1. 各种污水处理设施的去除效率是多少
污水处理设施,对污染物指标的去除可以说几乎是零。
设施就是基础建设,或者处理专设备。要想谈论去除属率,可以从药剂的使用,工艺的选用等方向谈起。
例如说水中的COD去除效果。从工艺上讲,是用单纯的物化工艺流程、单纯的生化工艺流程,还是用物化—生化联合工艺流程。从药剂选择上来说,是用芬顿试剂、臭氧,还是用氧化剂—紫外线联合法。
我说几乎是零,因为还有膜处理技术。最常见的就是家用净水器,原理就是比水大的分子过不去。但是目前世界上所有的自来水厂、污水处理厂没有一家是完全靠膜处理技术,来处理水体的。理由就是成本高且处理量少。当然随着科学的进步,这有着非常好的发展前景。
希望能帮到你!!!
2. 城镇污水处理的主要考核指标是污水处理总量及什么
城镇污水处理工作考核暂行办法
第一条 为加强城镇污水处理设施建设和运行管理,依据《国务院关于印发节能减排综合性工作方案的通知》(国发[2007]15号)及有关规定,制定本办法。
第二条 本办法适用于对城镇污水处理设施建设、运行和管理工作考核。
第三条 住房和城乡建设部负责对各省、自治区、直辖市城镇污水处理工作考核。 各省、自治区、直辖市人民政府住房和城乡建设厅(水务厅(局)、市政管委会)负责本行政区内城镇污水处理工作考核。
第四条 考核采取日常监管、现场核查和重点抽查相结合的方式进行。
第五条 考核指标主要为城镇污水处理设施覆盖率、污水处理率、处理设施利用效率、污染物削减效率以及监督管理指标。
第六条 住房和城乡建设部于每年5月前,对上一年度全国城镇污水处理工作情况进行考核。各省、自治区、直辖市于每年3月前完成上一年度城镇污水处理工作自查报告并报送住房和城乡建设部。自查内容除考核指标外,还应包括城镇污水处理规划编制和执行、城镇污水处理监管制度和落实、污水处理收费、污水处理水质监测、重大安全事故等情况。 第七条 住房和城乡建设部负责制定考核评分细则,具体评分细则参见附件。考核结果采用百分制记分,分为优(≥85分)、良(<85分,≥70分)、中(<70分,≥60分)、差(<60分)四个等级。对考核结果为优的将给予表彰,对考核结果为差的,认定为未通过年度考核,并给予通报。
未通过年度考核的省(自治区、直辖市)应在30天内向住房和城乡建设部做出书面报告,并提出限期整改措施。
第八条 对在考核工作中瞒报、谎报和造假的地区,予以通报批评。对直接责任人员,要严肃处理。
第九条 本办法由住房和城乡建设部负责解释。 第十条 本办法自印发之日起施行。 附件:
1、省、自治区、直辖市城镇污水处理考核评分细则 2、36个大中城市污水处理考核评分细则
一、考核总分计算
考核指标包括:设施覆盖率、城镇污水处理率、处理设施利用效率、主要污染物削减效率和监督管理指标。考核采用百分制,考核总分为各项考核指标分值之和。
二、考核指标分值计算
(一)设施覆盖率(25分)
设施覆盖率分值按所辖设市城市和县城污水处理设施建成率加权计算。计算公式如下:(略)
所辖市县设施建设情况依据“全国城镇污水处理管理信息系统”数据。
(二)城镇污水处理率(20分)
城镇污水处理率分值计算公式如下:(略)
城镇污水处理厂污水处理量依据“全国城镇污水处理管理信息系统”本年度数据;其它
设施污水处理量和污水排放总量依据《中国城市建设统计年鉴》上一年度数据。考虑到污水处理率统计的复杂性,可根据全国城镇污水处理率的实际情况,对污水处理率最高得分作适当调整。
(三)处理设施利用效率(20分)
处理设施利用效率分值按不同运行负荷率对应的实际处理水量加权计算。计算公式如下:(略)
运行负荷率依据“全国城镇污水处理管理信息系统”数据。
(四)主要污染物削减效率(20分)
污染物削减效率分值按不同的污染物削减效率的削减总量加权计算。计算公式如下:(略)
主要污染物削减量依据“全国城镇污水处理管理信息系统”数据。
(五)监督管理指标(15分)
监督管理指标分值按“全国城镇污水处理管理信息系统”数据上报分值和水质化验管理分值加和计算。计算公式如下:
监督管理分值=数据上报管理分值+水质化验管理分值
1、数据上报管理分值(9分)
数据上报管理分值=在建项目分值+运行项目分值(略)
其中,上报率依据“全国城镇污水处理管理信息系统”数据。
2、水质化验管理分值(6分)
水质化验管理分值计算公式如下:(略)
其中,上报率依据“全国城镇污水处理管理信息系统”数据,取各指标项实报期数与应报期数之比。
3、在专项检查、抽查中,发现上报数据存在弄虚作假现象的,每一项扣3分,直至将总分15分全部扣净。
请参考:住房和城乡建设部颁布的《城镇污水处理工作考核暂行办法》
3. 我国每年污水处理率是多少
目前,水污染在中国已成为不容忽视的事实,而日益膨胀的城镇每天产生的大量生产生活污水也成了水污染的元凶之一.污水处理,这一人类自身能够采取的应对补救措施也更多地进入人们的视野.
城镇污水处理现状不容乐观
“2004年,全国661座城市有污水处理厂708座,处理能力4912万m3/d,全年城市污水处理量162.8亿m3,城市污水处理率达到了45.7%;全国的1636个县城有117座污水处理厂,处理能力273万m3/d,污水处理率只有11.2%.” 近日,在2006城市水业战略论坛上,中国国际工程咨询公司社会事业部城建环保处副处长于晓东指出,我国城镇污水处理的现状不容乐观.
“我们对1995年和2004年的745个国控断面进行对比分析,发现Ⅰ类到Ⅲ类水质从1995年的27.4%增加到了2004年的37.7%,同时劣Ⅴ类水质下降到了28.2%.虽然水环境整体情况还不是很乐观,但它已经开始从一个不好的状态向好的方向发展.在近十年GDP增长迅速、环境承载量巨大的情况下,我们的水环境发生转变,说明我国’十五’对污水设施投入力度的加大还是非常正确的.”于晓东介绍,从1998年以来,各地就加大城市污水处理方面的投入力度,至2005年国家共投入国债资金600亿元,带动其他资金1500亿元.
通过对1990年~2004年我国的用水量分析,于晓东发现用水量在1994年达到最高点之后,一直呈下降趋势,我国这几年经济整体增长非常快,但是用水量并没有一起增长,说明我国经济在向节约型转变.
“2004年,全国城市污水管道长度是7.8万千米.单位污水排放量的平均长度为8.1km/(万m3/d),但是低的省份可能连1km/(万m3/d)都不到,各个城市相差非常大,大部分城市的污水管网建设整体处于明显不足和滞后状态.”于晓东指出,我国城镇管网建设滞后,污水处理厂设计规模偏大、负荷率普遍较低是目前污水处理设施的主要问题.
而除了投资不足之外,于晓东认为,影响城镇污水管网建设的主要原因在于规划不科学,建设归建设,规划放在规划一边,双方根本没有衔接.部分污水处理厂建设时未充分调查并合理预测污水量,没有充分考虑到工业企业、城市建设布局调整或水价提高等原因导致规划范围内的用水量下降等因素,造成设施建设脱离环境保护的实际需要,“贪大求洋”,设计规模偏大.加之我国尚未形成有效的污水再生利用激励机制,再生水管线等配套设施建设不完善.由于资金不足、设计建设缺陷、执行标准逐步趋严等方面的原因,有相当一部分城市污水处理厂普遍存在不达标或不能同时达标的问题.
“收费不到位,相关运行机制尚未完善也是大的问题.”于晓东介绍,截至2005年6月底,全国有475个城市实行了污水处理收费制度,还有186个城市没有开征污水处理费,已经开征污水处理费的城市普遍存在收费标准低、征缴率低的问题.同时,政府和污水处理企业之间的职责分工仍然不明确,部门协调与征地、收费、运行等方面相应配套机制不完善,城市污水处理市场化、产业化进展比较缓慢,“这造成整个污水处理行业现在总量很大,但是效率不高的局面”.
“十一五”污水处理:严格对接重点流域保护
“当前工作要优先建设配套管网,保障污水处理率,加快处理设施的建设和升级改造,’十一五’末要保证达到1亿m3/d的能力,到’十二五’希望再增长三千万的规模.”于晓东说.
据悉,2004年,我国城镇污水处理总能力达到了5185万m3/d,如果加上各省市自治区目前在建规模,“十一五”初期全国城镇污水处理能力可望达到近9000万m3/d.
“对新增能力要进行一个总体布局的分析,布局总体效果要与污染贡献和水环境污染严重地区相吻合,达到治理效果最优.”于晓东建议,目前,尚未建成污水处理厂的297个城市,尤其是地级以上城市,应优先启动城市污水处理设施建设,优先考虑水源保护区、沿江与河流上游城镇、国家重点保护区和风景区;重点流域区域及大江大河沿岸城市应严加要求,达到较高的城镇污水处理率和处理程度;饮用水水源地周围及影响区的城市和县镇,根据相关法规和标准规范,从严确定污水处理率和处理程度;重点国家级保护区、风景区和自然遗产等,城镇污水处理率尽可能满足水环境保护的要求;东部发达地区、中部地区及西部欠发达地区,其他非重点领域、区域,根据当地环境容量和社会经济发展情况,确定合理可行的城镇污水处理率.
“城镇污水处理要与国家几个重点流域的保护规划严格对接,到2010年,南水北调东线、三峡库区及上游影响区、21世纪首都水资源影响区、滇池流域城镇污水处理率达到80%,淮河流域、太湖流域、巢湖流域达到75%,海河流域、辽河流域、松花江流域达到70%,黄河流域、珠江流域、长江中游达到60%.”
于晓东说,“十一五”期间要完成以上规划目标,新增投资将比“十五”期间更大,投资额度排序为:管网、新增污水能力、污泥处理处置、旧厂升级改造、再生水.同时保障措施必须跟上,如建立和完善技术标准和评估体系,组织技术开发、示范,解决关键技术问题;推行有利于城镇污水处理及再生利用的经济政策,积极推进水价改革,进一步建立和完善污水处理收费制度;明确各部门职责,加强组织协调,整合和优化配置资源;完善法律法规,规范项目建设,加强运营和市场监管等.
“到2010年底,全国城镇污水处理率平均达到60%以上,其中省会以上城市达到80%以上,地级市达到60%,县级市达到50%,县城达到30%,北方地区缺水城市再生水利用率达到污水处理量的20%以上.到’十一五’末,全国城镇污水集中处理能力达到1亿m3/d左右,城镇污水集中处理系统的处理量达到300亿m3/年左右,预计污染物每年削减量为COD600万吨以上.”最后,于晓东用这一连串数字描绘出五年后我国城镇污水处理的规划目标.
4. 污水处理量和处理质量指的是什么
典型的活性污泥工艺二沉池的底泥去向有二,①作为剩余污泥Qw排出进内入污泥处理设施;②作为容回流污泥Qr返回至曝气池,以维持其污泥浓度的稳定(其损失主要来自曝气池向二沉池的输送过程)。
更进一步,污水中的污染物去向也有二:①在曝气池中被活性污泥(即微生物)生化降解;②难降解物质转移富集到剩余污泥中,进一步处置。
5. 城市污水处理率计算中“城市污水产生总量”从哪里得到
城市污水包括:生活污水、工业废水以及部分合流制的雨水量
生活污水量和工业废水量
3.1.1城镇旱流污水设计流量,应按下列公式计算:
Qdr=Qd+Qm (3.1.1)
式中:Qdr-截留井以前的旱流污水设计流量(L/s);
Qd -设计综合生活污水量(L/s);
Qm -设计工业废水量(L/s);
在地下水位较高的地区,应考虑入渗地下水量,其量宜根据测定资料确定。
3.1.2居民生活污水定额和综合生活污水定额应根据当地采用的用水定额,结合建筑内部给排水设施水平和排水系统普及程度等因素确定。可按当地相关用水定额的80%~90%采用。
3.1.3综合生活污水量总变化系数可按当地实际综合生活污水量变化资料采用,没有测定资料时,可按本规范表3.1.3的规定取值。
表3.1.3 综合生活污水量总变化系数
平均日流量(L/s) 5 15 40 70 100 200 500 ≥1000
总变化系数 2.3 2.0 1.8 1.7 1.6 1.5 1.4 1.3
注:当污水平均日流量为中间数值时,总变化系数可用内插法求得。
3.1.4工业区内生活污水量、沐浴污水量的确定,应符合现行国家标准《建筑给水排水设计规范》GB50015的有关规定。
3.1.5工业区内工业废水量和变化系数的确定,应根据工艺特点,并与国家现行的工业用水量有关规定协调。
6. 常规生活污水,采用一体化污水处理设施处理时,污水量怎么计算呢有没有懂的人给个指点是按BOD还是COD计
不知道你想表达什么,你想计算原水污水量呢还是设计处理池容积呢。
7. 污水处理流量折算
你说的系数可能就是
总变化系数Kz:最大日最大时污水量与平均日平均时污水量的比值称为总变化系数。
一般是根据流量按经验查出来
有一个经验公式,该式是我国在多年观测资料的基础上进行综合分析总结出的计算公式。它反映了我国总变化系数与平均流量之间的关系:
Q平均<5时 kz=2.3
Q平均5<Q平均<1000时 kz=2.7/(Q平均的0.11次方)
Q平均>1000时 kz=1.3
8. 污水处理厂里面污水池散发臭气的量(每平方米散发的量)大约是多少有相关的计算公式吗
表1 臭气浓度控制参考值
序号 控制项目 一级标准 二级标准
1 氨 1.5 4.0
2 硫化氢 .06 .32
3 甲硫醇 .007 .02
4 甲硫醚 .07 .55
5 臭气浓度(倍数) 20 60
6 甲烷气(厂区最高浓度) 5 5
7 氯气 .4 .6
表2 污水处理厂构筑物脱臭通量
设施名称 通风量 备注
沉沙池 二层盖板作业空间 3~5次/小时
非作业空间 1~3次/小时
厂房式盖板作业空间 5~10次/小时 在漏斗上加盖办事为3~5次/小时
泵房 3~5次/小时或根据发热量计算 考虑内燃机用气
鼓风机房 3~5次/小时或根据发热量计算
电气室 根据发热量计算
发电机房 3~5次/小时 考虑内燃机用气
初沉池 二层盖板作业空间 3~5次/小时
非作业空间 1~3次/小时
厂房式盖板作业空间 5~10次/小时
曝气池 二层盖板作业空间 3~5次/小时
非作业空间 1.2×曝气空气量
厂房式盖板作业空间 3~5次/小时
加氯机房 5~7次/小时
污泥浓缩池 二层盖板作业空间 3~5次/小时+1.5×曝气空气量
非作业空间 1~3次/小时
厂房式盖板作业空间 5~10次/小时
污泥浓缩机房 3~10次/小时 热处理时采用其他方法
一般机械室 3~5次/小时
管廊 3~5次/小时
2.1 土壤脱臭技术
2.1.1土壤脱臭原理及特点
土壤脱臭机理主要可分为物理吸附和生物分解两类,恶臭气体-如胺类、硫化氢、低级脂肪酸等水溶性臭气类,被土壤中的水分吸收去除,而非溶性臭气则被土壤表面物理吸附继而被土壤中微生物分解。土壤脱臭法特点:① 维护管理费用低,效果与活性炭脱臭同等,② 处理1m2的臭气需2.5~3.3 m2土地;③ 但不适于降暴雨、下大雪地区;对于高温、高湿和水分、尘土、微尘等气体须予处理。
2.1.2 土壤和参数
设计土壤脱臭时选择的土壤指标应是:腐殖土为好,亚粘土等红土需掺入鸡粪、垃圾和污泥肥料进行改良后使用;矿质土和粘土不宜。土壤水分40~70%为宜。过于干燥的土壤需装设水喷淋器。种植草坪土壤表面保持倾斜,作为防降暴雨的措施。
日本经验得出:
臭气通过土壤中速度:2mm ~17mm/s;
设计一般选为5mm/s;
有效土壤厚度为50 cm;
臭气与土壤接触时间为1分40秒;
臭气通过活性炭速度:30cm~40cm/s;
有效厚度为40cm;
臭气与活性碳接触时间为1秒。
2.1.3 工程范例
(1)日本某处土壤脱臭床
臭气风量:600m3/min
臭气与土壤接触时间:2.7m3/m2min
需土壤面积:1580m2
(2)我国某处污泥脱水机房土壤脱臭床
脱水机房容积:V=450m3
设换气周期:每小时3次(20min)
换臭气量:22.5m3/min(450m3/20min)
脱臭负荷:设2.7m3(臭气)/m2(土)min
需土壤面积(计算值):8.3m2
(设计值):25m2
结构设计(自土壤表层向下)
2.3 高能离子脱臭技术
2.3.1 技术简介及工作原理
高能离子净化系统是瑞典的高新技术,它能有效地清除空气中的细菌、可吸入颗粒物、硫化合物等有害物质。使人的嗅觉感受到模拟自然的清新空气。它的核心装置是BENTAX离子空气净化系统,其工作原理是置于室内的离子发生装置发射出高能正、负离子,它可以与室内空气当中的有机挥发性气体分子(VOC)接触,打开VOC分子化学键,分解成二氧化碳和水;对硫化氢、氨同样具有分解作用;离子发生装置发射离子与空气中尘埃粒子及固体颗粒碰撞,使颗粒荷电产生聚合作用,形成较大颗粒靠自身重力沉降下来,达到净化目的;发射离子还可以与室内静电、异味等相互发生作用,同时有效地破坏空气中细菌生存的环境,降低室内细菌浓度,并将其完全消除。最终的效果是使室内空气变得象雨后森林般的纯净。
高能离子净化系统在欧洲诸国应用于医院、办公楼、公众大厅等,以空气净化以致达到模拟自然森林空气清新的效果。近些年逐步开发应用于污水处理厂和污水提升泵房的脱臭方面,法国、英国、苏格兰、瑞典等国的应用实例很多。
2.3.2 天津市某污水厂试验效果
(1)试验场地
脱臭中试场地选择在天津市某污水处理厂污泥处置实验室内,臭源是脱水污泥处置过程中产生的臭气。
(2)试验条件:
①污泥中试实验室
总容积:30m3 (3×4×2.5m3) ;
污泥发酵仓直径φ600mm,长3m;
臭气测试点与发酵仓的水平距离为1m;
高能离子净化系统主机及通风系统置于室内。
②臭气源
260kg脱水污泥投入到回转式污泥发酵仓中;
为了加强臭气强度,污泥采用了太阳能加热。
③高能离子净化系统
离子机规格型号:2—E—S气流:0.42m3/s
空气处理量:1500m3/h 功率:22w
为离子发射系统配套的通风系统;
④ 测试项目
负离子浓度;VOC(有机污染)气体总量;
H2S、O2、CO、CH4浓度。
⑤ 试验数据分析及评价
9小时连续运行,臭源VOC浓度周期性变化从25~100ppm,室内则从15~16.7ppm逐渐衰减到0~1ppm;室内测点离子浓度始终保持在160~170Ions/cm3;H2S气体浓度也保持为0。
试验结果变化曲线见图1及2。
⑥ 试验结果评价
A试验所采用的VOC测定仪,离子检测计和有毒有害气体测定仪都是先进的便携式仪器,灵敏度很高,能保证数据的可靠性;
B试运行是污泥发酵仓及太阳能加热后的污泥臭气,臭气强度高,通过BENTAX离子空气净化系统净化,仅1小时后,VOC浓度降低至零,离子浓度升高,H2S气体由4.0ppm减小到0,人员嗅觉感觉臭味明显下降。负载试验是在脱水污泥处置臭源条件下进行的,臭源VOC浓度从25~100ppm,室内测点则从15~16.7ppm逐渐衰减到0~1ppm;离子浓度始终保持在160~170 Ions/cm3;H2S气体浓度也保持为0。
技术结论意见为:通过利用高能离子除臭,在上述试验条件下,除臭效果技术上是可行的。
C 经济分析
在本实验条件下,高能离子净化系统对污水厂脱水污泥臭气的净化效果较显著,运行成本分析如下:
24小时运行耗电量仅为0.53kwh;
单位空间耗电量为0.018 kwh/m3.d;
按每度电0.45元计算
净化1立方米臭气的成本约为0.0081元/m3.d;
污泥脱水车间以1000 m3为计;
则运行成本直接耗电费用为8.1元/d。
9. 污水处理流量怎么折算
污水处理工艺流程是指在达到所要求的处理程度的前提下,污水处理各单元的有机组合,以满足污水处理的要求。
污水处理折算:
(一)、设计水量,水质及处理程度:
平均流量:5万吨/天,变化系数1.4;
进水:COD:400 mg/L,BOD:300 mg/L,SS:350 mg/L;
出水:COD: 60 mg/L,BOD: 20 mg/L,SS: 20 mg/L;
处理程度计算:COD:(400-60)/400=85% ;
BOD:(300-20)/300=93.3% ;
SS:(350-20)/350=94.3% 。
(二)、机械格栅及其设计:
机械格栅是由一组平行的金属栅条制成,斜置在污水流经的渠道上或水泵前集水井处,用以截留污水中的大块悬浮杂质,以免后续处理单元的水泵或构筑物造成损害。
设计中取二组机械格栅,N=2组,安装角度α=60°
Q 设计水量=平均流量×变化系数=0.810 m3/s
2、机械格栅槽宽度:
B=S(n-1)+bn
式中: B——机械格栅槽宽度(m);
S——每根机械格栅条的宽度(m)。
设计中取S=0.015m,则计算得B=0.93m。
3、进水渠道渐宽部分的长度:
4、出水渠道渐窄部分的长度:
5、通过机械格栅的水头损失:
6、栅后明渠的总高度:
H=h+h1+h2
式中: H——栅后明渠的总高度(m);
h2——明渠超高(m),一般采用0.3-0.5m
设计中取h2 =0.30m,得到H=1.28m。
7、栅槽总长度:
8、每日栅渣量计算:
采用机械除渣及皮带输送机或无轴输送机输送栅渣,采用机械栅渣打包机将栅渣打包,汽车运走。
9、进水与出水渠道:
城市污水通过DN1200mm的管道送入进水渠道,设计中取进水渠道宽度B1 =0.9m,进水水深h1=h=0.8m,出水渠道B2=B1=0.9m,出水水深h2=h1=0.8m。
(三)、沉砂池及其设计:
沉砂池是借助于污水中的颗粒与水的比重不同,使大颗粒的沙粒、石子、煤渣等无机颗粒沉降,减少大颗粒物质在输水管内沉积和消化池内沉积。
沉砂池按照运行方式不同可分为平流式沉砂池,竖流式沉砂池,曝气式沉砂池,涡流式沉砂池。
设计中采用曝气沉砂池,沉砂池设2组,N=2组,每组设计流量0.4051m3/s
1、沉砂池有效容积:
式中: V——沉砂池有效容积(m3);
Q——设计流量(m3/s);
t——停留时间(min),一般采用1-3min。
设计中取t=2min,Q=0.4051m3/s,得到V=48.61m3。
出水堰后自由跌落0.15m,出水流入出水槽,出水槽宽度B2=0.8m,出水槽水深h2=0.35m,水流流速v2=0.89m/s。采用出水管道在出水槽中部与出水槽连接,出水管道采用钢管。管径DN2=800mm,管内流速v2=0.99m/s,水力坡度i=1.46‰。
12、排砂装置:
采用吸砂泵排砂,吸砂泵设置在沉砂斗内,借助空气提升将沉砂排出沉砂池,吸砂泵管径DN=200mm。
(四)、初沉池及其设计:
初次沉淀池是借助于污水中的悬浮物质在重力的作用下可以下沉,从而与污水分离,初次沉淀池去除悬浮物40%~60%,去除BOD20%~30%。
初次沉淀池按照运行方式不同可分为平流沉淀池、竖流沉淀池、辐流沉淀池、斜板沉淀池。
设计中采用平流沉淀池,平流沉淀池是利用污水从沉淀池一端流入,按水平方向沿沉淀池长度从另一端流出,污水在沉淀池内水平流动时,污水中的悬浮物在重力作用下沉淀,与污水分离。平流沉淀池由进水装置、出水装置、沉淀区、缓冲层、污泥区及排泥装置组成。
沉淀池设2组,N=2组,每组设计流量Q=0.4051m3/s。
10、沉淀池总高度:
H=h1+h2+h3+h4
式中:h1——沉淀池超高(m),一般采用0.3-0.5;
h3——缓冲层高度(m),一般采用0.3m;
h4——污泥部分高度(m),一般采用污泥斗高度与池底坡底i=1‰的高度之和。
设计中取h1=0.3m,h3=0.3m,得h4=3.94m,得到H=7.54m。
15、出水渠道:
沉淀池出水端设出水渠道,出水管与出水渠道连接,将污水送至集水井。
式中: v3——出水渠道水流流速(m/s),一般采用v3≥0.4m/s;
B3——出水渠道宽度(m);
H3——出水渠道水深(m),一般采用0.5-2.0。
设计中取B3=1.0M,H3=0.8m,得到v3=0.51m/s>0.4m/s。
出水管道采用钢管,管径DN=1000mm,管内流速为v=0.51m/s,水力坡降i=0.479‰。
16、进水挡板、出水挡板:
沉淀池设进水挡板和出水挡板,进水挡板距进水穿孔花墙0.5m,挡板高出水面0.3m, 伸入水下0.8m。出水挡板距出水堰0.5m,挡板高出水面0.3m,伸入水下0.5m。在出水挡板处设一个浮渣收集装置,用来收集拦截的浮渣。
17、排泥管:
沉淀池采用重力排泥,排泥管直径DN300mm,排泥时间t4=20min,排泥管流速v4=0.82m/s,排泥管伸入污泥斗底部。排泥管上端高出水面0.3m,便于清通和排气。排泥静水压头采用1.2m。
18、刮泥装置:
沉淀池采用行车式刮泥机,刮泥机设于池顶,刮板伸入池底,刮泥机行走时将污泥推入污泥斗内。
(五)、曝气池及其设计:
设计中采用传统活性污泥法。传统活性污泥法,又称普通活性污泥法,污水从池子首端进入池内,二沉池回流的污泥也同步进入,废水在池内呈推流形式流至池子末端,其池型为多廊道式,污水流出池外进入二次沉淀池,进行泥水分离。污水在推流过程中,有机物在微生物的作用下得到降解,浓度逐渐降低。传统活性污泥法对污水处理效率高,BOD去除率可达到90%以上,是较早开始使用并沿用至今的一种运行方式
7、曝气池总高度:
H总=H+h
式中: H总——曝气池总高度(m);
h——曝气池超高(m),一般取0.3—0.5m。
设计中取 h=0.5m,则 H=4.7m。
10、管道设计:
①中位管:
曝气池中部设中位管,在活性污泥培养驯化时排放上清液。中位管管径为600mm。
②放空管:
曝气池在检修时,需要将水放空,因此应在曝气池底部设放空管,放空管管径为500mm。
④消泡管
在曝气池隔墙上设置消泡水管,管径为DN25mm,管上设阀门。消泡管是用来消除曝气池在运行初期和运行过程中产生的泡沫。
⑤空气管
曝气池内需设置空气管路,并设置空气扩散设备,起到充氧和搅拌混合的作用。
11、曝气池需氧量计算:
依照气水比5:1进行计算,Q=14580m3/h。
12、鼓风机选择:
空气扩散装置安装在距离池底0.2m处,曝气池有效水深为4.2m,空气管路内的水头损失按1.0m计,则空压机所需压力为:
P=(4.2-0.2+1.0)×9.8=49kPa
鼓风机供气量:
Gsmax=14580m3/h=243m3/min。
根据所需压力及空气量,选择RE-250型罗茨鼓风机,共5台,该鼓风机风压49kPa,风量75.8m3/min。正常条件下,3台工作,2台备用;高负荷时,4台工作,1台备用
(六)、二沉池及其设计:
二沉池一般可分为平流式、辐流式、竖流式和斜板(管)等几类。
平流式沉淀池可用于大、中、小型污水处理厂,但一般多用于初沉池,作为二沉池比较少见。平流式沉淀池配水不易均匀,排泥设施复杂,不易管理。
辐流式沉淀池一般采用对称布置,配水采用集配水井,这样各池之间配水均匀,结构紧凑。辐流式沉淀池排泥机械已定型化,运行效果好,管理方便。辐流式沉淀池适用于大、中型污水处理厂。
竖流式沉淀池一般用于小型污水处理厂以及中小型污水厂的污泥浓缩池。该池型的占地面积小、运行管理简单,但埋深较大,施工困难,耐冲击负荷差。
斜管沉淀池具有沉淀效率高、停留时间短、占地少等优点。一般常用于小型污水处理厂或工业企业内的小型污水处理站。斜管(板)沉淀池处理效果不稳定,容易形成污泥堵塞,维护管理不便。
设计中选用辐流沉淀池,沉淀池设2组,N=2组,每组设计流量0.405m3/s。
3、沉淀池有效水深:
h2=q′×t
式中: h2——沉淀池有效水深(m);
t——沉淀时间(h),一般采用1—3h。
设计中取 t=2.5h,得到 h2=3.5m。
4、径深比:
D/h2=10.4,满足6-12之间的要求。
5、污泥部分所需容积:
式中: Q0——平均流量(m3/s);
R——污泥回流比(%);
X——污泥浓度(mg/L);
Xr——二沉池排泥浓度(mg/L)。
设计中取Q0=0.579 m3/s,R=50%,
,
SVI——污泥容积指数,一般采用70-150;
r——系数,一般采用1.2。
设计中取SVI=100,r=1.2,得到Xr=1.2×104mg/L,X=4000mg/L。
经计算得到 V1=1563.3m3。应采用连续排泥方式。
6、沉淀池的进、出水管道设计:
进水管:流量应为设计流量+回流量,管径计算为900mm
出水管:管径计算为800mm
排泥管:管径为500mm
7、出水堰计算:
堰上负荷的校核。规定堰上负荷范围1.5-2.9L/m.s之间。
8、沉淀池总高度:
H=h1+h2+h3+h4+h5
式中:H——沉淀池总高度(m);
h1——沉淀池超高(m),一般采用0.3-0.5m;
h2——沉淀池有效水深(m);
h3——沉淀池缓冲层高度(m),一般采用0.3m;
h4——沉淀池底部圆锥体高度(m);
h5——沉淀池污泥区高度(m)。
设计中取h1=0.3m,h3=0.3m,h2=3.5m.
根据污泥部分容积过大及二沉池污泥的特点,采用机械刮吸泥机连续排泥,池底坡度为0.05。
h4=(r-r1)×i
式中:r——沉淀池半径(m);
r1——沉淀池进水竖井半径(m),一般采用1.0m;
i——沉淀池池底坡度。
设计中取r1=1.0m,i=0.05,得到h4=0.86m。
式中:V1——污泥部分所需容积(m3);
V2——沉淀池底部圆锥体容积(m3);
F——沉淀池表面积(m2)。
计算可得 =315.4m3,则h5=1.20m。
得到H=6.16m。
(七)、消毒接触池及其设计:
污水经过以上构筑物处理后,虽然水质得到了改善,细菌数量也大幅减少,但是细菌的绝对值依然十分客观,并有存在病原菌的可能,因此,污水在排放水体前,应进行消毒处理。
设计中采用平流式消毒接触池,消毒接触池设2组,每组3廊道。
1、消毒接触池容积:
V=Qt
式中: Q——单池污水设计流量(m3/s);
t——消毒接触时间(min),一般采用30min。
设计中取t=30min,得每组消毒接触池的容积为729m3。
2、消毒接触池表面积:
F=V/h2
式中:h2——消毒池有效水深,设计中取为2.5m。
设计中取h2=2.5m,得到F=291.6m2。
3、消毒接触池池长:
L′=F/B
式中:B——消毒池宽度(m),设计中取为5m。
设计中取B=5m,计算得 L=58.32m。每廊道长为19.44m,设计中取为20m。
校核长宽比:L′/B=11.7>10,合乎要求。
4、消毒接触池池高:
H=h1+h2
式中:h1——消毒池超高(m),一般采用0.3m;
设计中取h1=0.3m,计算得 H=2.8m。
5、进水部分:
每个消毒接触池的进水管管径D=800mm,v=1.0m/s。
6、混合:
采用管道混合的方式,加氯管线直接接入消毒接触池进水管,为增强混合效果,加氯点后接D=800mm的静态混合器。
(八)、污泥浓缩池及其设计:
污泥浓缩的对象是颗粒间的空隙水,浓缩的目的是在于缩小污泥的体积,便于后续污泥处理,常用污泥浓缩池分为竖流浓缩池和辐流浓缩池2种。二沉池排出的剩余污泥含水率高,污泥数量较大,需要进行浓缩处理;初沉污泥含水量较低,可以不采用浓缩处理。设计中一般采用浓缩池处理剩余活性污泥。浓缩前污泥含水率99%,浓缩后污泥含水率97%。
13、溢流堰:
浓缩池溢流出水经过溢流堰进入出水槽,然后汇入出水管排出。出水槽流量q=0.0015m3/s,设出水槽宽b=0.15m,水深0.05m,则水流速为0.2m/s,溢流堰周长:
c=π(D-2b)
计算得到c=15.86m。
溢流堰采用单侧90°三角形出水堰,三角堰顶宽0.16m,深0.08m,每格沉淀池有110个三角堰,三角堰流量q0为:
Q1=0.0015/110=0.0000136m3/s
h′=0.7q02/5
式中: q0——每个三角堰流量(m3/s);
h′——三角堰堰水深(m)。
计算得到h′=0.0079m。
10. 污水处理车间怎么算处理一吨污水花多少钱
污水处理厂的主要成本构成包括如下几项(不含污水输送成本):专
(1)直接材料:在污水处理属过程中耗用的各种材料、药品、低值易耗品费用。
(2)动力费:在污水处理过程中耗用的燃料和动力费用。
(3)工资福利费:污水处理厂内生产工人、管理人员的工资及福利费。
(4)折旧费:指企业提取的固定资产折旧额,折旧率按相关财务规定分类计取。
(5)修理费:指为设备大修理预提的费用。 参考计算方法:修理费=设备费合计×修理费提存率 修理提存率的确定:设备基本国产的按2.4%,适量进口的按2.2%计取。
(6)检修维护费:指对建构筑物、设备、工艺管道等日常检修维护实际发生的费用。
(7)财务费用:指企业长、短期贷款发生的利息支出。
(8)其他费用。如污泥处置费、生产用车费、办公费、差旅费、税金(如土地使用税、房产税、印花税等)、邮电费等。