Ⅰ 污水处理高程计算内容: ①各处理构筑物之间的水头损失; ②构筑物之间的连接管渠中的沿程与局部水头损
局部水头损失不能按照郾城水头损失的50%计算的。
污水厂的高程
污水处理厂污水处理高程布置的主要任务是: 确定各构筑物和泵房的标高确 定处理构筑物之间连接管(渠)的尺寸及其标高,通过计算确定各部位的水位标 高,从而能够使污水沿处理流程在处理构筑物之间通畅的流动,保证污水处理厂的正常运行。
污水厂的高程布置 为了降低运行费用和便于管理, 污水在处理构筑物之间的流动按重力流考虑 为宜(污泥流动不在此例) 。为此,必须精确地计算污水流动中的水头损失。 水头损失包括[2]: (1)污水经各处理构筑物的内部水头损失; (2)污水经连接前后两构筑物管渠的水头损失,包括沿程水头损失和局部 水头损失; (3)局部水头损失按沿程水头损失的 0.3 倍计。 6.2.3 高程计算 沿程水头损失按: h = iL 计算,i 为管渠的坡度; 局部水头损失按: h = ξ v2/ 2g 计算,ξ 为局部水头损失系数。
污水处理厂高程布置应考虑事项
(1)选择一条最长、水头损失最大的流程进行水力计算,并应适当留有余 地,以保证任何情况下,处理系统都能够运行正常;
(2) 计算水头损失时一般以近期最大的流程作为构筑物和管渠的设计流量; 计算涉及远期流量的管渠和设备时,应以远期最大流量为设计流量,并酌加扩建 时的备用水头; (3)在做高程布置时应注意污水流程与污泥流程的配合,尽量减少需抽升 的污泥量。
Ⅱ 污水处理日常分析中的十二项指标是哪些
1 化学需氧量(COD) 2 生化需氧量(BOD5)3 悬浮物(SS) 4 动植物油 5 石油类 6 阴离子表面活专性剂7 总氮属 (以 N 计)8 氨氮(以 N 计9 总磷
10 色度(稀释倍数) 11 pH
12 粪大肠菌群数(个/L)
Ⅲ 污水处理的工艺流程是什么
污水处理工艺流程是用于某种污水处理的工艺方法的组合。通常根据污水的水质和水量,回收的经济价值,排放标准及其他社会、经济条件,经过分析和比较,必要时,还需要进行试验研究,决定所采用的处理流程。一般原则是:改革工艺,减少污染,回收利用,综合防治,技术先进,经济合理等。在流程选择时应注重整体最优,而不只是追求某一环节的最优。
生物除磷
在经济发展过程中,我国的主要河流和湖泊由于受磷污染,富营养化严重,国家环保局为控制磷污染,对磷排放制定了比较严格的标准。化学强化生物除磷污水处理工艺以除去污水中有机污染物和各种形态的磷为主,此污水处理工艺将化学除磷和生物除磷一体化,通过厌氧消化生物系统中活性污泥产生挥发性有机酸,作为聚磷菌生长的基质或称之为营养物,使聚磷菌在活性污泥中选择性增殖,并将其回流到生物系统中,使生物污水处理系统工作在高效除磷状态;同时污泥在厌氧条件下产生的磷释放,通过化学除磷消除。这是一种高效市政污水处理工艺技术,满足了我国现阶段,为解决水体富营养化,需要在常规二级污水处理基础上进一步除磷的要求。
循环间隙
我国经济发展水平各地相差较大,经济发展滞后的城市还不能拿出很多资金用于污水治理,因此,怎样利用有限的资金,降低环境污染,是很多城市政府面临的问题。在污水处理方面,直到不久前,一些城市还采用一级或一级强化处理工艺技术,出水达不到国家二级排放标准对除去有机污染物的要求。循环间歇曝气工艺充分发挥高负荷氧化沟处理效率高的优点,又充分利用序批式活性污泥污水处理工艺出水好的特点,保证了系统出水达到国家污水排放一级标准在除去有机污染物方面的要求。在投资和运行费用上比通常以除去有机污染物为主的二级生物污水处理系统降低30%左右,是适合我国现阶段污水处理要求的工艺技术。
旋转接触
污水处理工程的建设程序
旋转接触氧化污水处理工艺技术是在生物转盘技术基础上,结合生物接触氧化技术优点发展起来的新一代好氧生物膜处理技术。旋转接触氧化污水处理工艺技术和成套设备提供了一种简单和可靠的污水处理方法。整个污水处理系统中的转轴是唯一的转动部分,一旦机器出了故障,一般机械人员都可以进行维修。系统生物量会根据有机负荷的变化而自动补偿。附在转盘上的微生物是有生命的,当污水中的有机物增加时,微生物随之增加,相反,当污水中的有机物减少时,微生物随之减少。所以这污水处理系统的工作效果不容易受到流量和负荷的突然变化和停电的影响。运行费用低,只有其他曝气污水处理系统耗电的八分之一到三分之一。占地面积仅相当常规活性污泥法一半。由于生物系统中生长的微生物种类多,能够高效处理各种难降解工业污水。
设计
编辑
污水处理工程是城市市政建设、工业企业建设或排污达标治理的一个重要部分,其建设须按国家基本建设程序进行,现行的基本建设程序一般分编制项目建议书、项目可行性研究、项目工程设计、工程和设备招投标、工程施工、竣工验收、运行调试和达标验收几个步骤。这些建设步骤基本包括了项目建设的全过程,它们也可划分为三个阶段。
第一阶段项目立项阶段。该阶段需根据城市市政规划或环境保护部门要求,分析项目建设的必要性和可行性。本阶段以确定项目为中心,一般由建设单位或其委托的设计研究单位编制项目建议书和项目可行性研究报告,通过国家计划部门、投资银行或企业计划部门论证便可获得立项,对于某些小规模项目,只编制污水处理工程方案设计,并通过投资部门的论证便可立项。第二阶段工程建设阶段。包括工程设计、工程和设备招投标、工程施工、竣工验收等过程。
设计的前期工作
设计的前期工作主要是可行性研究,以可行性研究报告(大型、重要的项目)或工程方案设计(小型、简单的项目)的文件形式表达,主要是论证污水处理项目的必要性、工艺技术的先进性与可靠性、工程的经济合理性,为项目的建设提供科学依据。可行性研究报告是国家投资决策的重要依据,主要内容如下。
①总论项目编制依据、自然环境条件(地理、气象、水文地质)、城市社会经济概况或企业生产经营概况;城市或企业的排水系统现状、污染源构成、污水排放量现状、污水水质现状、项目的建设原则与建设范围、污水处理厂建设规模、污水处理要求目标(设计进水、出水水质)。
②工程方案污水处理厂厂址选择及用地;污水处理工艺方案比较(比较方案工艺技术与总体设计、工艺构筑物及设备分析、技术经济比较),处理水的出路(回用水深度处理工艺选择);工程近、远期结合问题;节能、安全生产与环境保护,推荐方案设计(污水污泥及回用水处理工艺系统平面及高程设计、主要工艺设备及电气自控、土建工程、公用工程及辅助设施);生产组织及劳动定员。
③工程投资估算及资金筹措工程投资估算原则与依据;工程投资估算表;资金筹措与使用计划。
④工程进度安排。
⑤经济评价总论(工程范围及处理能力、总投资、资金来源及使用计划);年经营成本估算;财务评价。⑥研究结论、存在问题及建议。
初步设计
初步设计的主要目的如下:①提供审批依据,进一步论证工程方案的技术先进性、可靠性和经济合理性;②投资控制,提供工程概算表,其总概算值是控制投资的主要依据,预算和决算都不能超过此概算值;③技术设计,包括工艺、建筑、变配电系统、仪表及自控等方面的总体设计及部分主要单元设计,各专业所采用的新技术论证及设计;④提供施工准备工作,如拆迁、征地三通(水、电、路)一平(墙)并与有关部门签订合同;⑤提供主要设备材料订货要求,即设备与主材招标合同的技术规格书的依据,包括污水、污泥、电气与自控、化验等方面设备与主材的工艺要求、性能、技术规格、数量。初步设计的任务包括确定工程规模、建设目的、投资效益,设计原则和标准、各专业个体设计及主要工艺构筑物设计、工程概算、拆迁征地范围和数量、施工图设计中可能涉及的问题及建议。初步设计的文件应包括设计(计算)说明书、工程量、主要设备与材料、初步设计图纸、工程总概算表。初步设计文件应能满足审批、投资控制、施工图设计、施工准备、设备订购等方面工作依据的要求。
1.初步设计
(1)设计依据①可行性研究报告的批准文件;②建设单位(甲方)的设计委托书;③其他有关部门的协议和批件;④建设单位(甲方)提供的设计资料清单(名称、来源、单位、日期)。
(2)城市或企业概况及自然条件①城市现状与总体规划,或企业生产经营现状及发展。②自然条件方面资料a.气象,包括气温、湿度、雨量、蒸发量、冰冻期及冻土深度冰温、风向等;b.水文,包括地表水体的功能、地理位置、方向、水位、流速、流量等,地下水的分布埋深、利用等。工程地质,包括污水处理厂建址地区的地质钻孔柱状图、地基承载能力、地震等级等。③有关地形资料,包括污水处理厂及相关地区的地形图。·④城市污水排放现状及环境污染问题。
(3)处理要求污水排放应达到国家的排放标准或环境保护部门要求。
(4)工程设计①设计污水处理水质水量在分析排水系统污水的平均流量、高峰流量、现状流量、预期流量等水量资料基础上,确定污水处理厂设计规模(包括2012年处理能力和总处理能力);根据城市或企业排污状况,在分析主要污染源(必要时作一定时间污染源监测)和混合污水现状监测资料的基础上,确定污水厂设计进水水质指标。②厂址选择说明结合城市现状和总体规划,具体说明厂址选择的原则和理由,并说明已选厂址的地形、地质、用地面积及外围条件(即三通一平)。③工艺流程的选择说明主要说明所选工艺方案的技术先进性、合理性,尤其要说明所采用新技术的优越性(技术经济方面)和可靠性(技术方面)。④工艺设计说明说明所选工艺方案初步设计的总体设计(平面和高程布置)原则,并说明主要工艺构筑物的设计(技术特征、设计数据、结构形式、尺寸)。⑤主要处理设备说明说明主要设备的性能构造、材料及主要尺寸,尤其是新技术设备的技术特征、构造形式、原理、施工及维护使用注意事项等。
(5)处理厂内辅助建筑(办公、化验、控制、变配电、药库、机修等)和公用工程(供水、排水、采胶、道路、绿化)的设计说明。
(6)处理厂自动控制和监测设计说明。
(7)处理厂污水和污泥的出路。
(8)存在的问题及对策建议。
2.工程量列出本工程各项构(建)筑物及厂区总图所涉及的混凝土量、钢筋混凝土土量、建筑面积等。
3.设备和主要材料量、挖土方量、回填土方量列出本工程的设备和主要材料清单(名称、规格、材料、数量)。
4.工程概算书说明概算编制依据、设备和主要建筑材料市场供应价格、其他间接费情况等。列出总概算表和各单元概算表。说明工程总概算投资及其构成。
5.设计图纸各专业(工艺、建筑、电气与自控)总体设计图(总平面布置图、系统图),比例尺(1:200)~(1:1000),主要工艺构筑物设计图(平面、竖向),比例尺(1:100)~(1:200)。
施工图
编辑
施工图设计在初步设计或方案设计批准之后进行,其任务是以初步设计的说明书和图纸为依据,根据土建施工、设备安装、组(构)件加工及管道(线)安装所需要的程度,将初步设计精确具体化,除污水处理厂总平面布置与高程布置、各处理构筑物的平面和竖向设计之外,所有构筑物的各个节点构造、尺寸都用图纸表达出来,每张图均应按一定比例与标准图例精确绘制。施工图设计的深度,应满足土建施工、设备与管道安装、构件加工,施工预算编制的要求。施工图设计文件以图纸为主,还包括说明书、主要设备材料表。
1. 施工图设计说明书
①设计依据初步设计或方案设计批准文件,设计进出水水质。②设计方案扼要说明污水处理、污泥处理及气体利用的设计方案,与原初步设计比较有何变更,并说明理由,设计处理效果。③图纸目录、引用标准图目录。④主要设备材料表。⑤施工安装注意事项及质量、验收要求。必要时另外编制主要工程施工方法设计
2.设计图纸
(1)总体设计①污水处理厂总平面图比例尺(1:100)~(1:500),包括风玫瑰图、坐标轴线、构筑物与建筑物、围墙、道路、连接绿地等的平面位置,注明厂界四角坐标及构(建)筑物对角坐标或相对距离,并附构(建)筑物一览表、总平面设计用地指标表、图例。②工艺流程图又称污水污泥处理系统高程布置图,反映出工艺处理过程及构(建)筑物间的高程关系,应反映出各处理单元的构造及各种管线方向,应反映出各构(建)筑物的水面、池底或地面标高、池顶或屋面标高,应较准确地表达构(建)筑物进出管渠的连接形式及标高。绘制高程图应有准确的横向比例,竖向比例可不统一。高程图应反映原地形、设计地坪、设计路面、建筑物室内地面之间的关系③污水处理厂综合管线平面布置图应标示出管线的平面布置和高程布置,即各种管线的平面位置、长度及相互关系尺寸、管线埋深及管径(断面)、坡度、管材、节点布置(必要时做详图)、管件及附属构筑物(闸门井、检查井)。必要时可分别绘制管线平面布置和纵断面图。图中应附管道(渠)、管件及附属构筑物一览表。
(2)单体构(建)筑物设计图各专业(工艺、建筑、电气)总体设计之外,单体构(建)筑物设计图也应由工艺、建筑、结构(土建与钢)、电气与自控、非标准机械设备、公用工程(供水、排水、采暖)等施工详图组成。①工艺图比例尺(1:50)~(1:100),表示出工艺构造与尺寸、设备与管道安装位置与尺寸、高程。通过平面图、剖面图、局部详图或节点构造详图、构件大样图等表达,应附设备、管道及附件一览表,必要时对主要技术参数、尺寸标准、施工要求、标准图引用等做说明。②建筑图比例尺(1:50)~(1:100),表示出水平面、立面、剖面的尺寸、相对高程,表明内、外装修材料,并有各部分构造详图、节点大样、门窗表及必要的设计说明。③结构图比例尺(1:50)~(1:100),表达构(建)筑物整体及构件的结构构造、地基处理、基础尺寸及节点构造等,结构单元和汇总工程量表,主要材料表,钢筋表及必要的设计说明,要有综合埋件及预留洞详图。钢结构设计图应有整体装配、构件构造与尺寸、节点详图,应表达设备性能,加工及安装技术要求,应有设备及材料表。④主要建筑物给水排水、采暖通风、照明及配电安装图。
(3)电气与白控设计图①厂(站)区高、低压变配电系统图和一、二次回路接线原理图包括变电、配电、用电、启动和保护等设备型号、规格和编号。附材料设备表,说明工作原理,主要技术数据和要求。②各种控制和保护原理图与接线图包括系统布置原理图。引出或列入的接线端子板编号、符号和设备一览表以及运行原理说明。③各构筑物平、剖面图包括变电所、配电间、操作控制间电气设备位置、供电控制线路铺设、接地装置、设备材料明细表和施工说明及注意事项。④电气设备安装图包括材料明细表、制作或安装说明。⑤厂(站)区室外线路照明平面图包括各构筑物的布置、架空和电缆配电线路、控制线路和照明布置。⑥仪表自动化控制安装图料明细表,以及安装调试说明⑦非标准配件加工详图
(4)辅助设施设计图辅助与附属建筑物建筑、结构、设备安装及公用工程,如办公、仓库、机修、食堂、宿舍、车库等施工设计图。
(5)非标准设备设计图某些简单金属构件的设计详图可附于工艺设计图中。但由几种不同形式的零配件、构件组成的成套设备,又没有现成的设备可使用,其功能较独立,构造较复杂,加工不简单的设备或大型钢结构处理装置,应视为非标准设备,专门进行施工(制作、安装)图设计。①总装图表明构件零配件相互之间组装位置、制作加工与安装的技术要求、设备性能、使用须知及其他注意事项,必要时应有节点详图,附构件、零配件一览表。②部件图表明构件加工制作详图、组装图、制作和装配精度要求。③零件图零件的加工制作详图,须说明加工精度、技术指标、材料、数量等。
①工程设计项目立项后,设计单位根据审批的可行性研究报告进行施工图设计,其任务是将可行性研究报告确定的设计方案的具体化,要将污水处理厂(站)区、各处理构(建)筑物、辅助构(建)筑物等的平面和竖向布置,精确地表达在图纸上,其设计深度应能满足施工、安装、加工及施工预算编制要求。在施工图设计之前,可能还需进行扩大初步设计,进一步论证技术的可靠性、经济合理性和投资的准确性。
②工程设备招投标是经过比较投标方的能力、技术水平、工程经验、报价等,来选定工程施工单位和设备供应单位的过程,该过程是保证工程质量和节省工程投资的基础
③工程施工是项目建设的实现阶段,包括土建施工、设备加工制造及安装的全过程。本阶段设计人员应向施工单位和设备供应单位进行技术交底,施工单位要按设计图纸施工,施工人员发现问题或提出合理化建议,应经过一定手续才能变动,施工时,为了总结设计经验,应及时解决施工中出现的技术问题,或根据具体情况对设计作必要的修改和调整,设计人员要有计划地配合参加施工。对一般设计项目,指派主要设计人员到施工现场,解释设计图纸,说明工程目的、设计原则、设计标准和依据,提出新技术的特殊要求和施工注意事项;对重大或新技术项目,必要时应派现场设计代表,随时解决施工中存在的设计问题。
④竣工验收是全面检查设计和施工质量的过程,其核心是质量,不合格工程必须返工或加固。第三阶段项目验收阶段,包括联动试车、运行调试、达标验收等过程。联动试车由施工单位、设备供应单位、建设单位共同完成,检查设备及其安装的质量,以确保能正常投入使用。试运行的目的是要确保处理系统达到设计的处理规模和处理效果,并确定最佳的运行条件,对于生物处理系统,往往要用较长时间来完成“培菌”任务。达标验收是由环境保护部门检验处理系统出水是否达到排放标准。污水处理工程的设计内容设计工作按建设项目所处理的对象不同可划分为城市污水处理厂工程设计和工业企业废水处理站工程设计,由于污水来源、性质、水量及处理工艺方面差别较大,使其设计工作亦有所不同。设计工作按建设项目技术的复杂程度可划分为两个阶段(初步设计和施工图设计)或一个阶段(施工图设计);同样可按污水处理规模大小或重要性划分为两阶段设计或一阶段设计。技术复杂、处理规模大、重要的项目一般按两阶段设计,技术复杂程度、处理规模、重要性均小的按一阶段设计。两阶段设计时,必须在上阶段设计文件得到上级主管部门批准后方允许进行下阶段的设计工作。
Ⅳ 污水处理厂高程布置时,局部水头损失能按照沿程水头损失的50%计算吗
局部水头损失不能按照郾城水头损失的%计算的。
污水厂的高程
污水处理厂污水处理高程布置的主要任务是: 确定各构筑物和泵房的标高确 定处理构筑物之间连接管(渠)的尺寸及其标高,通过计算确定各部位的水位标 高,从而能够使污水沿处理流程在处理构筑物之间通畅的流动,保证污水处理厂的正常运行。
污水厂的高程布置 为了降低运行费用和便于管理, 污水在处理构筑物之间的流动按重力流考虑 为宜(污泥流动不在此例) 。为此,必须精确地计算污水流动中的水头损失。 水头损失包括[2]: (1)污水经各处理构筑物的内部水头损失; (2)污水经连接前后两构筑物管渠的水头损失,包括沿程水头损失和局部 水头损失; (3)局部水头损失按沿程水头损失的 0.3 倍计。 6.2.3 高程计算 沿程水头损失按: h = iL 计算,i 为管渠的坡度; 局部水头损失按: h = ξ v2/ 2g 计算,ξ 为局部水头损失系数。
污水处理厂高程布置应考虑事项
(1)选择一条最长、水头损失最大的流程进行水力计算,并应适当留有余 地,以保证任何情况下,处理系统都能够运行正常;
(2) 计算水头损失时一般以近期最大的流程作为构筑物和管渠的设计流量; 计算涉及远期流量的管渠和设备时,应以远期最大流量为设计流量,并酌加扩建 时的备用水头; (3)在做高程布置时应注意污水流程与污泥流程的配合,尽量减少需抽升 的污泥量。
Ⅳ 污水处理厂数据分析
你这个数据中T-N试超标的,标准是15,总磷也是超标的(你这个肯定是06年前建设的吧),标准是0.5,SS也是超标的,标准是10.其他数据是没什么太大问题的。还有就是你这个VSS/SS 数值低,包括计算SVI以后,数值只有40,说明你污泥里无机物较多,有效成分较少。应该加大排泥了。从你的数据只能看到这些了,楼主别忘记给分啊。
Ⅵ 污水处理工艺流程,一般的分析操作规程
污水处理工艺流程
污水进入厂区先通过截流井(让厂能处理的污水进入厂区进行处理)进入粗格栅(打捞较大的渣滓)到污水泵(提升污水的高度)到细格栅(打捞较小的渣滓)到沉沙池(以重力分离为基础,将污水的比重较大的无机颗粒沉淀并排除)到生化池(采用活性污泥法去除污水里的BOD5、SS和以各种形式的氮或磷)进入终沉池(排除剩余污泥和回流污泥)进入D型滤池(进一步减少SS,使出水达到国家一级标准)进入紫外线消毒(杀灭水中的大肠杆菌)然后出水
生化池、终沉池出的污泥一部分作为生化池的回流污泥,剩下的送入污泥脱水间脱水外运
主要有物理处理法,生化处理法和化学处理法,生化处理法经常被使用,主流处理方法主要看被处理水质和受纳水体情况,一般城市生活污水的主流处理方法为生化处理法,如活性污泥法,mbr 等方法。
污水处理
sewage treatment.wastewater treatment 为使污水经过一定方法处理后.达到设定的某些标准.排入水体.排入某一水体或再次使用等的采取的某些措施或者方法等.
现代污水处理技术.按处理程度划分.可分为一级.二级和三级处理.
一级处理.主要去除污水中呈悬浮状态的固体污染物质.物理处理法大部分只能完成一级处理的要求.经过一级处理的污水.BOD一般可去除30%左右.达不到排放标准.一级处理属于二级处理的预处理.
二级处理.主要去除污水中呈胶体和溶解状态的有机污染物质(BOD.COD物质).去除率可达90%以上.使有机污染物达到排放标准.
三级处理.进一步处理难降解的有机物.氮和磷等能够导致水体富营养化的可溶性无机物等.主要方法有生物脱氮除磷法.混凝沉淀法.砂率法.活性炭吸附法.离子交换法和电渗分析法等.
整个过程为通过粗格删的原污水经过污水提升泵提升后.经过格删或者筛率器.之后进入沉砂池.经过砂水分离的污水进入初次沉淀池.以上为一级处理(即物理处理).初沉池的出水进入生物处理设备.有活性污泥法和生物膜法.(其中活性污泥法的反应器有曝气池.氧化沟等.生物膜法包括生物滤池.生物转盘.生物接触氧化法和生物流化床).生物处理设备的出水进入二次沉淀池.二沉池的出水经过消毒排放或者进入三级处理.一级处理结束到此为二级处理.三级处理包括生物脱氮除磷法.混凝沉淀法.砂滤法.活性炭吸附法.离子交换法和电渗析法.二沉池的污泥一部分回流至初次沉淀池或者生物处理设备.一部分进入污泥浓缩池.之后进入污泥消化池.经过脱水和干燥设备后.污泥被最后利用.
各个处理构筑物的能耗分析
1.污水提升泵房
进入污水处理厂的污水经过粗格删进入污水提升泵房.之后被污水泵提升至沉砂池的前池.水泵运行要消耗大量的能量.占污水厂运行总能耗相当大的比例.这与污水流量和要提升的扬程有关.
2.沉砂池
沉砂池的功能是去除比重较大的无机颗粒.沉砂池一般设于泵站前.倒虹管前.以便减轻无机颗粒对水泵.管道的磨损,也可设于初沉池前.以减轻沉淀池负荷及改善污泥处理构筑物的处理条件.常用的沉砂池有平流沉砂池.曝气沉砂池.多尔沉砂池和钟式沉砂池.
沉砂池中需要能量供应的主要是砂水分离器和吸砂机.以及曝气沉砂池的曝气系统.多尔沉砂池和钟式沉砂池的动力系统.
3.初次沉淀池
初次沉淀池是一级污水处理厂的主题处理构筑物.或作为二级污水处理厂的预处理构筑物设在生物处理构筑物的前面.处理的对象是SS和部分BOD5.可改善生物处理构筑物的运行条件并降低其BOD5负荷.初沉池包括平流沉淀池.辐流沉淀池和竖流沉淀池.
初沉池的主要能耗设备是排泥装置.比如链带式刮泥机.刮泥撇渣机.吸泥泵等.但由于排泥周期的影响.初沉池的能耗是比较低的.
4.生物处理构筑物
污水生物处理单元过程耗能量要占污水厂直接能耗相当大的比例.它和污泥处理的单元过程耗能量之和占污水厂直接能耗的60%以上.活性污泥法的曝气系统的曝气要消耗大量的电能.其基本上是联系运行的.且功率较大.否则达不到较好的曝气效果.处理效果也不好.氧化沟处理工艺安装的曝气机也是能耗很大的设备.生物膜法处理设备和活性污泥法相比能耗较低.但目前应用较少.是以后需要大力推广的处理工艺.
5.二次沉淀池
二次沉淀池的能力消耗主要是在污泥的抽吸和污水表明漂浮物的去除上.能耗比较低.
6.污泥处理
污泥处理工艺中的浓缩池.污泥脱水.干燥都要消耗大量的电能.污泥处理单元的能量消耗是相当大的.这些设备的电耗功率都很大.
针对各个处理构筑物的节能途径
1.污水提升泵房
污水提升泵房要节省能耗.主要是考虑污水提升泵如何进行电能节约.正确科学的选泵.让水泵工作在高效段是有效的手段.合理利用地形.减少污水的提升高度来降低水泵轴功率N也是有效的办法.定期对水泵进行维护.减少摩擦也可以降低电耗.
2.沉砂池
采用平流沉砂.避免采用需要动力设备的沉砂池.如平流沉砂池.采用重力排砂.避免使用机械排砂.这些措施都可大大节省能耗.
3.初次沉淀池
初次沉淀池的能耗较低.主要能量消耗在排泥设备上.采用静水压力法无疑会明显降低能量的消耗.
4.生物处理构筑物
国外的学者通过能耗和费用效益分析比较了生物处理工艺流程.他们认为处理设施大部分的能量消耗是发生在电机这类单一的设备上.因而节能应从提高全厂功率因数.选择高效机电设备及减少高峰用电要求等方面入手.他们提出的节能措施既包括改善电机的电气性能.也包括解决运转的工艺问题.还包括污水厂产物中的能量回收(Energy
Recovery).
曝气系统的能耗相当大.对曝气系统能耗能效的研究总是涉及到曝气设备的改造和革新.新型的曝气设备虽然层出不穷.但目前仍然可划分为2类:第1种是采用淹没式的多孔扩散头或空气喷嘴产生空气泡将氧气传递进水溶液的方法.第2种是采用机械方法搅动污水促使大气中的氧溶于水的方法.微孔曝气.曝气扩散头的布局和曝气系统的调节这些都是节能的有效措施.在传统活性污泥处理厂曝气池中辟出前端厌氧区.用淹没式搅拌器混合的节能.生物除磷方案.这一简单的改造可以节省近20%的曝气能耗.如果算上混合用能.节能也达到12%.自动控制系统的应用于污水处理节能.曝气系统进行阶段曝气.溶解氧存在浓度梯度.既减少了能耗.又可以改善处理效果.减少污泥量.
生物膜法处理工艺采用厌氧处理可以明显降低能量的消耗.
5.二次沉淀池
二次沉淀池中对排泥设备的研究和排泥方式的改善是降低能耗的有效方法.
6.污泥处理
污泥处理系统节能研究主要集中于污泥处理的能量回收.从污水污泥有机污染物中回收能量用于处理过程早在上世纪初就已投入实践.但能源危机之前一直不受重视.目前有两种回收途径:一是污泥厌氧消化气利用.一是污泥焚烧热的利用.
消化气性质稳定.易于贮存.它可通过内燃机或燃料电池转化为机械能或电能.废热还可回收于消化污泥加热.因此利用消化气能解决污水厂不同程度的能量自给问题.林荣忱等人比较了沼气发电机和燃料电池两种利用形式.认为燃料电池能量利用率高.具有很好的发展前途.对消化气的最大化利用是提高能效的主要方式.沼气发电机组并网发电的研究和应用在国内已有应用实例.是大型污水处理厂的沼气综合利用的可行途径.
另外一种能量回收方式是将城市固体废物焚烧场建在污水处理厂旁.将固废与污水污泥一起焚烧.获得的电能用于处理厂的运转.
城市污水处理的能耗分析研究与节能技术和手段的发展往往并不同步.由于污水处理能量平衡分析方法研究的欠缺.节能措施的制订和实施常常超前.而多数节能途径和手段常常由处理厂的操作管理人员结合各处理设施实际情况提出.具有经验性和个别性.不一定能适用于其他污水厂甚至是工艺相似的污水厂,另一方面.从广义上说.污水处理学科领域的技术创新.新材料和新设备的使用都蕴涵着节能增效的潜力.因而节能的途径和手段往往是很宽泛的.
结论
污水处理是能源密集(energy intensity)型的综合技术.一段时期以来.能耗大.运行费用高一定程度上阻碍了我国城市污水处理厂的建设.建成的一些处理厂也因能耗原因处于停产和半停产状态.在今后相当长的一段时期内.能耗问题将成为城市污水处理的瓶颈.能否解决耗污水厂的能耗问题.合理进行能源分配.已经成为决定污水处理厂运行效益好坏的关键因素.能耗是否较低.也是未来新的污水处理厂可行性分析的决定性因素.开发能效较高的污水处理技术.合理设计及运行污水处理厂.必将是未来污水处理厂设计和运行的必由之路.
楼下的,不许照抄!!!!
Ⅶ 污水处理过程中COD分析有什么作用
化学需氧量COD(Chemical
Oxygen
Demand)是以化学方法测量水样中需要被氧化的还原性物质的量
一、进口cod显示水中有机物的含量,反应水的污染程度
二、各单体cod可反应污水处理构筑物处理效率
三、出水cod是污水厂出水重要控制指标,一级b标准,要求小于60.一级a标准,要求小于50.
Ⅷ A2/O法污水生物脱氮除磷处理技术与应用的目录
前言
第1章 绪论
1.1 我国水环境与城市污水处理状况
1.1.1 我国水环境现状
1.1.2 我国水污染特征及其对策
1.1.3 我国城市污水处理现状及存在的问题
1.2 水体富营养化问题及其危害
1.2.1 国内外水体富营养化状况
1.2.2 水体富营养化现象
1.2.3 水中氮磷的来源
1.2.4 水体富营养化的危害
1.2.5 水体富营养化的治理
1.2.6 我国控制氮磷污染的水环境标准
1.3 A2/O生物脱氮除磷工艺
1.3.1 A2/O工艺的发展
1.3.2 A2/O工艺生物脱氮除磷的原理
1.3.3 A2/O工艺的特点及影响因素
1.3.4 A2/O工艺在国内外的应用现状
1.4 A2/O工艺存在的问题及其对策
1.4.1 传统A2/O工艺存在的主要问题
1.4.2 A2/O工艺的改进措施
参考文献
第2章 生物脱氮除磷的新理论与新技术
2.1 传统生物脱氮理论
2.1.1 硝化反应
2.1.2 反硝化反应
2.1.3 传统生物脱氮技术存在的问题
2.2 生物脱氮新理论和新技术
2.2.1 短程硝化反硝化生物脱氮技术
2.2.2 厌氧氨氧化生物脱氮技术
2.2.3 同步硝化反硝化生物脱氮技术
2.3 传统生物除磷理论及其影响因素
2.3.1 传统生物除磷的生化反应机理
2.3.2 传统生物除磷系统的主要影响因素
2.4 反硝化除磷脱氮新理论和新技术
2.4.1 反硝化除磷脱氮理论
2.4.2 反硝化除磷脱氮工艺
2.4.3 反硝化除磷工艺的影响因素
参考文献
第3章 A2/O工艺系统性能及其运行优化的研究
3.1 A2/O工艺的反硝化除磷性能
3.1.1 试验方法及方案设计
3.1.2 A2/O工艺的除磷性能
3.1.3 A2/O工艺的脱氮性能
3.1.4 A2/O工艺的COD去除性能
3.2 过量曝气对A2/O工艺生物脱氮除磷的影响
3.3 进水C/N比和C/P比对A2/O工艺生物脱氮除磷的影响
3.3.1 试验方案
3.3.2 进水C/N比对氮和磷的去除
3.3.3 进水C/P比对氮和磷去除的影响
3.4 几种控制变量对A2/O工艺性能的影响
3.4.1 MLSS对A2/O工艺的影响
3.4.2 SRT对A2/O工艺的影响
3.4.3 污泥回流比对A2/O工艺的影响
3.4.4 内循环回流比对A2/O工艺的影响
3.4.5 缺氧区与好氧区容积比对A2/O工艺的影响
3.5 分段进水对A2/O工艺脱氮除磷性能的影响
3.5.1 对氮去除的影响
3.5.2 对磷去除的影响
3.5.3 不同分段进水比时系统沿程方向各参数的变化规律
3.5.4 最优分段进水比的适用性
3.6 A2/O工艺生物脱氮除磷性能优化及其运行
3.6.1 西班牙Ciudad Real污水处理厂营养物去除优化
3.6.2 A2/O工艺脱氮除磷系统的运行研究
3.7 强化A2/O工艺反硝化除磷性能的运行策略
3.7.1 内循环回流量的控制与优化
3.7.2 厌氧/缺氧/好氧区体积比的优化
3.7.3 分段进水的优化
3.8 A2/O系统内DO、ORP及pH的变化规律
3.8.1 DO、ORP及pH的沿程变化规律
3.8.2 D0、ORP及pH的沿程变化原因
3.8.3 反硝化除磷过程中0RP在线信息的变化规律
3.9 生物脱氮除磷新理论和新技术在A2/O工艺中的实现
3.9.1 短程硝化反硝化的实现
3.9.2 同步硝化反硝化和反硝化除磷的建立
3.9.3 缺氧硝化现象在A2/O系统中的出现及其特征
3.10 A2/O工艺强化反硝化除磷体系中微生物特性分析
3.10.1 聚磷颗粒染色的沿程特征变化
3.10.2 胞内储存物PHB染色的沿程特征变化
3.10.3 微生物电镜扫描分析的沿程特征变化
参考文献
第4章 A2/O工艺的数学模型与模拟
4.1 A2/O工艺反硝化除磷代谢模型
4.1.1 反硝化除磷代谢模型
4.1.2 反硝化除磷动力学
4.1.3 A2/O反硝化除磷工艺动力学模式
4.2 TUD联合模型在A2/O工艺的应用
4.2.1 倒置A2/O工艺TUD模型的建立与模拟
4.2.2 采用TuD模型动态模拟倒置A2/O工艺运行工况
4.2.3 采用TuD联合模型对倒置A2/O工艺运行诊断与优化
4.3 A2/O工艺控制策略benchmark仿真平台
4.3.1 平台的开发
4.3.2 仿真平台的应用与模拟
参考文献
第5章 A2/O污水处理系统的运行、管理、设计与应用
5.1 A2/O污水处理系统污泥的培养及调试
5.1.1 污泥的培养与驯化
5.1.2 系统的运行调试
5.1.3 运行调试实例
5.2 A2/O污水处理系统的运行管理
5.2.1 A2/O污水处理厂主要构筑物的运行管理
5.2.2 提高A2/O工艺整体处理效果的措施
5.2.3 保定市污水处理总厂A2/O工艺的运行管理
5.3 A2/O污水处理工艺常见问题及其对策
5.3.1 污泥膨胀
5.3.2 污泥上浮
5.3.3 活性污泥泡沫
5.4 A2/O污水处理工艺的过程控制
5.4.1 检测变量及常用在线仪表
5.4.2 A2/O工艺的过程控制原则
5.4.3 A2/O污水处理工艺的控制过程
5.4.4 A2/O污水处理系统优化的方法或策略
5.4.5 无锡芦村A2/O污水处理厂自动控制系统
5.4.6 应用专家控制系统提高A2/O工艺的脱氮效率
5.5 A2/O污水处理工程的设计
5.5.1 工程设计的依据与原则
5.5.2 A2/O工艺设计实例1
5.5.3 A2/O工艺设计实例2
5.6 A2/O污水处理典型工程实例
5.6.1 青岛李村河污水处理厂
5.6.2 北京清河污水处理厂
5.6.3 广州大坦沙污水处理厂
5.6.4 成都第三污水处理厂
5.6.5 纪庄子污水处理厂
参考文献
第6章 A2/O变形工艺及其工程应用
6.1 倒置A2/O工艺
6.1.1 倒置A2/O工艺的提出
6.1.2 倒置A2/O工艺脱氮除磷原理与特点
6.1.3 倒置A2/O工艺在实际生产中的应用
6.2 UCT工艺及其工程应用
6.2.1 UCT及其变形工艺
6.2.2 UCT工艺在污水处理工程中的应用
6.3 回流污泥反硝化A2/O工艺及其应用
6.3.1 回流污泥反硝化A2/O工艺
6.3.2 某改良型A2/O工艺的除磷脱氮运行效果
6.4 其他A2/O变形工艺
6.4.1 三环式A2/O工艺
6.4.2 PASF工艺
参考文献
符号说明