导航:首页 > 废水知识 > 硝基苯胺废水处理

硝基苯胺废水处理

发布时间:2021-10-29 17:14:45

1. 对硝基苯胺类物质废水用什么方法处理比较好

苯胺、硝基苯胺、邻硝基苯胺、甲氧基苯胺等
感觉这样的提问没有什么意义
建议,可以自己查阅下资料

2. 对硝基苯胺的详细介绍

中文别名:4-硝基苯胺; 1-氨基-4-硝基苯
英文别名:p-Nitrophenylamine; 1-Amino-4-nitrobenzene; 4-Nitrobenzenamine
结构式:见上图 性状:黄色针状结晶。
相对密度:1.424g/ml
熔点:148~149℃
沸点:332℃
闪点:199℃
溶解性:微溶于冷水,溶于沸水、乙醇、乙醚、苯和酸溶液。 对硝基苯胺是染料工业极为重要的中间体,可直接用于合成品种有:直接耐晒黑G、直接绿B、BE、2B-2N、黑绿NB、直接灰D、酸性黑10B、ATT、分散红P-4G、阳离深黄2RL、毛皮黑D、对苯二胺、邻氯对硝基苯胺、2.6-二氯-4硝基苯胺、5-硝基-2-氯苯酚等,也可合成农药氯硝胺、医药卡柳肿;同时还是防老剂、光稳定剂、显影剂等的原料。国外以对硝基苯胺为重氮组份合成的分散染料有:C, I分散橙1, 3, 7, 21等、红色1, 2, 7, 17等,蓝259;黑2, 3, 28, 29等。
该品即冰染染料大红GG色基,可作黑色盐 K,供棉麻织物染色、印花之用。但主要用作偶氮染料中间体,如用于生产直接墨绿B、酸性媒介棕G、酸性黑10B、酸性毛元ATT、毛皮黑D和直接灰D等。还可作农药和兽药的中间体,在医药工业中可用于生产氯硝柳胺、卡巴肿、硝基安定、喹啉脲硫酸盐等。还可用于生产对苯二胺;抗氧化剂和防腐剂等。 隔离泄漏污染区,限制出入。切断火源。建议应急处理人员戴防尘面具(全面罩),穿防毒服。不要直接接触泄漏物。
小量泄漏:避免扬尘,用洁净的铲子收集于干燥、洁净、有盖的容器中。
大量泄漏:用塑料布、帆布覆盖。然后收集回收或运至废物处理场所处置。 S36/37: Wear suitable protective clothing and gloves. 穿戴适当的防护服和手套。
S45: In case of accident or if you feel unwell, seek medical advice immediately (show the label whenever possible.) 若发生事故或感不适,立即就医(可能的话,出示其标签)。
S61: Avoid release to the environment. Refer to special instructions / safety data sheets. 避免释放至环境中。参考特别说明/安全数据说明书。 R23/24/25: Toxic by inhalation, in contact with skin and if swallowed. 吸入、皮肤接触及吞食有毒。
R33: Danger of cumulative effects. 有累积效应的危险品。
R52/53: Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. 对水生生物有害,可能对水体环境产生长期不良影响。

3. 硝基苯干什么用的

就是一种新物质
可以治疗心血管疾病

4. 硝基苯的性质是

硝基苯简介

管制信息

硝基苯液体
硝基苯(*)(易制爆)
本品根据《危险化学品安全管理条例》受公安部门管制。[1]
CAS号

98-95-3[1]
2基本性质

物理性质

苯分子中一个氢原子被硝基取代而生成的化合物。 无色或淡黄色(含二氧化氮杂质)的油状液体 ,有像杏仁油的特殊气味。相对密度1.2037(20/4℃)。硝基是强钝化基,硝基苯须在较强的条件下才 发生亲电 取代反应, 生成 间位产物;有弱氧化作用,可用作氧化脱氢的氧化剂。硝基苯常用硝酸和硫酸的混合酸与苯反应制取。主要用于制取苯胺、联苯胺、偶氮苯等。硝基苯毒性较强,吸入大量蒸气或皮肤大量沾染,可引起急性中毒,使血红蛋白氧化或络合,血液变成深棕褐色,并引起头痛、恶心、呕吐等。为无色或微黄色具苦杏仁味的油状液体。(纯净应为无色,实验室制硝基苯由于溶有硝酸分解产生的二氧化氮而有颜色,可加氢氧化钠溶液后分液除去)
相对密度:1.205(15/4℃)
熔点:5.7℃
沸点:210.9℃
闪点:87.78℃
自燃点:482.22℃
蒸气密度:4.25
蒸气压:0.13kPa(1mmHg44.4℃)
溶解度:难溶于水,密度比水大; 易溶于乙醇、乙醚、苯和油。遇明火、高热会燃烧、爆炸。与硝酸反应剧烈。[2]
化学性质

化学性质活泼,能被还原成重氮盐、偶氮苯等。由苯经硝酸和硫酸混合硝化而得。作有机合成中间体及用作生产苯胺的原料。
3作用与用途

硝基苯是重要的其本有机中间体。硝基苯用三氧化硫磺化得间硝苯磺酸。可作为染料中间体温和氧化剂和防染盐S。硝基苯用氯磺酸磺化得间硝基苯磺酰氯,用作染料、医药等中间体。硝基苯经氯化得间硝基氯苯,广泛用于染料、农药的生产,经还原后可得间氯苯胺。用作染料橙色基GC,也是医药、农药、荧光增白剂、有机颜料等的中间体。硝基苯再硝化可得间二硝基苯,经还原可得间苯二胺,用作染料中间体、环氧树脂固化剂、石油添加剂、水泥促凝剂,间二硝基苯如用硫化钠进行部分还原则得间硝基苯胺。为染料橙色基R,是偶氮染料和有机颜料等的中间体。[3]
4使用注意事项

毒性

急性毒性:LD50489mg/kg(大鼠经口);2100mg/kg(大鼠经皮);狗静脉150mg/kg,最小致死剂量;人(女性)经口200mg/kg,最小中毒剂量(血液毒性);人经口5mg/kg,最小中毒剂量(不悦感)。
致突变性:细胞遗传学分析:啤酒酵母菌10mmol/管。
生殖毒性:大鼠吸入最低中毒浓度(TCL0):5ppm(6小时),(90天,雄性),影响精子生成,影响睾丸、附睾和输精管。
污染来源:硝基苯是有机合成的原料,最重要的用途是生产苯胺染料,还是重要的有机溶剂。环境中的硝基苯主要来自化工厂、染料厂的废水废气,尤其是苯胺染料厂排出的污水中含有大量硝基苯。贮运过程中的意外事故,也会造成硝基苯的严重污染。?
硝基苯在水中具有极高的稳定性。由于其密度大于水,进入水体的硝基苯会沉入水底,长时间保持不变。又由于其在水中有一定的溶解度,所以造成的水体污染会持续相当长的时间。硝基苯的沸点较高,自然条件下的蒸发速度较慢,与强氧化剂反应生成对机械震动很敏感的化合物,能与空气形成爆炸性混合物。倾翻在环境中的硝基苯,会散发出刺鼻的苦杏仁味。80℃以上其蒸气与空气的混合物具爆炸性,倾倒在水中的硝基苯,以黄绿色油状物沉在水底。当浓度为5mg/L时,被污染水体呈黄色,有苦杏仁味。当浓度达100mg/L时,水几乎是黑色,并分离出黑色沉淀。当浓度超过33mg/L时可造成鱼类及水生生物死亡。吸入、摄入或皮肤吸收均可引起人员中毒。中毒的典型症状是气短、眩晕、恶心、昏厥、神志不清、皮肤发蓝,最后会因呼吸衰竭而死亡。
危险特性:遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。与硝酸反应强烈。
燃烧(分解)产物:一氧化碳、二氧化碳、二氧化氮。[4]
泄漏应急处理

迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防毒服。不要直接接触泄漏物。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。当硝基苯洒在地面时,立即用沙土、泥块阻断漏液的温延,配戴好面具、手套,将漏液或漏物收集在适当的容器内封存,用沙土或其它惰性材料吸收残液,转移到安全地带。立即仔细收集被污染土壤,转移到安全地带。当硝基苯倾倒在水面时,应迅速切断被污染水体的流动,以免污染扩散。中毒人员立即离开现场,到空气新鲜的地方,脱去被沾染的外衣,用大量的水冲洗皮肤,漱口,大量饮水,催吐,即送医院。着火时用大量水和干粉、泡沫、二氧化碳等灭火器灭火。接触硝基苯的人员严禁饮酒,以免加重加速毒性作用。沿地面加强通风,以驱赶硝基苯蒸气。[4]
防护措施

呼吸系统防护:可能接触其蒸气时,佩戴过滤式防毒面具(半面罩)。紧急事态抢救或撤离时,建议佩戴自给式呼吸器。
眼睛防护:戴安全防护眼镜。
身体防护:穿透气型防毒服。
手防护:戴防苯耐油手套。
其它:工作现场禁止吸烟、进食和饮水。及时换洗工作服。工作前后不饮酒,用温水洗澡。注意检测毒物。实行就业前和定期的体检。[4]
急救措施

皮肤接触:立即脱去被污染的衣着,用肥皂水和清水彻底冲洗皮肤。就医。
眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。
吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。
食入:饮足量温水,催吐,就医。
灭火方法:消防人员须佩戴防毒面具、穿全身消防服。喷水冷却容器,可能的话将容器从火场移至空旷处。灭火剂:雾状水、抗溶性泡沫、二氧化碳、砂土[4]

5. 苯胺的危害

1、对环境的危害

苯胺容易挥发,进入水体后,由于分子结构非常稳定,容易导致持久的环境污染,使水体和底泥的物理、化学性质和生物种群发生变化,造成水质恶化。

2、对身体的危害

苯胺的毒性很高,少量苯胺就能引起中毒,而且苯胺通过皮肤、呼吸道和消化道可进入人体,从而破坏血液。



(5)硝基苯胺废水处理扩展阅读

苯胺在常温下是无色或微黄色的油状液体,接触空气和光线后变黑,有强烈的刺激性气味,稍溶于水,易溶于乙醇、乙醚等有机溶剂。苯胺可用水蒸气蒸馏,蒸馏时加入少量锌粉以防氧化。

应用

1、苯胺是染料工业中最重要的中间体之一

在染料工业中可用于制造酸性墨水蓝G、酸性媒介灰BS、酸性嫩黄、直接橙S等;在有机颜料方面可用于制造金光红、金光红g、大红粉、酚菁红、油溶黑等;在印染工业中用于染料苯胺黑;在农药工业中用于生产许多杀虫剂、杀菌剂如敌敌畏、除草醚、毒草胺等。

2、苯胺是橡胶助剂的重要原料

可用于制造防老剂,也可作为医药磺胺药的原料,同时也是生产香料、塑料、清漆、胶片等的中间体;并可作为炸药中的稳定剂、汽油中的防爆剂以及用作溶济;其它还可以用作制造对苯二酚、2-苯基吲哚等。

3、苯胺是生产农药的重要原料

苯胺衍生的N-烷基苯胺、烷基苯胺、邻硝基苯胺、环己胺等,可作为杀菌剂敌锈钠、拌种灵、杀虫剂三唑磷、哒嗪硫磷、喹硫磷,除草剂甲草胺、环嗪酮、咪唑喹啉酸等的中间体。

6. 退镀工艺中会用到间硝基苯环酸钠,对电镀废水处理有怎样的影响,求业内高手!!

使用防染盐,这部分水的颜色和铬水颜色差不多黄,传统的分股处理方法中由版于未好好权分类(部分流入氰系统、部分流入综合水系统),对后续水质颜色有十分严重的影响,造成出水颜色严重偏黄。但是若使用“物化处理”就不会出现这样的问题了。

7. 怎么才能有效驱除废水中氨氮和总氮

氨氮废水的来源
钢铁、炼油、化肥、无机化工、铁合金、玻璃制造、肉类加工和饲料生产等工业,均排放高浓度的氨氮废水。 其中,某些工业自身会产生氨氮污染物,如钢铁工业及肉类加工业等。 而另一些工业将氨用作化学原料,如用氨等配成消光液以制造磨砂玻璃。此外,皮革、孵化、动物排泄物等新鲜废水中氨氮初始含量并不高,但由于废水中有机氮的脱氨基反应,在废水积存过程中氨氮浓度会迅速增加。
过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮,以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。
不同种类的工业废水中氨氮浓度干变万化,即使同类工业不同工厂的废水中其浓度也各不相同。以某化工厂香兰素生产废水为例,其氨氮浓度高达6~7×104mg/L。为了彻底治理污染,除对生产工艺进行必要的改造外,必须寻找合适的氨氮废水处理技术,降低废水处理的成本。
氨氮废水处理技术研究与应用现状
目前,氨氮废水的处理技术可以分为两大类:一类是物化处理技术,包括吹脱(或汽提)、沉淀、膜吸收、湿式氧化等,其中吹脱和膜吸收技术都需要氨氮尽可能以氨分子形态存在;另一类技术是生物脱氮技术。
物化处理技术
依据NH3的质量分数与pH的关系,如果氨氮的去除形态为氨气,为达到较高的去除率,就必须调节溶液的pH在11以上。这类技术包括吹脱、汽提、膜吸收等。在处理氨氮废水的过程中,需要消耗大量碱,但可以回收部分氨。
吹脱(汽提)法吹脱法是将废水pH值调节至碱性,然后在填料塔中通入空气或蒸汽,通过气液接触将废水中的游离氨吹脱至大气或蒸汽中。 采用蒸汽可以提高废水温度,从而提高一定pH值时被吹脱氨的比例。一般情况下,如果采用吹脱法去除98%以上的氨氮,需pH调节。例如采用汽提技术对对硝基苯胺废水进行了处理,在pH 大于11的条件下,废水中的氨氮由3150 mg/L下降为187 mg/L,去除率为93%。
低浓度废水通常在常温下用空气吹脱,而炼钢、石油化工、化肥、有机化工、有色金属冶炼等行业的高浓度废水则常用蒸汽进行吹脱。但是这种方法一般要采用NaOH调节废水的pH值,药剂和能源消耗比较大。 为了降低药剂成本,采用Ca(OH)2调节pH,结果表明,吹脱速率和吹脱效率要远小于NaOH,而且在汽提过程中容易结垢,使得操作运行困难。
这种技术的另一个关键在于保证填料塔内的气液充分接触,有效防止沟流、液泛等非正常操作。 因此,填料的选择和填充至关重要。除较高的能耗与碱耗外,利用吹脱技术处理氨氮的不足还在于使氨氮由液相转移至气相,如果没有相应的回收技术,很容易导致大气的二次污染。此技术主要用于高浓度氨氮废水的预处理。
膜吸收技术
膜吸收过程是将膜分离和吸收相结合而出现的一种新型膜过程,它使用微孔膜将气、液两相分隔开来,利用膜孔提供气、液两相间传质的场所。 膜吸收法处理含氨废水的原理为:疏水性微孔膜(聚丙烯、聚四氟乙烯、偏聚氟乙烯)把含氨废水和H2SO4吸收液分隔于膜两侧,通过调节废水的pH值,使废水中离子态的NH3转变为分子态的挥发性NH3。 在膜两侧NH3的浓度差的推动下,废水中的NH3在废水一微孔膜界面汽化挥发。气态的NH3沿膜微孔向膜的另一侧扩散,在吸收液一微孑L膜界面上为H2SO4吸收,并反应生成不挥发的(NH3)2SO4而被回收。由于氨在废水和吸收液中存在形式的不同,使得废水中的氨能通过存在形式的转换不断向吸收液传递,直到吸收液中的H2SO4全部为氨中和为止,处理后废水中的氨氮浓度理论上可达到零。与吹脱(汽提)技术和生化法等其他高氨氮废水处理方法比较,膜吸收法的最大特点是,可以在常温、常压的条件下浓缩并回收废水中的氨,无二次污染产生,实现含氨废水的资源化。
现在,膜吸收工艺的难点在于防止膜的渗漏。为了保证较高的通量,一般的微孔膜的膜厚都比较薄,膜两侧的水相在压差的作用下很容易发生渗漏。只有非常精确地调整膜两侧的压力和流速,才能基本保证膜两侧的液量不发生变化。 即使在这样的条件下,在进行氨吸收过程中,氨溶液一侧的pH值还是有显著的降低,经检测,溶液中有大量硫酸根离子存在,最终导致氨溶液中的去除率仅在6O%左右。
因此,如何在保证氨氮传质通量的情况下有效防止膜的渗漏是膜吸收工艺研究的重要内容。
沸石脱氨法
利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。
实验表明用沸石离子交换法处理经厌氧消化过的猪肥废水时发现Na-Zeo、Mg-Zeo、Ca-Zeo、k-Zeo中Na-Zeo沸石效果最好,其次是Ca-Zeo。增加离子交换床的高度可以提高氨氮去除率,综合考虑经济原因和水力条件,床高18cm(H/D=4),相对流量小于7.8BV/h是比较适合的尺寸。离子交换法受悬浮物浓度的影响较大。
应用沸石脱氨法必须考虑沸石的再生问题,主要有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。通常采用再生液进行再生,再生液浓液再进行脱氨处理。
膜分离技术
利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。蒋展鹏等[6]采用电渗析法和聚丙烯(PP)中空纤维膜法处理高浓度氨氮无机废水可取得良好的效果。电渗析法处理氨氮废水2000~3000 mg/L,去除率可在85%以上,同时可获得8.9%的浓氨水。此法工艺流程简单、不消耗药剂、运行过程中消耗的电量与废水中氨氮浓度成正比。PP中空纤维膜法脱氨效率>90%,回收的硫酸铵浓度在25%左右。运行中需加碱,加碱量与废水中氨氮浓度成正比。
乳化液膜是种以乳液形式存在的液膜具有选择透过性,可用于液-液分离。分离过程通常是以乳化液膜(例如煤油膜)为分离介质,在油膜两侧通过NH3的浓度差和扩散传递为推动力,使NH3进入膜内,从而达到分离的目的。用液膜法处理某湿法冶金厂总排放口废水(1000~1200 mgNH4+-N/L,pH为6~9),当采用烷醇酰胺聚氧乙烯醚为表面活性剂用量为4%~6%,废水pH调至10~11,乳水比在1:8~1:12,油内比在0.8~1.5。硫酸质量分数为10%,废水中氨氮去除率一次处理可达到97%以上。
膜分离法应用的主要问题是投资成本及运行成本较高,操作复杂,难以控制。
MAP沉淀法
主要是利用以下化学反应:
Mg2 ++NH4++PO43-=MgNH4PO4
理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。穆大纲等[8]采用向氨氮浓度较高的工业废水中投加MgCl2•6H2O和Na2HP04•12H20生成磷酸铵镁沉淀的方法,以去除其中的高浓度氨氮。结果表明,在pH为8.9l,Mg2+,NH4,P043-的摩尔比为1.25:1:1,反应温度为25 ℃,反应时间为20 min,沉淀时间为20 min的条件下,氨氨质量浓度可由9500 mg/L降低到460 mg/L,去除率达到95%以上。由于在多数废水中镁盐的含量相对于磷酸盐和氨氮会较低,尽管生成的磷酸铵镁可以做为农肥而抵消一部分成本,投加镁盐的费用仍成为限制这种方法推行的主要因素。海水取之不尽,并且其中含有大量的镁盐。以海水做为镁离子源试验研究了磷酸铵镁结晶过程。盐卤是制盐副产品,主要含MgCl2和其他无机化合物。Mg2+约为32 g/L为海水的27倍。Lee等[10]用MgCl2、海水、盐卤分别做为Mg2+源以磷酸铵镁结晶法处理养猪场废水,结果表明,pH是最重要的控制参数,当终点pH≈9.6时,反应在10 min内即可结束。由于废水中的N/P不平衡,与其他两种Mg2+源相比,盐卤的除磷效果相同而脱氮效果略差。
采用化学沉淀法的关键因素在于:
1)絮凝剂的用量;2)沉淀产物的去向。
一般情况下,采用磷酸铵镁沉淀法处理氨氮废水的氨氮浓度不大于1 500 mg/L。化学沉淀法的应用瓶颈同样是运行成本较高,无法进行工程应用。
催化湿式氧化法
催化湿式氧化法是8O年代国际上发展起来的一种治理废水的新技术。 在一定温度、压力下,在催化剂作用下,经空气氧化,可使污水中的有机物和氨分别氧化分解成CO2、N2和H2O等无害物质,达到净化的目的。具有净化效率高(据报道,废水经过净化后可达到饮用水标准)、流程简单、占地面积少等特点。经多年应用与实践,这一废水处理方法的建设及运行费用仅为常规方法6O%左右,因而在技术上和经济上均具有较强的竞争力。杜鸿章等对催化湿式氧化法作了一系列的研究,在270 ℃、9 MPa工艺条件下,研制的催化剂可使焦化污水氨氮的去除率达到99.6%,经处理后的污水水质优于国家环保排放标准的要求。湿式氧化法不足在于催化剂的流失和设备的腐蚀。
化学氧化法
利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。在溴化物存在的情况下,臭氧与氨氮会发生如下类似折点加氯的反应:
Br-+O3+H+→HBrO+O2,
NH3+HBrO→NH2Br+H2O,
NH2Br+HBrO→NHBr2+H2O,
NH2Br+NHBr2→N2+3Br-+3H+。
用一个有效容积32 L的连续曝气柱对合成废水(氨氮600 mg/L)进行试验研究,探讨Br/N、pH以及初始氨氮浓度对反应的影响,以确定去除最多的氨氮并形成最少的NO3-的最佳反应条件。发现NFR(出水NO3--N与进水氨氮之比)在对数坐标中与Br-/N成线性相关关系,在Br-/N>0.4,氨氮负荷为3.6~4.0 kg/(m3•d)时,氨氮负荷降低则NFR降低。出水pH=6.0时,NFR和BrO--Br(有毒副产物)最少。BrO--Br可由Na2SO3定量分解,Na2SO3投加量可由ORP控制。
生化法
微生物去除氨氮过程需经过硝化和反硝化两个阶段过程。 传统观点认为:硝化过程为好氧过程,在此过程中,氨态氮在微生物的作用下转化为硝基氮和亚硝基氮;而反硝化过程为厌氧过程,在此过程中,硝基氮和亚硝基氮转化为氮气。 因此,一般的生物脱氮过程为厌氧/好氧过程、或厌氧/缺氧/好氧过程。
近年来的研究表明,反硝化过程可以在有氧的条件下进行,即好氧反硝化过程。它为突破传统生物脱氮技术限制,利用一个生物反应器在一种条件下完成脱氮反应提供了依据。SBR生物脱氮工艺的优点在于以时间序列代替空间序列,使好氧硝化过程和反硝化过程在同一容器中完成。采用SBR技术处理高氨氮废水,在曝气段实现高氨氮废水的好氧硝化/反硝化处理。通过实验研究,她们提出的反应序列为:一段缺氧一好氧曝气一二段缺氧的SBR反应器,好氧段反硝化脱氮率要占总脱氮率的70%以上。研究表明:好氧反硝化菌为异养菌,脱氮反应历程与缺氧反硝化菌相同,并且最终产物主要为N2。
目前生物脱氮的浓度一般在400 mg/L以下,采用生物脱氮技术处理高浓度氨氮废水就需要进行大倍数稀释,这就使得生物处理设施的体积庞大,能耗会相应提高。 因此,在处理高氨氮废水时,采用生物处理前,一般要首先进行物化处理。
物化方法在处理高浓度氨氮废水时不会因为氨氮浓度过高而受到限制,但是不能将氨氮浓度降到足够低(如100 mg/L以下)。而生物脱氮会因为高浓度游离氨或者亚硝酸盐氮而受到抑制。实际应用中采用生化联合的方法,在生物处理前先对含高浓度氨氮的废水进行物化处理。目前,较先进的生化脱氨主要有以下几类方法。
膜生物反应器技术
膜生物反应器(MBR)是一种由膜过滤取代传统生化处理技术中二次沉淀池和沙滤池的水处理技术。MBR将分离工程中的膜技术应用于废水处理系统,提高了泥水分离效率,并且由于曝气池中活性污泥浓度的增大和污泥中特效菌(特别是优势菌群)的出现,提高了生化反应速率。同时,通过降低F/M比减少剩余污泥产生量(甚至为零),从而基本解决了传统活性污泥法存在的突出问题。
硝化菌为自养菌,生长繁殖的世代周期长,常规的生物脱氮工艺中,为保持构筑物中有足够数量的硝化菌以完成生物硝化作用,在维持较长污泥龄的同时也相应增大了构筑物的容积。此外,絮凝性较差的硝化菌常会被二沉池的出水带出,硝化菌数量的减少影响硝化作用,进而降低了系统的脱氮效率。膜生物反应器能够完全截留微生物,可以有效防止硝化菌的流失,是一种比较理想的硝化反应器。
在适宜的pH、DO条件下,容积负荷控制在2 kg/(m3•d)以下时,采用一体化膜生物反应器可以将浓度为2×103mg/L的氨氮转化为硝酸盐。
虽然采用膜生物反应器处理氨氮废水会解决传统活性污泥法存在的一些问题,但膜污染问题尚未见有较好的解决办法
短程硝化反硝化
生物硝化反硝化是应用最广泛的脱氮方式。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化(将氨氮氧化至亚硝酸盐氮即进行反硝化),不仅可以节省氨氧化需氧量而且可以节省反硝化所需炭源。用合成废水试验确定实现亚硝酸盐积累的最佳条件。要想实现亚硝酸盐积累,pH不是一个关键的控制参数,因为pH在6.45~8.95时,全部硝化生成硝酸盐,在pH<6.45或pH>8.95时发生硝化受抑,氨氮积累。当DO=0.7 mg/L时,可以实现65%的氨氮以亚硝酸盐的形式积累并且氨氮转化率在98%以上。DO<0.5 mg/L时发生氨氮积累,DO>1.7 mg/L时全部硝化生成硝酸盐。对低碳氮比的高浓度氨氮废水采用亚硝玻型和硝酸型脱氮的效果进行对比分析。试验结果表明,亚硝酸型脱氮可明显提高总氮去除效率,氨氮和硝态氮负荷可提高近1倍。此外,pH和氨氮浓度等因素对脱氮类型具有重要影响。
短程硝化反硝化处理焦化废水的中试结果表明,进水COD、氨氮、TN 和酚的浓度分别为1201.6、510.4、540.1、110.4 mg/L时,出水COD、氨氮、TN和酚的平均浓度分别为197.1、14.2、181.5、0.4 mg/L,相应的去除率分别为83.6%、97.2%、66.4%、99.6%。与常规生物脱氮工艺相比,该工艺氨氮负荷高,在较低的C/N值条件下可使TN去除率提高。
厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)
厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。ANAMMOX的生化反应式为:
NH4++NO2-→N2↑+2H2O
ANAMMOX菌是专性厌氧自养菌,因而非常适合处理含NO2-、低C/N的氨氮废水。与传统工艺相比,基于厌氧氨氧化的脱氮方式工艺流程简单,不需要外加有机炭源,防止二次污染,又很好的应用前景。厌氧氨氧化的应用主要有两种:CANON工艺和与中温亚硝化(SHARON)结合,构成SHARON-ANAMMOX联合工艺。
CANON工艺是在限氧的条件下,利用完全自养性微生物将氨氮和亚硝酸盐同时去除的一种方法,从反应形式上看,它是SHARON和ANAMMOX工艺的结合,在同一个反应器中进行。固体废弃物填埋场渗滤液处理,溶解氧控制在1 mg/L左右,进水氨氮<800 mg/L,氨氮负荷<0.46 kgNH4+/(m3•d)的条件下,可以利用SBR反应器实现CANON工艺,氨氮的去除率>95%,总氮的去除率>90%。
ANAMMOX和CANON过程都可以在气提式反应器中运转良好,并且达到很高的氮转化速率。控制溶解氧在0.5mg/L左右,在气提式反应器中,ANAMMOX过程的脱氮速率达到8.9 kgN/(m3•d),而CANON过程可以达到1.5 kgN/(m3•d)。
好氧反硝化
传统脱氮理论认为,反硝化菌为兼性厌氧菌,其呼吸链在有氧条件下以氧气为终末电子受体在缺氧条件下以硝酸根为终末电子受体。所以若进行反硝化反应,必须在缺氧环境下。近年来,好氧反硝化现象不断被发现和报道,逐渐受到人们的关注。一些好氧反硝化菌已经被分离出来,有些可以同时进行好氧反硝化和异养硝化(如Robertson等分离、筛选出的Tpantotropha.LMD82.5)。这样就可以在同一个反应器中实现真正意义上的同步硝化反硝化,简化了工艺流程,节省了能量。
用序批式反应器处理氨氮废水,试验结果验证了好氧反硝化的存在,好氧反硝化脱氮能力随混合液溶解氧浓度的提高而降低,当溶解氧浓度为0.5 mg/L时,总氮去除率可达到66.0%。
连续动态试验研究表明,对于高浓度氨氮渗滤液,普通活性污泥达的好氧反硝化工艺的总氮去除串可达10%以上。硝化反应速率随着溶解氧浓度的降低而下降;反硝化反应速率随着溶解氧浓度的降低而上升。硝化及反硝化的动力学分析表明,在溶解氧为0.14 mg/L左右时会出现硝化速率和反硝化速率相等的同步硝化反硝化现象。其速率为4.7mg/(L•h),硝化反应KN=0.37 mg/L;反硝化反应KD=0.48 mg/L。
在反硝化过程中会产生N2O是一种温室气体,产生新的污染,其相关机制研究还不够深入,许多工艺仍在实验室阶段,需要进一步研究才能有效地应用于实际工程中。另外,还有诸如全程自养脱氮工艺、同步硝化反硝化等工艺仍处在试验研究阶段,都有很好的应用前景。

8. 对含有硝基苯和苯酚的工业废水,可采用哪些方法处理

抄污水处理中苯酚的去除方法袭:加NaOH溶液,分液+NaOH生成苯酚钠。

此外沸石也能去除苯酚。沸石是一种天然廉价的多孔矿物质,表面粗糙、比表面积大,吸附性能较强,改性后沸石吸附苯酚的效果确定了合适的改性方法,在具体的pH值条件下,沸石能够对低浓度的含酚水有良好的吸附效果。
苯酚(Phenol,C6H5OH)是一种具有特殊气味的无色针状晶体,有毒,是生产某些树脂、杀菌剂、防腐剂以及药物(如阿司匹林)的重要原料。也可用于消毒外科器械和排泄物的处理,皮肤杀菌、止痒及中耳炎。

阅读全文

与硝基苯胺废水处理相关的资料

热点内容
污水管径有1100的吗 浏览:89
污水防汛站常用什么泵 浏览:386
净水器和加热器哪个安全 浏览:288
污水处理企业靠什么挣钱 浏览:940
蒸馏烧瓶炸瓶塞的原因 浏览:549
净水器反渗透与超过滤有什么区别 浏览:99
沾化区农村污水整治 浏览:659
清洗瀑布过滤器陶瓷环 浏览:765
污水处理厂除臭工程项目 浏览:752
饱和聚酯树脂的作用 浏览:522
用测回法测出角度怎么算坐标 浏览:43
化肥生产废水mvr 浏览:490
水垢预防的基本原理 浏览:941
纯水和纯酒精为什么不能导电 浏览:410
电泳用超滤机 浏览:803
ro膜介绍 浏览:591
纯水机泵漏水怎么处理 浏览:522
安之源净水器中央超滤机 浏览:422
过滤水中的油用什么滤芯 浏览:491
污水泵国产什么牌子的质量好 浏览:629