导航:首页 > 废水知识 > 厦门城市污泥深度脱水处理和资源化处置利用技术

厦门城市污泥深度脱水处理和资源化处置利用技术

发布时间:2022-01-13 08:18:02

① 污泥的哪些特性,导致污泥处理及其后续处置与资源化利用较困难

城市污泥不同处理处置方式的成本和效益分析
——以北京市为例
张义安,高 定,陈同斌*,郑国砥,李艳霞
中国科学院地理科学与资源研究所环境修复中心,北京 100101

摘要:以北京市为例,估算不同电价及运输距离下填埋、焚烧及堆肥等方式的城市污泥处理处置成本,在此基础上讨论各种处理处置方案的前景,展望北京市污泥处理处置出路。污泥填埋在一定时期内还将是主要处理处置方式,但所占比例将逐渐下降;堆肥是经济上较为可行的处理处置方式,适合大力推广;随着经济实力与技术水平提高,焚烧法可以适用于个别特殊地点。同时,分析了政府补贴对污泥处理处置效益的影响。
关键词:城市污泥;处理处置成本;填埋;焚烧;堆肥
中图分类号:X703 文献标识码:A 文章编号:1672-2175(2006)02-0234-05
城市污泥是污水处理的副产物,以含水率97%计算,体积占处理污水的0.3%~0.5%[1],深度处理产泥量还将增加50%~100%。目前我国每年排放的干污泥大约1.3×106 t,并以大约10%的速率在增加。
北京市全区域规划污水排放量为330×104 m3/d,其中2003年市区污水排放量约为230×104 m3/d[2]。规划建设14座污水处理厂,2015年污水处理能力预计将超过320×104 m3/d,处理率将超过90%。到2008年,北京市将新增9座中水处理厂,深度处理能力将由目前的1×104 m3/d提高到47.6×104 m3/d,届时每年产生含水率 80% 城市污泥超过80×104 m3。北京市最大的污水处理厂——高碑店污水处理厂污泥外运运输费用占到全厂运行费用的1/3[3]。
城市污泥的大量产生,已引起日益严峻的二次污染,并成为城市污水处理行业瓶颈。污泥处理处置率低,其中非常重要的一个原因就是投资和运行成本方面的限制。但到目前为止,还未见关于不同污泥处理处置方案的经济分析,导致不同单位和设计人员在方案的选择上存在较大的盲目性。本文以北京为例,对几种典型的城市污泥处理处置方式进行经济分析,以便为城市污泥处理处置技术的选择提供参考依据。
1 城市污泥处理处置成本估算
1.1 估算方法
以1 t干污泥(DS)为计算基准,综合成本=运行成本+设备折价成本。运行成本以目前较为成熟的处理处置方式进行估算。
北京市污泥机械脱水效果通常在80%左右。各方案中的成本估算涉及或包括焚烧、运输、填埋等3个流程;设备折价成本取15 a使用年限,年折旧7%,社会利率10%,即年折价17%,设备年工作时数以8000 h计。因此,设备折价=设备价格×指数×0.17/8000。
1.2 估算细则
(1)单位成本
填埋:生活垃圾卫生填埋的成本约60~70 ¥/t,污泥填埋时按照压实生活垃圾∶土∶污泥容重比为0.8∶1∶1,污泥填埋成本为48~56 ¥/t,取52¥/t。
干化:干燥能耗与脱水量成正比。燃气加热效率85%、锅炉热效率70%、过程热损失5%时,水的蒸发能耗为150 (kW?h)/t,每小时去除1 t水的设备投资为180×104¥[4]。
焚烧:目前多采用流化床技术,每h焚烧1 t干化污泥的设备成本为528×104¥,污泥按干质量减量60%。焚烧的运行费用24¥/t,烟气处理消耗NaOH量约为37 kg/t,折价约128¥/t [5]。
电价:北京市工业电价高峰期、平段区、低谷期分别为0.278、0.488、0.725¥/(kW?h)。按不同补贴方案,将电价设定为0.30、0.60¥/(kW?h)。
运费:北京市运输价格在0.45~0.65¥/(t?km)之间,污泥为特殊固体废物,需特殊箱式货车运送,价格处于高端。另外,近年运输价格有上涨趋势。因此,运费取0.65 ¥/(t?km)。
此外,干化及焚烧均按设备成本添加30%物耗人工管理费及土建配套费。
(2)污泥含水率
污泥的有机质和水分含量较高,填埋存在一系列问题,当前主要关心的是土力学性能,当含水率高于68% 时需按m(土)∶m(污泥)=0.4~0.6的比例混入土 [6-8]。含水率降低时污泥性状存在突变,因此填埋脱水目标设定为80%、30%。
含水率是污泥焚烧处理中的一个关键因素。有机质含量高、含水率低利于维持自燃,降低污泥含水率对降低污泥焚烧设备及处理费用至关重要。一般将污泥含水率降至与挥发物含量之比小于3.5时,可形成自燃[9]。北京市污泥有机物含量在45% 以下,因此使污泥维持自燃焚烧的水分含量应小于61.2%。朱南文总结了几种国外污泥热干燥技术,可以将污泥干燥至10%含水率[10]。污泥焚烧综合成本随干燥程度动态变化,干化程度越高,干化能耗升高,焚烧设备及运行费用随之下降。简化起见,本文以污泥保持热量平衡燃烧为估算前提,不再进行高水分下加入重油的成本估算。因此污泥焚烧的干化目标定为:60%和10%。
表1 北京市填埋场概况[11]及离污水处理厂的最近距离
Table 1 Description of landfill sites and wastewater treatment plants
填埋场 填埋场位置 处理规模/(t?d-1) 预计关闭时间 最近的污水处理厂 最近直线距离/km 1)
北神树 通县次渠乡 980 2006 高碑店 20
安定 大兴区安定乡 700 2006 小红门 36
六里屯 海淀区永丰屯乡 1500 2017 清河 15
高安屯 朝阳区楼梓庄乡 1000 2018 高碑店 15
阿苏卫 昌平区小汤山乡 2000 2012 清河、北小河 40
焦家坡 门头沟区永定镇 600 2011 卢沟桥 15
1) 最近距离数据为作者实测

综上所述,污泥的处理处置方式计有:堆肥,分别干燥至含水80%、30% 时填埋,干燥至含水

60%、10%时焚烧。
1.3 填埋成本
填埋成本=能耗成本+运输成本+填埋场成本+设备折价成本
能耗成本=[1/(1-η0)-1/(1-ηe)]×150×α×Pele
运输成本=0.65×L /(1-ηe)
填埋场成本=βPf /(1-ηe)
设备折价=[1/(1-η0)-1/(1-ηe)]×180×α× 0.17×104/8000
其中,η0、ηe分别为处理处置始、末的含水率;Pele为电价,¥/(kW?h);L为运输距离,km;α为土建及人工配套费指数,1.3;β为体积系数,含水率≥68%时在1.4~1.6之间,取1.5,含水率<68%时取1;Pf为填埋场填埋价格,40~60¥/t,取52¥/t。
污泥填埋运输距离:北京市现有填埋场容量不足以满足生活垃圾处置需求,即使规划中的填埋场建成之后,富余填埋能力也很有限,污泥填埋需另外觅地新建填埋场。随着城市发展及填埋场地质条件要求,运输距离也将越来越远,参照表1,污泥
填埋的运输距离将在40 km以上,因此在估算今后的填埋成本时,分别取50、100 km作为近期及远期填埋场运输距离。
1.4 堆肥成本及收益
城市污泥经过堆肥无害化处理之后进行土地利用,是国际上普遍采用的处理处置方式。强制通风静态垛堆肥处理是泥堆肥主流技术,其处理成本与污泥初始含水率、处理规模、堆肥厂与污水处理厂之间距离以及设备原产地等因素相关。堆肥厂宜建在污水处理厂周围,运输成本计为0,堆肥成本主要由鼓风、烘干、筛分能耗,调理剂及设备折价成本组成。目前,堆肥产品的市场销售价格为350~500¥/t,扣除15%含水率后取500¥/t DS。
利用CTB堆肥自动控制系统[12,13]进行强制通风静态垛堆肥在河南省漯河市城市污泥堆肥厂的应用结果表明,当污泥含水率不高于80%时,鼓风能耗在40~60 (kW?h)/t DS之间,取60 (kW?h)/t DS。CTB调理剂价格为300 ¥/t,损耗率一般为5% [14]。经过10~14 d堆肥,污泥干物质减量30%,含水45%。采用热干燥技术烘干至含水15%,脱水负荷0.45 t/t DS;调理剂在烘干前筛分后自然晾干,需筛分能耗;筛分负荷共9.3 t/t DS,筛分能力1 t/h,功率3 kW。全程能耗95 (kW?h)/t DS,考虑到未知能耗,取100 (kW?h)/t DS。
设备折价:处理干污泥能力为 0.3×104 t/a的污泥堆肥厂设备投资约700万¥,设备折价182 ¥/t DS(含占地成本),取200¥/t DS。
1.5 焚烧成本
考虑到焚烧废气排放等问题,外运30 km以上焚烧为佳,取30 km;焚烧按干物质减量60%,烧余物需运至填埋场填埋,运输距离取50 km。参考表3可知,干燥至10%焚烧成本较干燥至60%低。干燥程度越高,焚烧厂占地面积也越小,因此焚烧前以干化至10%为宜。
1.6 干化农用成本
未经稳定化处理污泥存在施用安全危险,考虑到干化的稳定效果较差,安全性有限,不再估算。
2 讨论与分析
2.1 处理成本和经济效益
表2 处理处置1 t城市污泥(干质量)所需的成本及其效益
Table 2 Comparison of the estimated cost and benefit of sewage sludge treated and/or disposed by different ways
填 埋
干化 运输 填埋 综合成本/¥
目标 能耗/¥ 设备折价/¥ 距离/km 运费/¥ 填土比例 费用/¥
80% 0 0 50 163 50% 390 5531),5532)
30% 2091),4182) 178 50 46 0 74 5071),7162)
80% 0 0 100 325 50% 390 7151),7152)
30% 2091),4182) 178 100 93 0 74 5541),7632)
焚烧
干化 焚 烧 烧余物 综合成本/¥
目标 能耗/¥ 设备折价/¥ 运行/¥ 设备折价/¥ NaOH/¥ 运费/¥ 填埋/¥
60% 1461),2932) 124 60 365 128 13 20 8561),10022)
10% 2281),4552) 193 27 162 128 13 20 7711),9982)
堆 肥
能耗/¥ 设备折价/¥ 调理剂损耗/¥ 总成本/¥ 销售/¥ 总效益/¥
391),782) 200 75 3141),3532) 410 961),572)
1) 电价取0.30 ¥/(kW?h);2) 电价取0.60 ¥/(kW?h)

各种处理方式处理成本估算过程及结果如表2所示。由表2可知,污泥处理处置以堆肥方式成本

最低,约300~350¥/t DS;填埋方式约500~760¥/t DS。焚烧方式成本最高,约800~1000¥/t DS。堆肥成本低于填埋方式,显著低于焚烧方式,随运输距离增加填埋成本显著高于堆肥成本。此外,污泥焚烧处理一次性投资大,运行维护费用最高。

各种处理方式中,污泥填埋没有资源回收,效益为零;考虑到污泥热值水平,回收焚烧热能可能性较低,对净效益影响不大;污泥干化可以起到脱水的效果,但稳定化的效果有限,加之干化过程中容易产生爆炸和肥效缓慢等问题,不宜提倡;在产品销售良好情况下,按电价不同,堆肥处理可以盈利50~100¥/t DS。
2.2 各种处理处置技术的优缺点
现有的大部分填埋场设计建造标准低、缺乏污染控制措施,存在稳定性差等问题,导致散发气体和臭味,污染地下水,不能保证填埋垃圾的安全,只是延缓污染但没有最终消除污染。一些国家为了把上述问题降低到最小程度,制定了待处理污泥物理特性的最低标准,使污泥填埋的处理成本大大增加。例如德国要求填埋污泥干基含量不低于35%。为避免污泥中有机物分解造成的地下水污染,1992年德国发布了《城市废弃物控制和处置技术纲要》,要求从2005年起,任何被填埋处理的物质其有机物含量不超过5% [15],这意味着污泥即便是经过干燥也不满足填埋的要求。污泥填埋面临填埋场地、公众及法规等多重压力,填埋成本将逐步升高,近年来国外污泥填埋处理方式比例越来越小[6]。
是否推广堆肥处理城市污泥,首先应切实评估施用污泥堆肥的潜在环境风险。杜兵等[16]研究表明,同国外相比北京市某典型污水处理厂酚类、酞酸酯类、多环芳烃类均处于污染程度较低的水平。堆肥处理的持续高温可以确保杀灭病菌,保证污泥的农用安全。陈同斌等[17]对中国城市污泥的重金属含量及其变化趋势的研究结果表明,我国城市污泥中平均含量普遍较低,金属含量基本未超过农用标准[18],且呈现逐渐下降的趋势。近年相关研究也证明:科学合理地进行城市污泥农用不会造成土壤和农产品的重金属污染问题[19]。我国城市污泥的土地利用重金属环境风险并不像人们想象的那样严重。
焚烧减量最为显著,含水80%的污泥焚烧后减容率超过90%。然而,污泥含有多种有机物,焚烧时会产生大量有害物质,如二恶英、二氧化硫、盐酸等,受国内焚烧技术的限制,二恶英污染问题尚未很好解决,重金属烟雾与燃烧灰烬也可能造成二次污染。此外,焚烧浪费了污泥中的营养物质。对比三种处理处置方式,污泥焚烧占地面积最小,但综合成本最高,设备维护要求高,环保风险较大,这些不利之处都限制了污泥焚烧技术的广泛应用。
综上所述,堆肥处理实现污泥的资源化利用,科学合理施用下可以保证卫生安全及重金属安全,同时较为经济可行,是污泥处理处置技术的主要发展方向。但是,从市场销售的角度来看,污泥堆肥产品的销售渠道有待改善。各种处理方式优缺点概括于表3(下页)。
2.3 电价影响及政府补贴
电价影响到污泥处理处置成本。电价从0.60¥/(kW?h)降低到0.30 ¥/(kW?h),各种处理方式的综合成本分别降低40~230 ¥/t DS。如电价取至用电低谷期电价或者更低,成本可以进一步降低。
表3 各种处理处置技术优缺点对比
Table 3 Comparison of landfill, composting and incineration for sewage sludge
处理处置方式 收支平衡/(¥?t-1) 1) 技术难度 场地要求 能否资源化 无害化程度
填埋 -507~ -763 简单 大 不能 延缓污染, 没有最终消除污染风险
堆肥 57~96 较简单 较小 能 重金属低于农用标准时可以达到无害化要求
焚烧 -771~ -1000 技术设备要求高 小 不能 尾气可能带来二次污染
1) 运输距离100 km、电价0.60 ¥/(kw?h)时, 以80%含水率填埋成本略低于30%含水率填埋, 但其占地为后者5.25倍, 综合考虑采取30%填埋

污泥含水80%及60%下填埋占地分别为30%下填埋的5.25倍、1.75倍。政府通过补贴如降低电价等调控手段,将污水处理投入合理分配到其中的污泥处理单元,可以降低污泥处理单元的焚烧成本、填埋占地,降低堆肥成本。政府补贴可以发挥经济杠杆作用,调控污泥处理行业投入产出状况,有利于污泥处理处置行业的健康发展。总之,污泥处理处置应该有适宜的政府补贴。
3 结论
(1)污泥堆肥成本随电价变化约300~350 ¥/t DS,堆肥销售可以补偿部分处理成本,使污泥堆肥达到微利水平。合理施用堆肥可以提供养分和有机质,是污泥处理处置技术的重要方向。
(2)污泥填埋操作简单,但其成本约500~760 ¥/t DS,高于堆肥处理。考虑到土地资源日益稀缺及二次污染问题,且从发达国家的经验来看污泥填埋将逐步受到限制,因此其应用比例应逐渐减少。
(3)污泥焚烧减量效果最明显,但其初始投资及运行费用最高,综合成本约771~1000 ¥/t DS。其设备维护复杂,如果对尾气处理不当会造成二次污染。

参考文献:
[1] Edward S R, Cliff I D. 工程与环境引论[M]. 北京: 清华大学出版社, 2002.
Edward S R, Cliff I D. Introction to engineering & the environment [M]. Beijing: Tsinghua University Press, 2002.
[2] 柯建明, 王凯军, 田宁宁. 北京市城市污水污泥的处理和处置问题研究[J]. 中国沼气, 2000, 18(3): 35-36.
KE Jianming, WANG Kaijun, TIAN Ningning. Disposal of excess sludge from urban wastewater treatment plant in Beijing city [J]. China Biogas, 2000, 18(3): 35-36.
[3] 彭晓峰, 陈剑波, 陶涛, 等. 污泥特性及相关热物理研究方向[J]. 中国科学基金, 2002, 5: 284-287.
PENG Xiaofeng, CHEN Jianbo, TAO Tao, et al. The specialties of sludge and associated thermal physical issues [J]. China Science Fund, 2002, 5: 284-287.
[4] 何品晶, 邵立明, 宗兵年. 污水厂污泥综合利用与消纳的可行性途径分析[J]. 环境卫生工程, 1997, 4:21-25.
HE Pinjing, SHAO Liming, ZONG Bingnian. The feasible way analysis on comprehensive utilization and outlet of sludge in sewage treatment plant [J]. Environmental & Sanitary Engineerin,. 1997, 4:21-25.
[5] 邓晓林, 王国华, 任鹤云. 上海城市污水处理厂的污泥处置途径探讨[J]. 中国给水排水, 2000, 16(5): 19-22.
DENG Xiaolin, WANG Guohua, REN Heyun. Discussion at the treatment and disposal of the sewage sludge in Shanghai wastewater plants [J]. China Water and Wastewater, 2000, 16(5): 19-22.
[6] 国家建设部. CJ 3025 城市污水处理厂污水污泥排放标准[S]. 1993: 2.
Ministry of Construction of PR China. CJ 3025 Wastewater and sludge disposal standard for municipal wastewater treatment plants[S]. 1993: 2.
[7] 国家建设部. CJJ 17城市生活垃圾卫生填埋技术规范[S]. 2001: 20.
Ministry of Construction of PR China. CJJ 17 Technical Code for Sanitary Landfill of Municipal Domestic Refuse[S]. 2001: 20.
[8] 赵乐军, 戴树桂, 辜显华. 污泥填埋技术应用进展[J]. 中国给水排水, 2004, 20(4): 27-30.
ZHAO Lejun, DAI Shugui, GU Xianhua. Application headway of sewage sludge landfill technique [J]. China Water & Wastewater, 2004, 20(4): 27-30.
[9] 高廷耀. 水处理手册[M]. 北京: 高教出版社, 1983: 288-289.
GAO Tingyao. Handbook of water treatment [M].Beijing: Higher Ecation Press, 1983: 255-289.
[10] 朱南文, 徐华伟. 国外污泥热干燥技术[J]. 给水排水, 2002, 28(1): 16-19.
ZHU Nanwen, XU Huawei. Overseas technique of thermal drying sewage sludge [J]. Water Supply and Drainage.2002, 28(1): 16-19.
[11] 刘建国, 聂永丰. 京城垃圾处置[J]. 科技潮, 2004,7: 32-35.
LIU Jianguo, NIE Yongfeng. Treatment of waste in Beijing [J]. Technological Tides, 2004, 7: 32-35.
[12] 陈同斌, 高定, 黄启飞. 一种用于堆肥的自动控制装置: 中国, 0112522.9[P].
CHEN Tongbin, GAO Ding, Huang Q F. A servomechanism for composting: 中国, 0112522.9[P].
[13] 高定, 黄启飞, 陈同斌. 新型堆肥调理剂的吸水特性及应用[J]. 环境工程, 2002, 20(3): 48-50.
GAO Ding, HUANG Qifei, CHEN Tongbin. Water absorbability and application of a new type compost amendment [J]. Environmental Engineering, 2002, 20(3): 48-50.
[14] 高定. 堆肥自动测控系统及其在猪粪堆肥中的应用[D]. 北京: 中国科学院地理科学与资源研究所, 2002: 78.
GAO Ding. The Development of Measuring and Controlling System and Its Application to Swine Manure Composting [D]. Beijing: Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 2002: 78.
[15] 李美玉, 李爱民, 王志, 等. 发展我国污泥流化床焚烧技术[J]. 劳动安全与健康, 2001, 8: 20-23.
LI Meiyu, LI Aimin, WANG Zhi, et al. Develop sewage sludge fluidized bed incineration technique in our country [J]. Safety & Health at Work, 2001, 8: 20-23.
[16] 杜兵, 张彭义, 张祖麟, 等. 北京市某典型污水处理厂中内分泌干扰物的初步调查[J]. 环境科学, 2004, 25(1): 114-116.
DU Bing, ZHANG Pengyi, ZHANG Zulin, et al. Preliminary investigation on endocrine disrupting chemicals in a sewage treatment plant of Beijing [J]. Environmental Science, 2004, 25(1): 114-116.
[17] 陈同斌, 黄启飞, 高定, 等. 中国城市污泥的重金属含量及其变化趋势[J]. 环境科学学报, 2003, 23(5): 561-569.
CHEN Tongbin, HUANG Qifei, GAO Ding, et al. Heavy metal concentrations and their decreasing trends in sewage sludge of China [J]. Transaction of Environmental Science, 2003, 23(5): 561-569.
[18] 国家环境保护总局. 城镇污水处理厂污染物排放标准: 中国, 18918-2002[S]. 北京: 中国环境出版社, 2002: 5.
State Environmental Protection Agency. Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant: China, 18918-2002[S]. Beijing: China Environment Press, 2002: 5.
[19] 田宁宁, 王凯军, 柯健明. 剩余污泥好氧堆肥生产有机复混肥的肥分及效益分析[J]. 城市环境与城市生态, 2001, 14(1): 9-11.
TIAN Ningning, WANG Kaijun, KE Jianming. Evaluation of organic complex fertilizer made of excess sludge from municipal wastewater treatment plant [J]. Urban Environment & Urban Ecology, 2001, 14(1): 9-11.

② 污泥的最终处置方法有哪几种各有什么作用

污泥处理和处置是分开的,处置包括:焚烧(单独焚烧、热点厂协同处置、水泥窑协同处置),卫生填埋、土地利用、建材利用。而处理方式主要包括好氧发酵、厌氧消化、干化脱水等。呵呵,现在主推技术路线是厌氧消化+土地利用。焚烧成本高,填埋占地大,建材利用对技术要求高。希望能够帮到你,可以互相交流哦

③ 关于污水处理常用污泥脱水有哪些方法

常用污泥脱水有以下三种方法:

离心式污泥脱水设备由转载和带空心转轴的螺旋输送器组内成,污泥由容空心转轴送入转筒,在高速旋转产生的离心力下,立即被摔入转鼓腔内,由于比重不同一样,形成固液分离。然而污泥被螺旋输送器推动,输送至转鼓的锥端部出口,连续性的被排出去;液体部分也由重力连续性的溢流排至转鼓外面。

板框式污泥脱水系统-压滤机

④ 典型的污泥处理工艺一般包括哪几个处理或处置阶段其各自的作用和工艺怎样

典型的污泥处理工艺流程,包括四个处理或处置阶段。第一阶段为污泥浓缩,主要目的是使污泥初步减容,缩小后续处理构筑物的容积或设备容量;第二阶段为污泥消化,使污泥中的有机物分解;第三阶段为污泥脱水,使污泥进一步减容;第四阶段为污泥处置,采用某种途径将最终的污泥予以消纳。以上各阶段产生的清液或滤液中仍含有大量的污染物质,因而应送回到污水处理系统中加以处理。以上典型污泥处理工艺流程,可使污泥经处理后,实现“四化”:
(1)减量化:由于污泥含水量很高,体积很大,且呈流动性。经以上流程处理之后,污泥体积减至原来的十几分之一,且由液态转化成固态,便于运输和消纳。
(2)稳定化:污泥中有机物含量很高,极易腐败并产生恶臭。经以上流程中消化阶段的处理以后,易腐败的部分有机物被分解转化,不易腐败,恶臭大大降低,方便运输及处置。
(3)无害化:污泥中,尤其是初沉污泥中,含有大量病原菌、寄生虫卵及病毒,易造成传染病大面积传播。经过以上流程中的消化阶段,可以杀灭大部分的姻虫卵、病原菌和病毒,大大提高污泥的卫生指标。
(4)资源化:污泥是一种资源,其中含有很多热量,其热值在10000∼15000kJ/kg (干泥)之间,高于煤和焦炭。另外,污泥中还含有丰富的氮磷钾,是具有较高肥效的有机肥料。通过以上流程中的消化阶段,可以将有机物转化成沼气,使其中的热量得以利用,同时还可进一步提高其肥效。 污泥浓缩常采用的工艺有重力浓缩、离心浓缩和气浮浓缩等。污泥消化可分成厌氧消化和好氧消化两大类。污泥脱水可分为自然干化和机械脱水两大类。常用的机械脱水工艺有带式压滤脱水、离心脱水等。污泥处置的途径很多,主要有农林使用、卫生填 埋、焚烧和生产建筑材料等。

⑤ 有熟悉污泥深度脱水或污泥深度处理的技术或设备吗

污泥低温干化技术是最近几年市政、化工等各种污泥深度脱水干化的一种新兴技术路线。干化设备运营温度控制在85度以内,能最大限度的避免污泥粉尘出现,同时通过密封环境对污泥进行干化。通过污泥中水分的汽化和液化的转变实现干化和能量吸收循环。可把80%含水率,干化至10%-50%之间。是污泥干化+焚烧的最合理技术路线。

⑥ 市政污泥的无害化和资源化处理方法专利说明及介绍

1.本专利是环绕国家环保部住建部国家发改委2013年联合颁布的文件精神所研制的工艺技术。本专利着重对无害化、资源化作了全面的构思,对污泥无害化处理选择了干馏技术,解决了污泥中的重金属和有害物。把重金属部分给固化冻化了。使污泥中的重金属在分子结构的情况下变成了固态,达到了稳定的效果。
2.干馏技术为实现污泥资源化奠定了可靠的技术基础。通过热化学转移的工艺把污泥中的有
机物在温度的作用下,能使有机物转化为气体,收集处理后可作为人工煤气使用。污泥通过
于馏过程把有机物转化为气体,剩下的污泥在诀氧的情况下成为碳,可以作为产品出售。
3.本专利的工艺技术应用,在污泥处理处置上也是国内唯一的技术,可称之为顶级的一流技
术。此技术完全符合环保的要求,是中国经济的一项科技性突破。本专利更加符合国家环保
部住建部国家发改委2013年联合颁布的文件精神,只有通过这种技术处理污泥才能体现经济效益。

⑦ 污泥深度处理的方法有哪些啊

污泥处理就是要对污泥进行深度无害化处理,彻底解决污泥对环境的污染及对人类的危版害,通常有以权下4种方法:

  1. 减少污泥体积:① 在水处理工艺中采用生物或化学的方法直接减少污泥的产生,避免和减少污泥的产生;② 在污泥处理系统中提高污泥的含固率;

  2. 污泥性质稳定:去除污泥中易腐化变质的有机物;

  3. 污泥无害化:去除污泥中对人体或自然界有危害的病毒、细菌、原生 动物 和重金属等;

  4. 污泥的资源化利用:① 利用污泥中富含的N、P、K等回收有机肥料,改善土壤条件,促进作物的生长;② 利用污泥中大量有机物储藏的热量进行焚烧,回收热能。

⑧ 污泥深度脱水和焚烧属于固体废物处理吗

危险废物处理固体废弃物处理通常是指通过物理、化学、生物、物化及生化方法把固体废物转化为适于运输、贮存、利用或处置的过程。固体废弃物处理的目标是无害化、减量化、资源化。目前采用的主要方法包括压实、破碎、分癣固化、焚烧、生物处理等

⑨ 污泥压干机进行污泥深度脱水对污泥处置有何作用

主要是减重啦,还有环保部门要求的

阅读全文

与厦门城市污泥深度脱水处理和资源化处置利用技术相关的资料

热点内容
企石工厂污水排放 浏览:77
反渗透膜上的活性炭怎么回事 浏览:895
滤芯漏机油怎么能看出来 浏览:602
瓷器上的水垢如何清除 浏览:192
净水器变甜需要什么材料 浏览:148
集成灶为什么一定要用纯净水 浏览:700
铝厂废水成分 浏览:999
德固赛UN系列树脂 浏览:160
过滤机不出水 浏览:103
原生质体是半透膜吗 浏览:286
纯水什么都能溶解吗 浏览:695
亚特蓝饮水机冷饮怎么用 浏览:770
接触除垢剂洁厕灵过敏 浏览:269
极速饮水机烧水怎么不烫了 浏览:66
太阳能除垢剂对身体有害吗 浏览:652
心想即热饮水机怎么拆滤芯 浏览:381
tcl空气净化器800系列怎么样 浏览:642
液体酚醛树脂标准 浏览:66
小米净化器1风扇不转是什么原因引起的 浏览:694
泽尼特污水提升器评价 浏览:526