『壹』 如何提高泵的抽速详细点最好~谢谢
泵抽水的话 水是流体的 流体压力会限制扬程 不合理的内部设计会增加功耗 合适的精度公差专结构简单能减属少加工成本和稳定性能便于检修 扬高的要求与使用场合确定总体设计方向 相同的管道越高的压力水流的体积也会越高但也有限 还会增加泵体的疲劳强度与电机功耗 抽速有关的就是大功率 大管道 提高泵室压力 还有稳定性 结构简单 越大就不容易维护 还要尽量减少噪音 减少功耗 提高扬程
『贰』 提升水泵工作效率的方法
水泵在不同流量和进出口压力下,效率是变化的,一般厂家说明书中有工作曲线。固定工况下水泵效率应该是稳定的。不过在水泵低于额定流量时,增加变频器可以降低电机功耗,提高效率。因为调节流量的过程,一般是减小出口通流面积,通过节流作用,增加水的出口阻力,减小流量,节流会有不可逆损失;而变频器是改变电机转速,降低水流量,水出口阻力变化不大。
采用高分子复合材料在水泵工作过程中,泵内流动的水受到其与流道和泵叶轮表面的摩擦以及水本身粘度的影响,泵所消耗的能量主要用于抵抗水表面的流动摩擦力及涡流阻力。水在流动过程中所消耗的能量(水头损失)就是用来克服内摩擦力和水与设备界面的摩擦力。如果泵、叶轮表面光滑(这种表面称为水力光滑表面)表面阻力较小,消耗能量就小。
在水泵过流面和叶轮上喷涂高分子复合材料,使其表面形成水力光滑表面,超光滑表面涂层表面光洁度是经过抛光后不锈钢的20倍,这种极光滑的表面减少了泵内流体的分层,从而减少泵内部紊流,降低了泵内的容积损失和水力损失,降低了电耗。达到降低水流阻力损失的目的,从而提高水泵的水力效率,同时在一定程度上也可提高机械效率和容积效率。
涂层分子结构的致密性,能隔绝空气、水等介质和水泵叶轮母材的接触,最大程度减少电化学腐蚀及锈蚀。另外,高分子复合材料本质是高分子聚合物,具有抗化学腐蚀性,可以提高泵的抗腐蚀性,能大大增强泵抵抗冲蚀和抗腐蚀能力。
值得一提的是,这种高性能水泵上海阳光泵业有生产。
『叁』 泵的扬程和提升高度的区别
1、对水泵性能影响不同:扬程是泵特性曲线的重要参数之一,另一个参数是流量回,在特性曲线的交点的上答、下方满足不同的水泵性能要求;而提升高度(升扬高度)是泵将液体从低处送到高处的垂直高度,是对泵性能体现的重要作用。
2、本质不同:扬程是水泵系统的参数指标;而提升高度(升扬高度)是泵功能的具体表现。
(3)泵性能提升扩展阅读:
水泵系统的扬程的特点:
1、离心泵的扬程以叶轮中心线为基准,分由两部分组成。
2、扬程是从水泵叶轮中心线至出水池水面的垂直高度,即水泵能把水压上去的高度。
3、泵的扬程包括吸程在内,近似为泵出口和入口压力差,用H表示,单位为米(m)。
4、装置系统所需的扬程是选泵的又一重要性能数据,一般要用放大5%-10%余量后扬程来选型。
『肆』 如何提高泵的抗汽蚀性能
增大泵的入口压力
降低输送介质的温度
降低泵的安装高度均可以提高离心泵抗汽蚀性能
『伍』 请问哪种方法可以最有效的提升水泵效率
可以试试福世蓝高分子复合材料泵效涂层,本系列抗腐蚀、磨蚀、气蚀高分子复合回材料还用于抵抗答流体环境下的磨损、腐蚀、气蚀,适应交替变形和温度的变化等性能,确保材料具有优异的防腐蚀、抗气蚀、耐磨损能力。其表面光滑程度是铸造表面的数倍,这种光滑的表面减少了泵内流体的分层,减少紊流,降低了泵内的容积损失和水力损失,降低了电耗,从而提高泵的综合效率达5%-10%。
『陆』 齿轮泵的性能提高
提高齿轮油泵性能的可行回路
齿轮油泵因受定排量的结构限制,通常认为齿轮泵仅能作恒流量液压源使用。
在泵上直接安装控制阀,可省去泵与方向阀之间管路,从而控制了成本。较少管件及连接件可减少泄漏,从而提高工作可靠性。而且泵本身安装阀可降低回路的循环压力,提高其工作性能。下面是一些可提高齿轮泵基本功能的回路,其中有些是实践证明可行的基本回路,而有些则属创新研究。
卸载回路
卸载元件将在大流量泵与小功率单泵结合起来。液体从两个齿轮油泵因受定排量的结构限制,通常认为齿轮泵仅能作恒流量液压源使用.齿轮油泵因受定排量的结构限制,通常认为齿轮油泵仅能作恒流量液压源使用。然而,附件及螺纹联接组合阀方案对于提高其功能、降低系统成本及提高系统可靠性是有效的,因而,齿轮油泵的性能可接近价昂、复杂的柱塞泵。这时,大流量泵便把流量从其出口循环到入口,从而减少了该泵对系统的输出流量,即将泵的功率减少至略高于高压部分工作的所需值。流量降低的百分比取决于此时未卸载排量占总排量的比率。组合或螺纹联接卸载阀减少乃至消除了管路、孔道和辅件及其它可能的泄漏。
最简单的卸载元件由人工操纵。弹簧使卸载阀接通或关闭,当给阀一操纵信号时,阀的通断状态好被切换。杠杆或其它机械机构是操纵这种阀的最简单方法。
导控(气动或液压)卸载阀是操纵方式的一种改进,因为此类阀可进行远程控制。其最大的进展是采用电气或电子开关控制的电磁阀,它不仅可用远程控制,而且可用微机自动控制,通常认为这种简单的卸载技术是应用的最佳情况。
人工操纵卸载元件常用于为快速动作而需大流量及快速动作而需大流量及为精确控制而减少流量的回路,例如快速伸缩的起重臂回路。图1所示回路的卸载阀无操纵信号作用时,回路一直输出大流量。对于常开阀,在常态下回路将输出小流量。
压力传感卸载阀是最普遍的方案。如图2所示,弹簧作用使卸载阀处于其大流量位置。回路压力达到溢流阀预调值时,溢流阀开启,卸载阀在液压和作用下切换至其小流量位置。压力传感卸载回路多用于行程中需快速、行程结束时需高压低速的液压缸供液。压力传感卸载阀基基本上是一个达到系统压力即卸的自动卸载元件,普遍用于测程仪分裂器和液压虎钳中。
流量传感卸载回路中的卸载阀也是由弹簧将其压向大流量位置。该阀中的固定节流孔尺寸按设备的发动机最佳速度所需流量确定。若发动机速度超出此最佳范围,则节流小孔压降将增加,从而将卸载阀移位至小流量位置。因此大流量泵相邻的元件做成可对最大流量节流的尺寸,故此回路能耗少、工作平稳且成本低。这种回路的典型应用是,限定回路流量达最佳范围以提高整个系统的性能,或限定机器高速行驶期间的回路压力。常用于垃圾运载卡车等。
压力流量传感卸载回路的卸载阀也是由弹簧压向大流量位置,无论达到预定压力还是流量,都会卸载。设备在空转或正常工作速度下均可完成高压工作。此特性减少了不必要的流量,故降低了所需的功率。因为此种回路具有较宽的负载和速度变化范围,故常用于挖掘设备。
具有功率综合的压力传感卸载回路,它由两组略加变化的压力传感卸载泵组成,两组泵由同一原动机驱动,每台泵接受另一卸载泵的导控卸载信号。此种传感方式称之为交互传感,它可使一组泵在高压下工作而另一组泵在大流量下工作。两只溢流阀可按每个回路特殊的压力调整,以使一台或两台泵卸载。此方案减少了功率需求,故可采用小容量价廉原动机。
负载传感卸载回路。当主控阀的控制腔(下腔)无负载传感信号时,泵的所有流量经阀1、阀2排回油箱;当给此控制阀施加负载传感信号时,泵向回路供液;当泵的输出压力超过负载传感阀的压力预定值时,泵仅向回路提供工作流量,而多余流量经阀2的节流位置旁通回油箱。
带负载传感元件的齿轮油泵与柱塞泵相比,具有成本低、抗污染能力强及维护要求低的优点。
优先流量控制
不论齿轮油泵的转速、工作压力或支路需要的流量大小,定值一次流量控制阀总可保证设备工作所需的流量。在图7所示的这种回路中,泵的输出流量必须大于或等于一次油路所需流量,二次流量可作它用或回油箱。定值一次流量阀(比例阀)将一次控制与液压泵结合起来,省去管路并消除外泄漏,故降低了成本。此种齿轮泵回路的典型应用是汽车起重机上常可见到的转向机构,它省去了一个泵。
负载传感流量控制阀的功能与定值一次流量控制的功能十分相近:即无论泵的转速、工作压力或支路抽需流量大小,均提供一次流量。但仅通过一次油口向一次油路提供所需流量,直至其最大调整值。此回路可替代标准的一次流量控制回路而获得最大输出流量。因无载回路的压力低于定值一次流量控制方案,故回路温升低、无载功耗小。负载传感比列流量控制阀与一次流量控制阀一样,其典型应用是动力转向机构。
旁路流量控制
对于旁路流量控制,不论泵的转速或工作压力高低,泵总按预定最大值向系统供液,多余部分排回油箱或泵的入口。此方案限制进入系统的流量,使其具有最佳性能。其优点是,通过回路规模来控制最大调整流量,降低成本;将泵和阀组合成一体,并通过泵的旁通控制,使回路压力降至最低,从而减少管路及其泄漏。
旁路流量控制阀可与限定工作流量(工作速度)范围的中团式负载传感控制阀一起设计。此种型式的齿轮泵回路,常用于限制液压操纵以使发动机达最佳速度的垃圾运载卡车或动力转向泵回路中,也可用于固定式机械设备。
干式吸油阀
干式吸油阀是一种气控液压阀,它用于泵进油节流,当设备的液压空载时,仅使极小流量(〈 18.9t/min)通过泵;而在有负载时,全流量吸入泵。如图10所示,这种回路可省去泵与原动机间的离合器,从而降低了成本,还减小了空载功耗,因通过回路的极小流量保持了设备的原动机功率。另外,还降低了泵在空载时的噪声。干式吸油阀回路可用于由内燃机驱动的任何车辆中开关式液压系统,例如垃圾装填卡车及工业设备。
液压泵方案的选择
齿轮油泵的工作压力已接近柱塞泵,组合负载传感方案为齿轮泵提供了变量的可能性,这就意味着齿轮泵与柱塞泵之间原本清楚的界限变理愈来愈模糊了。
合理选择液压泵方案的决定因素之一,是整个系统的成本,与价昂的柱塞泵相比,齿轮泵以其成本较低、回路简单、过滤要求低等特点,成为许多应用场合切实可行的选择方案。
『柒』 怎么改善液压泵的自吸性能
首先得确定,液压泵的自吸能力是泵的一种固有属性,指的是液压泵回在额定转速下答,从低于液压泵出口位置的开式油箱中自行吸油的能力。也就是说,从理论上讲,泵的自吸能力没法改变,但是却能提高泵的吸油能力,方法:
1、降低泵的安装高度;
2、加大泵吸油管直径;
3、一定程度上提高泵转速;
4、采用压力液压油箱等。
『捌』 中开泵的中开泵的效率分析及提升方案
1、由于水流的冲刷,水泵流道内壁和叶轮过水面变得粗糙不平,水泵内流道的摩阻系数增大,再加上水在泵内的流速很大,水头损失增加。水力效率降低。
2、由于在泵前投加药物或水质等原因,使泵壳内严重积垢或腐蚀。泵壳内积垢严重的可以使泵壳壁厚增加2ram左右,而且水泵内壁形成垢瘤,使泵体容积缩小、抽水量减少、并且流道粗糙,水头损失增加。客积效率和水力效率都降低。
3、由于水泵加工工艺造成的铸造缺陷、汽蚀、磨蚀、腐蚀和化学浸蚀等原因造成泵流道内产生空洞或裂缝,水流动时产生旋涡而造成能量损失。水力效率降低。
4、叶轮表面的汽蚀。由于叶片背水面运行时产生负压,当压力Pk<Pva时,产生汽穴和蜂窝表面后,在电化学腐蚀作用下,使泵叶汽蚀。
5、容积损失和机械损失。由于泵使用时间长,机械磨损产生漏失和阻力增大,使容积效率和机械效率降低。 以上原因,使水泵性能变差。运行效率降低2~5%,严重的可以使水泵效率降低10%以上。 1、采用高分子复合材料
在水泵工作过程中,泵内流动的水受到其与流道和泵叶轮表面的摩擦以及水本身粘度的影响,泵所消耗的能量主要用于抵抗水表面的流动摩擦力及涡流阻力。水在流动过程中所消耗的能量(水头损失)就是用来克服内摩擦力和水与设备界面的摩擦力。如果泵、叶轮表面光滑(这种表面称为水力光滑表面)表面阻力较小。消耗能量就小,在水泵过流面和叶轮上喷涂高分子复合材料,使其表面形成水力光滑表面,超光滑表面涂层表面光洁度是经过抛光后不锈钢的20倍,这种极光滑的表面减少了泵内流体的分层,从而减少泵内部紊流,降低了泵内的容积损失和水力损失,降低了电耗。达到降低水流阻力损失的目的,从而提高水泵的水力效率,同时在一定程度上也可提高机械效率和容积效率。涂层分子结构的致密性,能隔绝空气、水等介质和水泵叶轮母材的接触,最大程度减少电化学腐蚀及锈蚀。另外,高分子复合材料本质是高分子聚合物,具有抗化学腐蚀性,可以提高泵的抗腐蚀性,能大大增强泵抵抗冲蚀和抗腐蚀能力。
2、采用新型密封技术
水泵在工作过程中有一部分能量损失,其中包括机械磨损、容积损失和水力损失,机械损失是指水泵的轴套密封摩擦、轴承摩擦、叶轮表面与液体摩擦等。采用Blu-Goo超级润滑剂来降低水泵轴套密封摩擦、轴承摩擦,从而达到提高水泵效率、节能降耗的目的。其是一种有多种用途的特殊惰性材料,主要用于降低金属间接触。作为一种螺纹密封复合物,该材料在外螺纹和内螺纹间形成一个接触面,可以保护接头免受摩擦和磨损影响,同时可以承受1407 公斤/平方厘米的压力,甚至是磨损,腐蚀或错误机加工的螺纹面。该产品也是一种极好的齿轮箱添加剂,可以在内部件上形成以一层薄膜,从而降低摩擦,齿轮噪音以及泄露。它也明显降低力矩应力,满足动力减压需求,可以用于垫圈面或作为一种填料补充,通过密封以防止流体泄露。可以在316℃的温度下应用。
『玖』 如何提高泵与风机效率
能源工业作为国民经济的基础,对于社会、 经济的发展和人民生活水平的提高都极为重要。 在高速增长的经济环境下, 中国能源工业面临经济增长与环境保护的双重压力。而且,受资金、 技术、能源价格等因素的影响, 中国能源利用效率比发达国家低很多,只及发达国家的50%左右, 90%以上的能源在开采、加工转换、 储运和终端利用过程中损失和浪费。由此可见, 对能源的有效利用在我国已经非常迫切。 火电厂是最主要的能源消耗大户,在我国的二次能源结构中, 约占74%。而在火力发电厂中,泵与风机是最主要的耗电设备, 加上这些设备存在着“大马拉小车”的现象, 同时由于这些设备长期连续运行和常常处于低负荷及变负荷运行状态 ,运行工况点偏离高效点,运行效率降低, 大量的能源在终端利用中被白白地浪费掉。因此, 对电厂泵与风机进行节能研究有着突出重要的意义。 二、我国发电厂泵与风机运行状况及节能潜力分析 火力发电厂中运行的泵与风机种类繁多,数量多,总装机容量大, 耗电量大,约占全国火电发电量的6%。发电厂辅机的经济运行, 尤其是大功率的泵与风机的经济运行,直接关系到厂用电率的高低, 而厂用电率的高低是影响供电煤耗和发电成本的主要因素之一。 目前我国火电厂中除少量采用汽动给水泵, 液力耦合器及双速电机外,其它水泵和风机基本上都采用定速驱动。 这种定速驱动的泵,由于采用出口阀, 风机则采用入口风门调节流量,都存在严重的节流损耗。 尤其在机组变负荷运行时,由于水泵和风机的运行偏离高效点, 使运行效率降低。有资料显示: 我国50MW以上机组锅炉风机运行效率低于70%的占一半以上, 低于50%的占1/5左右。由于目前我国约2/3的泵、 风机类机械在运行中需要调节流量,用阀门式挡板调节, 能源损失和浪费很大,已经到了非改不可的地步了。 造成这种现象的原因是多方面的,主要是科研开发投入不足, 科研与生产缺乏有机的结合;生产工艺落后,型线误差大, 过流表面粗糙。目前我国大多采用木模整体铸造。由于中、 高比转速离心式泵与风机叶片扭曲,造型起模困难,造型误差较大。 目前我国使用的许多大型泵与风机, 其性能实测值与样本给定值误差较大,这也是主要原因之一。 我国许多大中型泵与风机套用定型产品,由于型谱是分档而设, 间隔较大,一般只能套用相近型产品, 造成泵与风机的实际运行情况偏离最优运行区,运行效率低, 能耗高。设计选型时加保险系数,裕量过大, 也会造成运行工况偏离最优区。 三、火电厂泵与风机节能改造的方法 针对我国泵与风机使用及运行实际情况, 下面从提高泵与风机本身效率及与管网匹配程度两方面对泵与风机节 能进行研究。 1.减小泵与风机内部损失,提高泵与风机效率。 泵与风机在把原动机的机械能转换成流体的机械能的过程中, 要产生各种能量损失,这些损失按其性质可分为机械损失、 容积损失和流动损失三部分。由于泵与风机内部流体运动的复杂性, 上述各种损失至今仍不能用理论方法计算出精确的结果, 主要依靠试验方法测定,再由此总结出半经验半理论的计算公式。 要提高泵与风机本身的效率,就要减少上述各种损失。 (1)泵与风机的机械效率主要取决于泵与风机叶轮的几何形状, 亦即决定于比转速值,所以应注意以下几点: 1)在选择或设计扬程(全压)高的泵(风机)时, 应该选择或设计转速较高而叶轮直径D2较小的这类泵(风机), 避免选用或设计转速低而D2大的这类泵(风机)。 2)在选择或设计高扬程(全压)的低比转速泵(风机)时, 可采用多级的泵(风机),或适当增大叶轮叶片的出口安装角, 尽量避免采用大的D2来达到高扬程(全压)的目的。 3)降低叶轮盖板外表面和泵壳内表面的粗糙度,可以减小△ Pm3,从而使泵与风机的效率提高。 减小泵与风机的容积损失、提高容积效率主要从两方面着手: 一是减小动、静间隙形成的泄漏流动的过流截面; 二是设法增加泄漏流道的流动阻力。 (2)为减少泵与风机内部的流动损失,提高流动效率, 在设计或改造泵与风机时,应注意以下几点: 1)合理确定过流部件各部位的流速值。 2)在流道内要尽量避免或减少出现脱流。 3)要合理选择各过流部件的进、出口角度, 以减少流体的冲击损失。 4)过流通道变化要尽可能地平缓;在流道内要避免有尖角、 突然转弯和扩大。 5)流道表面应尽量做到光滑和光洁,避免有粘砂、飞边、 毛刺等铸造缺陷。 2.正确选定泵与风机的设计参数; 对选型不当的泵与风机进行技术改造。 一台泵与风机是否节电取决于很多因素,除自身的效率外, 还与管网设计是否合理、 阻力大小及与管网是否匹配良好等因素有关。 所谓匹配指的是泵与风机设计的流量和扬程(风压) 应与管网所需流量和扬程(风压)相符,也就是说泵(风机) 所产生的扬程(全风压) 应能克服管网阻力的前提下满足管网流量的需要。 离心式泵与风机的流量通常是用调节门(风门或阀门)来调节的, 调节门关得越小,节流损失越大,泵与风机使用效率越低。 风机的高效率固然重要,但是如何提高泵与风机的运行效率更重要。 而实现泵与风机和管网合理地匹配是节能降耗最有效的途径。 为了减轻或防止因泵与风机的额定参数大于实际运行参数而造成运行 效率和可靠性降低, 可以根据不同情况分别采用切割叶片及更换高效叶轮两种方法对泵与 风机进行技术改造。 我国现在使用的泵与风机有许多模型效率指标均不高, 对这部分泵与风机,可以用高效泵与风机替换它, 也可以设计模型效率高的叶轮更换原叶轮,达到节能的目的。 在我国已有科研部门和高校对这方面进行研究, 并在实践中取得很好的效果。已成功进行技改的主要泵型有: 沅江48P-35IIA、沅江48P-30、沅江48P- 281C、沅江481-26II、48P-25、沅江481- 22、沅江48P-201、沅江481-201C、湘江56- 23A、48sh-22、32sh-19、32SA-19、 24sh-19A、20SA-22、14ssh13、12SH- 6、黄河1200S24A、800S24、800S16I、 500S35、300S58A、200S63A、KS2700- 130等。 3.电机换级和泵与风机降速。 若泵与风机扬程或全压富裕量达50%~60%, 则可将转速降低一档,以利节电。 4.泵与风机调速节能。 由于目前电网还缺少专门带尖峰负荷的机组(例如坝库式水电机组, 抽水蓄能机组,燃气轮机组等), 所以一般电网的尖峰负荷和低谷负荷都要求火电机组来承担, 火电机组不得不作调峰变负荷运行。在机组变负荷运行方式下, 如果主要辅机采用高效可调速驱动系统取代常规的定速驱动系统, 无疑可节约大量的节流损失,节电效果显著,潜力巨大。除此之外, 由于可调速驱动系统都具有软起动功能,可使电厂辅机实现软起动, 避免了由于电动机直接起动引起的电网冲击损失和机械冲击, 从而可以防止与此有关的一系列事故的发生。 电站锅炉风机的风量与风压的富裕度以及机组的调峰运行导致风机的 运行工况点与设计高效点相偏离, 从而使风机的运行效率大幅度下降。一般情况下, 采用风门调节的风机,在两者偏离10%时,效率下降8%左右; 偏离20%时,效率下降20%左右;而偏离30%时, 效率则下降30%以上。对于采用风门挡板调节风量的风机, 这是一个固有的不可避免的问题。可见,锅炉送、 引风机的用电量中, 很大一部分是因风机的型号与管网系统的参数不匹配及调节方式不当 而被调节门消耗掉的。因此, 改进离心风机的调节方式是提高风机效率, 降低风机耗电量的最有效途径。辅机采用调速驱动后, 机组的可控性提高了,响应速度加快,控制精度也提高了。 从而使整个机组的控制性能大大改善,不但改善了机组的运行状况, 还可以大大节约燃料,进一步节约能源。同时,采用变速调节以后, 可以有效地减轻叶轮和轴承的磨损,延长设备使用寿命,降低噪声, 大大改善起动性能。工艺条件的改善也能够产生巨大的经济效益。 泵与风机一样,除由于设计中层层加码,留有过大的富裕量, 造成大马拉小车的现象之外,还由于为满足生产工艺上的要求, 采用节流调节,造成更大的能源浪费现象。为了降低水泵的能耗, 除了提高水泵本身的效率,降低管路系统阻力, 合理配套并实现经济调度外,采用调速驱动是一种更加有效的途径。 因为大多数水泵都需要根据主机负荷的变化调节流量, 对调峰机组的水泵尤其如此。根据目前我国电网的负荷情况, 大多数125MW机组已参与调峰, 为扩大调峰能力甚至一些200MW机组也不得不参与调峰运行。 所以为这类调峰机组配套的各种水泵最好采用调速驱动, 以获得最佳节能效果。 对锅炉给水泵来说, 节流损失的大小还与负荷和汽轮机的运行方式有关。 在同一种运行方式下负荷越小节流损失越大; 在负荷相同时采用滑压运行方式的节流损失比采用定压运行方式还大 。因此,对调峰和滑压运行机组, 采用调速给水泵的节电效果尤为显著。 以上对泵与风机节能改造的不同方法进行分析, 其实远不止上述的几种方法,就调速节能而言, 就可以通过很多种途径去实现(如采用液力偶合器、变频器、 汽动给水泵、交流调速等),采用不同的调速装置,有不同的效果。 在实际应用中应视具体情况具体分析, 通过技术经济分析选用最优的改造方法, 这样才能收到节能降耗的效果。 四、国内外发展趋势 目前,国内外发展趋势主要往以下几方面发展: 1.计算机技术的发展,使得三维紊流的数值模拟实用化, 计算机优化设计更为有效,性能预估更准确,产品的更新换代加快, 新的水力模型不断取代旧模型。 2.泵与风机模型试验技术不断提高, 为新型泵与风机的研制提供了强有力的手段。 性能测试精度接近水轮机模型试验水平, 对效率测试的总误差可达0.3%。 泵与风机内部流场的观测手段更加先进。 泵与风机空化性能不断改善, 大型水泵的运行安全性能普遍受到重视。在强调以人为本的今天, 现场工作环境(设备的噪声和振动等)及检修工作量(设备寿命, 尤其是叶轮的寿命)等指标正在成为设备选择的重要指标。 3.对泵与风机性能要求更高,大型(1000KW以上) 和年运行时间较长的中型泵与风机一般采用针对性设计和制造的方法 ,要求“量体裁衣”( 即按现场实际运行扬程或风压和用户所需流量进行专门设计), 较少套用定型产品,使得泵与现机性能与实际使用情况更好地吻合, 从而取得最优的运行效果。 4.采用新的加工工艺,质量要求更高。 型线的准确性及表面加工质量大大提高, 产品的销售由价格主导转变为质量和性能主导。 五、结语 现代科技迅猛发展,国际间技术交流日益频繁, 技术及产品更新换代比较快, 制造厂及科研单位应充分利用我国加入WTO这一历史机遇, 加强国际间的交流合作,在充分利用、吸收、 消化国外先进技术的同时,加大本国科研力量的投入, 开发国产化的高质量的节能型泵与风机类产品。
『拾』 怎样提高泵与风机的性能
这个通常与电机的效率有关系,设法提高电机效率才是正道,
另外你说的性能是指哪一方面?内流量或者扬程?容
在电机效率和工作功率固定的情况底下,流量和扬程成反比,同一电机,想要扬程高的,流量必然小一点~~这个厂家可以调整,想要两者都提高,那么就只有提高电机效率或者换掉电机了