NaHCO3; 2.5 g (NH4)2SO4;14.4mg FeCl3·6H2O; 18.4mg CaCl2·7H2O; 1 L 蒸馏水;pH=8.0。计算反硝化细菌的培养基配方如下:1.0 g KNO3; 0.1gNa2HPO4;;2.0 g Na2S2O7; 0.1g NaHCO3;;0.1 g MgCl2; 1 L 蒸馏水;pH 7.0。
用一根内径为4.7cm的玻璃管采集测量硝化和反硝化细菌的数量应远离泥水分界面(0–2 cm)及过深的深度(5–8 cm)。附着在岩石及水生植物体上的细菌剥离下来之后,然后用混合器将其溶于冷水驱散混合。经十个无菌的蒸馏水样稀释的沉淀物样本被转移到96格的包含各自培养基的微量滴定板上在28 ◦C下硝化细菌培养21 d反硝化细菌培养5 d。为了确定沉淀物的干重,10 g的沉淀物在105 ◦C下被隔夜烘干直至产生衡重样本。在人工湿地结构运行期间,硝化和反硝化细菌的数量要每两月进行一次计算。
2.2.4 统计分析
所有带有方差测验的统计分析都使用统计分析软件SPSS进行分析(Statistic Package for Social Science)。当p < 0.05时误差被认为是有效的。有效的误差用邓肯测试法进行评估。皮尔森相关分析适用于评估潜在反硝化效率和水力负荷之间有效的的线性相关,以及反硝化和水力负荷之间的关系。
3.结果
第二部分第三部分的出水中物理化学指标的变化在表1中给出,水的pH没有太大的变化。由于人工湿地结构第二部分的瀑布式溢流的被动充氧的原因,出水的溶解氧含量(DO)相对较大。在第二部分入水的溶解氧平均值为:1.28±0.52 mg/L,出水中的平均值为:2.98±0.38mg/L。已观测到的对总悬浮物TSS的脱除率为84.60±9.6%。氮的脱除率是较高值的,脱除NH3-N和TN平均值为:83.11±10.2%,82.85±8.5%。在第二部分NH3-N和TN的脱除率分别为:72%和29%。在第二部分的硝化作用将很大部分的氮转化成了NO3-N,54%的由第三部分的反硝化作用和其他作用转移脱除。磷的脱除率观测到在64.15±7.9%。在第二时间段对于第一时间段各类超标污染物的脱除效率更高,因为第一时间短的水力负荷较低。但在两种不同的水力负荷下各类污染物的脱除效率是相似的(p < 0.02)。
图2显示了的研究调查期间12个月的入水和出水中CODcr,NH3-N,TN和TP脱除效率。在研究期间的时间段一和时间段二中,调研中的十二个月NH3-N和TN被有效脱除。脱氮效率在开始10周和最后10周是最高,由于温度较高的原因。人工湿地结构在冬季也显出了对于氮、磷和有机物的较高的脱除效率。另外由于硝化和反硝化作用而导致的氮素流失的量在夏季大于(p < 0.003)在冬季。当湿地中的pH值超过极大值7.7,氨的挥发可以被忽略,这个pH值下没有足够量的氨气的生成。在两种水力负荷下(16 cm/d和 32 cm/d)的脱除效率在统计上没有显著差异。
图2.实验期间THCW进水出水中的COD,NH3-N,TN和TP含量与脱除效率
图2中同样显示在湿地运行期间磷的脱除效率在最高的水力负荷下或是在冬季没有十分显著的波动。在冬季和夏季的运行中,出水的总磷TP浓度没有显著的差异。
5.结论
该研究显示,塔式复合人工湿地结构可以有效处理许多污染物,第一部分的处理目标为总悬浮物TSS和生物需氧量,第二个塔式部分的处理目标是硝化,第三部分的目标是反硝化。使用塔式结构的瀑布式水流而带来被动充氧以及由旁路直接注入第二部分的原污水,在促进硝化和反硝化方面的显示出了很大的促进。对于总悬浮物TSS,化学需氧量COD,氨氮NH3-N,总氮TN,总磷TP的脱除效率分别为:88.57±16.3%,84.60±9.6%,83.11±10.2%,82.85±8.5%,64.15±7.9%。显然,我们设计的系统在高的水力负荷下对于初级生活污水有一个高的脱氮能力。湿地结构污泥里的硝化细菌的数量较高,但反硝化细菌数量对于其他报道来说相对偏低。潜在硝化反应和潜在反硝化反应的数目是与硝化细菌和反硝化细菌数目相一致的。在湿地结构中硝化反应和反硝化反应是脱氮运行的主要机理。湿地种植物的含氮量显示出本土植物蔺草是最适合湿地结构的植物,因为它有冬季生长和工业可以利用的特点。对于环境教育项目,塔式复合人工湿地结构也提供了一个额外的好处,即美学的观赏价值。对于湿地结构的超过两年的现场检测研究,最佳化的入水分布和结构设计将会在将来的研究中逐一进行。
太多了,发不了
『玖』 污水处理系统是什么
污水处理系统,包括集水池、粗格栅、泵房、细格栅、曝气沉砂池、氧化沟、配水百井回、二沉池、消毒池,所度述答集水池、粗格栅、泵房、细格栅、曝气沉砂池、氧化沟、配水井、二沉池、消毒池之间通过管道顺次相连,问所述氧化沟还设有污泥处理分支,所述污泥处理分支包括污泥回流管道、答污泥浓缩池、污泥脱水车间,所述氧化沟通过污泥回流管道与污泥浓缩池的输入端连接,所述污泥浓缩池的输出端通过管道与污泥脱水车版间连接。本系统可以有效地对污水权进行处理,使污水排放符合国家的排放标准,不会对土地、河流等产生影响。
『拾』 污水处理系统是什么
1. 格栅沉砂池:抄隔除来水中的大块杂物及漂浮物,同时使来水中较大颗粒物在此沉降下来。可根据水质情况选用简易格栅或机械格栅。栅渣及沉砂定期清理,经消毒后交市政统一处理。
2. 调节池:调节水量,均衡水质。提升系统的抗冲击负荷能力。
3. 一体化污水处理设备:主体工艺为A/O生化工艺,内置沉淀及污泥回流系统。外壳采用机械缠绕玻璃钢罐体,为地埋式设计。设备的核心部分为生物接触氧化工段,该工段采用固定化活细胞工艺,加入外置高效曝气系统,通过好氧细胞的生命代谢作用,使水中的有机物得以消解,从而达到净化水质的目的。该设备特别适合生活类污水的净化过程。
4. 砂滤生态池:可作一体化污水处理设备的有效补充,对一体化污水处理设备出水进行深度处理。该处理系统是人工湿地生态系统的单级表现形式。通过基质的吸附、微生物的消解以及植物的吸收等综合作用,使出水水质稳定达到设计要求。
5. 设备间:内设两台鼓风曝气机和PLC自控设备。鼓风曝气机为一用一备,切换运行。污水处理站内所有设备均通过PLC控制设备进行自动控制切换,并进行过流、缺相、过压、欠压等故障的自动保护。