❶ 国内膜技术污水处理公司有多少家
我们就是专业用膜的公司,具体多少家没法说,因为根据实际工程需要,很多污水处内理公司就容是没做过都说会做,然后再开始现学现卖。而且国内膜相关企业很不规范,生产商和污水处理公司会混在一起,比如碧水源,本来是污水处理公司,但同时生产膜,尽管生产的膜基本没法用。国产膜主要是强度和通量不足的问题,但胜在价格便宜,市场还是不错的,而且污水处理一味追求高通量也没必要,曝气池本来就大,多几组膜也不占地方。另外,国产膜的操作要简单很多,如果选择国内的控制设备及水泵再用进口膜因为操作复杂(反冲、在线清洗等),反而会故障不断,而进口水泵等不一定适合国内的水质条件(杂质多,含沙多)。所以,基本要因地制宜的选择膜。楼上说GE,GE用的是泽能膜,日本的膜有旭化成和三菱(中空膜),久保田是平板膜,明电舍是陶瓷平板膜,很多很多,没有哪家是最好,要根据实际情况选择的。
❷ 什么是污水处理的泥膜复合工艺
随着我国污水处理厂污染物排放标准不断提高,许多污水处理厂面临技术改造问题.提出内了技术改造的容原则和引造的技术方案.综述了国内外活性污泥和生物膜复合/联合工艺在污水处理厂技术改造中应用和研究情况.该工艺用于污水处理厂的技术改造具有明显的优点,同时也指出了尚需解决的一些问题.
❸ FMBR膜技术污水处理器膜片的原理及清洗
就是一个过滤。
清洗有反冲洗,水自流就可以了,加上宝器震动
❹ 有没有应用膜技术的污水处理厂呢给提供几个
东丽最新膜技术在污水再生回用中的应用,东丽公司成功地开发了低污染反渗透膜和中空纤维超滤膜来进行污水再生处理,同时开发了浸没式平板膜生物反应器(MBR)有效地进行污水的深度处理。应用自行开发的多种水处理膜产品,组合成二种有效的污水深度处理和再生技术。 采用这种新型的污水处理膜法再生系统,MBR 出水可直接用来绿化或农田灌溉,并通过低污染反渗透膜(RO)进一步处理后制造再生水回用。面对水资源不足,水污染严重的状况,这种社会急需的利用膜法进行污水深度处理或再生技术已经受到人们的广泛重视。东丽公司利用自行开发的中空丝超滤膜和平板微滤膜去除水中微小颗粒,并利用低污染反渗透膜来进一步去除溶解的有机物和离子,将中空丝超滤膜或平板微滤膜与低污染反渗透膜相结合,达到高质量的处理水质。这种膜法污水再生回用技术是水资源再生领域的一项有效新型的水处理技术。
杭州湾新区水厂是设计上首次将超滤膜和反渗透膜即“双膜法”应用于市政水处理的工程。膜分离技术历来被认为是“神奇但娇气、昂贵”的水处理技术。膜分离技术几乎可以实现一切液体物质的分离和浓缩,能去除水中差不多99%的各种离子,因此,不仅广泛地应用于电力、石化、钢铁等高排放、高污染行业的废水循环利用,应用于海水淡化、苦咸水淡化中的脱盐处理,还被广泛用于各种饮用纯净水、医用超纯水的制取。但由于膜技术设备成本高、对水源的水质要求高、系统运行稳定性差,因此,在我国把膜技术应用于市政自来水尚属空白。
将污水处理成净化水甚至饮用水的连续膜过滤水处理系统近日在天津工业大学研发成功。
两套该系统现正在天津开发区泰达污水处理厂进行安装调试,即将投入使用。每套连续膜过滤水处理系统的处理能力为每小时100吨,每天的污水处理能力可达5000吨。
由清华提供技术支持的密云县污水处理厂再生水回用工程竣工,该工程采用了当今世界最先进的膜-生物反应器(简称MBR)技术。MBR是将膜分离和传统生物处理工艺有机结合的一种新型高效污水处理与回用工艺,集生物降解作用和膜的高效分离为一体,具有出水水质好且稳定、处理负荷高、装置占地面积小、产泥量小、操作管理简单等特点。环境系从“九五”开始长期从事有关膜-生物反应器技术的研究,承担过国家“九五”、“十五”以及“863”项目,在膜-生物反应器技术研发和应用方面取得了一系列的成果。这些研究成果为密云县污水处理厂膜生物反应器再生水回用工程的建设提供了强大的技术支持。
❺ 常用几种膜分离法污水处理方式
常用来的几种膜分源离法污水处理方式:
一、超滤膜分离方法。根据分子的形状和不同性质利用大气压力的作用,将其进行有效的筛选和分离。这项技术通过我国的多年研究和使用,除污效果显著,能有效的对污水中的bing原体进行处理。因此超滤膜分离技术在我国各项污水处理中得到广泛的使用。
二、纳滤膜分离方法。在20世纪70年代的中后期形成的纳滤膜分离技术就是在保证无机盐分离时不受电势和化学梯度的影响,通过(实际压力小于或等于1。5MPa)的作用将直径大约为1纳米的分子进行有效的筛选和分离,从而达到污水处理的效果。
三、液膜分离方法。在20世纪60年代被提出一直到80年代中后期才被广泛应用的液膜分离技术,分为乳状液膜和支撑液膜,其中乳液液膜在污水处理技术中被广泛应用。第四、膜生物反应器。就是原水在进入生物反应器与生物发生充分反应之后,利用循环泵,使水流经膜组件,水得到排放的同时生物相又重新流入生物反应器,该技术是通过把膜件与生物反应器进行结合而形成的一种新型去污技术。
❻ 为什么膜技术是21世纪水处理技术
你这问题好奇怪啊,是就是怎么还为什么。我们公司就是做水处理的,包括污水、中水和给水。其中污水处理和中水处理都会用到膜技术,可以提高处理效率,减少土建施工量和占地面积等。
❼ 污水处理膜有几种
生物滤池法
生物滤池法的基本流程是由初沉池、生物滤池和二沉池三部分组成的。主要成分包括:
1、塔式生物滤池。比传统的生物滤池的负荷更高,层次更分明、堵塞可能性更小,占地面积面积小等优点。
2、有高负荷生物滤池。处理效果更好好,去除率可达90%以上,其出水可降到25mg/L以下,且出水水质非常稳定。其缺点是占地面积过大,容易堵塞,影响环境卫生。
移动床生物膜反应器
移动床生物膜反应器是一种新的生物膜污水处理技术,它介于生物接触氧化法与生物流化床法之间。能够解决生物接触氧化法中滤料堵塞的问题。此方法的特点:微生物浓度高、食物链长,对进水的流量和浓度变化有很强的适应能力。移动床生物膜的结构紧密,因此具有占地面积小,能源消耗低的特点,很明显的降低了投资运行维护费用,由于这些优点该技术被广泛的应用。
生物流化床
生物流化床技术是利用气体或液体,使附着微生物的固体颗粒状滤料呈流态化,对污水进行净化的技术。生物流化床法充分利用了微生物不同生命活动阶段的特征,根据微生物的生长特点将处理阶段划分为固定床阶段、流化床阶段、液体输送阶段三个阶段。
生物流化床的主要优点:
1、容积负荷高,抗冲击能力强。由于生物流化床的载体是采用小粒径固体颗粒,且载体成流态化,所以生物流化床的单位体积表面积要比其他生物膜法的大很多且抗击能力要较其他生物处理法高。
2、净化效果好。由于载体颗粒一直处于剧烈的运动状态,从而导致界面的不断更新,这样不仅有利于微生物对污染物的吸附和降解,更能加快生化反应速率,进而使净化效果得到提高。
3、微生物的活性较强。由于生物颗粒不断地相互碰撞与摩擦,使生物膜的厚度较薄且均匀。对于同类污水而言,在同等的处理条件下,生物膜不仅反应速率快且呼吸率也非常快,所以微生物的活性较强。
生物膜在污水处理中的应用优势
1、对进出水的水质和水量的适应性极强。
2、生物膜法管理便捷、运费低廉。
3、生物法对环境的温度的要求很高,如果气温过高或过低会影响膜运行的活力,导致膜的损坏。
4、此载体的比表面积对生物膜处理的效果影响很大。
5、能够克服活性污泥法中污泥丝状膨胀的缺点,使剩余污泥量明显的减少。
6、生物膜法属于消耗品,膜需要定期的更新,避免引起滤料的破损和堵塞,降低出水水质。
EPP
EPP聚丙烯发泡粒子作为新型的污水生物处理填料,相对于国内的传统填料,有着更卓越的处理性能,仅在日本、韩国的生活污水处理中有应用事例。
在日本、韩国除了已在使用的聚丙烯发泡粒子,还在开发其他的以聚丙烯为主要原材料的具有优异性能的填料。
EPP的显著性能:
1) 吸附能力含有活性炭,对污水中的有机物具有较强吸附能力,以及具有多孔性,使滤料具有增大的表面积等技术效果。
2) 耐油性,耐药性材质稳定,耐酸、耐碱、耐老化,使用寿命达15年,长期不需更换,产品耐生物降解。
3) 轻质,浮性
极其轻质,比重为水的1/33(30kg/?),具有耐冲击,高韧性以及漂浮的性质
4) 环保性
生产中不使用氟利昂作为发泡剂,燃烧时也不会产生有毒,有害气体,是一种环境友好材料。
5) 寿命长
可以循环使用15年以上不需更换填料,大大节约了净水设备的运营成本。多孔质EPP填料,这种填料的每一粒泡沫念珠都带有孔,而且在发泡过程当中添加了一定比例的活性炭,一方面大大增加了填料与污水的接触面积,另一方面大大提升了对污浊物的吸附能力。
❽ 污水处理常用的膜法有哪几种依靠什么推动力使污水透过
❾ 污水处理膜技术的发展阶段及现状!需要相关资料!
膜分离技术的发展和现状
膜分离是人们所掌握的最节能的物质分离(包括分级、纯化、精制、浓缩)技术之一。近三十年来发展极其迅速,已从单纯的海水与苦咸水脱盐、纯水及超纯水的制备、工业用水的回用,逐步拓展到环保、化工、医药、食品、航天等领域中,以每年大于10%的速率递增,发展前景备受关注。
自20世纪60年代Loeb和Saurirajan研制成功了世界第一张非对称型醋酸纤维素反渗透膜以来,大规模海水淡化就变成了现实;20世纪70~80年代开发的超滤、气体分离膜等也已进入工业应用;80~90年代建成无水酒精渗透气化装置,现已大规模推广应用于有机物的回收和脱水;90年代以来被称之为膜接触器(membrane contactor)的膜萃取、膜吸收、膜汽提(membrane-based striping)、膜蒸馏(membrane distillation)等,为膜技术全面溶入大化工(流程工业:包括石油化工、化工、精细化工、制药、食品、发酵工程)领域提供了技术支持;近几年来膜促进传递(facilitated transport)、膜反应器(membrane-reactor)、膜传感器(membrane sensor)、控制释放(controlled release)等膜技术发展很快,膜式燃料电池(membrane fuel cell)则成为当今发达国家探索研究的热点。
目前膜分离技术已被广泛地用于水处理领域如海水淡化、苦咸水脱盐、超纯水制取;医药工业,人工脏器如人工肾
(artificial kidney)、膜式氧合器(membrane oxygenator)、人工肝的制备,以及药剂的浓缩、提纯;食品工业,如果汁和果肉等的浓缩、饮料的灭菌和纯清、从家畜等动物的血液中提取蛋白质;石油化学工业,如天然气中回收氦,合成氨厂尾气中回收氢、石油伴生气二氧化碳的回收、轻烃气流中脱除硫化氢等;环境保护,如废水(电镀废水、印染废水、石油化工废水、食品制药工业废水)中有用物质的回收,以及城市生活污水和放射性废水的处理等。
膜与膜技术的应用领域十分广阔,在当今世界高技术竞争中,也占有极其重要的位置,特别是载人航天、大洋深海探索研究与开发中离不开它,因而深受发达国家的关注。欧盟、日本、美国等早年在膜材料的基础研究和应用开发方面投入大量人力、物力,加拿大、意大利、荷兰和英国等也在膜的基础研究和开发应用上做出了大量的贡献。这些国家(如美国的KOCH、GE、DOW、DuPont;荷兰的norit等公司)在膜元件的制备技术上处于绝对领先的地位。
中国膜科学技术开始于1958年离子交换膜的研究;20世纪60年代研究反渗透膜,曾组织全国海水淡化会战,大大促进我国膜科学技术的发展;70年代就已开发出反渗透(reverse osmosis)、超滤(ultrafiltration)、微滤(microfiltration)和电渗析(electrodialysis)等器件设备,随后投入工业应用;80年代起除继续发展液体分离之外,气体膜分离和渗透气化等已走过了开发和研究阶段,现在已进入工业应用阶段,其它新技术也在不断研究开发之中。
膜科学与技术的发展与应用可分为膜元件的制造、膜设备的研制、膜软件的研发、膜应用四个环节。膜制造商只保证膜本身的标准分离性能,即在规定测试条件下的分离性能;膜硬件与膜软件是膜分离工程公司的工作,膜分离工程公司首先根据市场需求和用户要求分离的物料性状和目标产物标准进行实验研究,在满足用户要求的条件下确定膜元件的种类和数量,膜分离稳定运行的条件和清洗恢复条件,这就是膜软件;膜硬件就是膜元件和膜设备,膜设备实质上是机电一体化设备,膜元件是膜分离设备的核心,设备的其它部分都是为膜元件分离功能的发挥提供运行条件(温度,压力,流速流量等)的;膜软件是靠膜硬件来运行的,膜硬件的设计制作基础是膜软件;膜用户只能按照与膜分离工程公司达成的一致严格执行《膜分离设备运行规范》的要求,将膜分离设备与自己流程的前后工序连接运行以达到自己对膜分离工序所确定的运行目标。近年来膜过程(膜软件、膜硬件)的国内市场已经进入成熟期(高速增长,价格稳定)。
膜技术的主要分离过程
国际理论与应用化学联合会(IUPAC)将膜定义为:一种三维结构,三维中的一度(如厚度方向)尺寸要比其余两度小得多,并可通过多种推动力进行质量传递。这样膜过程就应该被定义为以膜为介质进行质量传递的一种化工单元过程或化工单元操作;很显然膜分离属于化工单元操作。
膜分离技术按传质推动力可分为压力差、浓度差、温度差、电位差等推动力膜;按膜组件结构可分为平板(盒式)膜、螺旋卷式膜、中空纤维膜、管式膜等;按功能层材料可分为无机膜(陶瓷膜、金属膜、碳分子筛膜等)和有机膜。
微滤、超滤、纳滤(nanofiltration)与反渗透都是以压力差为推动力的液体膜过程,当膜两侧存在一定压力差时,可使一部分溶剂及小分子的组分透过膜,而微粒、大分子、盐的离子等被膜截留下来,从而达到分离目的。四个过程的透过机理基本相同,主要是被分离物颗粒或分子、离子的大小和所采用膜的结构与性能有所差异。按照国际理论与应用化学联合会(IUPAC)对这四种膜过程的定义,微滤(MF)是指大于0.1μm的颗粒或可溶物被截留的压力驱动型膜过程;超滤(UF)是指不大于0.1μm大于2nm的颗粒或可溶物被截留的压力驱动型膜过程;反渗透(RO)是指高压下溶剂逆着其渗透压而选择性透过的膜过程;纳滤是指不大于2nm的颗粒或可溶物被截留的压力驱动型膜过程。微滤的压差范围为0.10~0.20MPa;超滤的压差范围为0.10~0.50MPa; 反渗透被用于截留溶液中的盐或其它小分子物质(分子量小于200),所施加的压力在2MPa左右,也可高达10MPa;纳滤用以分离分子量约为几百至几千的溶液组分,其压差范围为0.5~2.0MPa。
电渗析是在电场作用下使溶液中的阴、阳离子选择性地分别透过阴、阳离子交换膜,进行定向迁移的分离过程。该过程主要用于苦咸水脱盐、饮用水制备、工业用水处理等。近十多年来,开始应用于有机酸脱盐与纯化、废酸碱回收等;膜电解过程中,在两电极上存在电化学反应,并有气体产生,主要在氯碱工业中用于大规模生产离子膜级氢氧化钠。
气体分离膜是指在压力差下,利用气体中各组分在膜中渗透速率的差异,达到各组分分离的过程。气体分离膜已大规模用于合成氨厂的氮、氢分离,空气富氧、富氮,天然气中二氧化碳与甲烷的分离等。
渗透气化与蒸汽渗透(vaper permeation)均是利用待分离混合物中某组分具有优先选择性透过膜的特点,使料液侧优先渗透组分以溶解-扩散透过膜而实现分离的过程。两者的差异在于渗透汽化过程采用负压操作,进料物流为液态,优先透过膜的组分在膜下游侧汽化,并在冷凝器中冷凝和收集;而蒸汽渗透采用正压操作,进料物流为气相,常为对膜具有相互作用的有机分子透过膜。渗透气化主要用于有机物脱水(亲水膜)、水中有机物的脱除(疏水膜)、有机混合物分离等方面的应用,被认为是最有希望取代高能耗精馏技术的膜过程,其中有机溶剂脱水及水中有机物脱除已有工业装置;蒸汽渗透适用于空气中有机溶剂的回收,随着环保意识的增强,蒸汽渗透将会获得较大的推广应用。
另外还有两类正在开发与推广应用的新型膜技术:一类是目前称之为膜接触器,包括膜基吸收、膜级萃取、膜蒸馏、膜基汽提等。在这些过程中,膜介质本身对待处理的混合物无分离作用,主要利用膜的多孔性、亲水性或疏水性,为两相传递提供较大而稳定的相接触面,可克服常规分离中的液泛、返混等影响,因而近十余年来,深受化工界的关注;另一类是以膜为关键技术的集成分离过程,包括膜与蒸馏、膜与吸附、膜与反应等相结合的集成过程,具有常规分离过程所不能及的优点,也正在受到重视和发展。
随着科学技术的发展,人们模仿生物膜的某些功能,研制出各种功能的合成膜,应用于日常生活与工业生产过程中。可以认为,膜产业已成为21世纪发展最快的高新技术产业之一。
http://wenku..com/link?url=jXA21_ggIENbKblGrdKo56PVI3W_nakV4uuuYRS9xiY_btaO4ZOrmW-3WOjIgo1mF2MYoDXihZ6oU2HKVM-67NhDEdq-zG4SSETB3m0xxBS
❿ 污水处理技术中MBR和MBBR的区别
MBR工艺原理:活性污泥法+膜分离技术(膜生物反应器) MBBR原理:生物膜法(载体流动床生内物膜技术) 有机物的去容除:MBR主要依靠较高的污泥负荷。 MBBR主要依靠的填料上的生物膜。 SS去除:MBR膜有效去除SS ,MBBR自身没有去除能力主要依靠后端的超滤膜工艺来去除SS 。 后期管理运营比较:MBBR工艺:填料一次投加即可,后续运行中只需要加强填料上的生物膜管理即可。建设期投入较大,运营维护简单。 MBR工艺:膜组器使用寿命一般在4-5年,更换周期较短。日常运行管理时需对膜组器进行化学清洗、离线清洗等维护工作,运行管理难度较大。并且费用较高