A. MBBR工艺介绍和优缺点
MBBR是移动床生物膜反应器 MBBR工艺原理是通过向反应器中投加一定数量的悬浮载体,提高反应器中的生物量及生物种类,从而提高反应器的处理效率。由于填料密度接近于水,所以在曝气的时候,与水呈完全混合状态,微生物生长的环境为气、液、固三相。载体在水中的碰撞和剪切作用,使空气气泡更加细小,增加了氧气的利用率。另外,每个载体内外均具有不同的生物种类,内部生长一些厌氧菌或兼氧菌,外部为好养菌,这样每个载体都为一个微型反应器,使硝化反应和反硝化反应同时存在,从而提高了处理效果。 MBBR工艺兼具传统流化床和生物接触氧化法两者的优点,是一种新型高效的污水处理方法,依靠曝气池内的曝气和水流的提升作用使载体处于流化状态,进而形成悬浮生长的活性污泥和附着生长的生物膜,这就使得移动床生物膜使用了整个反应器空间,充分发挥附着相和悬浮相生物两者的优越性,使之扬长避短,相互补充。与以往的填料不同的是,悬浮填料能与污水频繁多次接触因而被称为“移动的生物膜”。 MBBR的主要特点是: ①处理负荷高; ②氧化池容积小,降低了基建投资; ③ MBBR工艺中可不需要污泥回流设备,不需反冲洗设备,减少了设备投资,操作简便,降低了污水的运行成本; ④MBBR工艺污泥产率低,降低了污泥处置费用; ⑤ MBBR工艺中不需要填料支架,直接投加,节省了安装时间和费用。
B. 污水处理的SBR工艺的优缺点有哪些
sbr的特点:
1、理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧内处于交替状态容,净化效果好。
2、运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。
3、耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。
4、工艺过程中的各工序可根据水质、水量进行调整,运行灵活。
5、处理设备少,构造简单,便于操作和维护管理。
6、反应池内存在do、bod5浓度梯度,有效控制活性污泥膨胀。
7、sbr法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。
8、脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。
9、工艺流程简单、造价低。主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。
C. 常用几种污水处理工艺优缺点比较
生化处理工艺,配置隔栅拦截,沉沙,除油(使用略少,2005年深圳红树林?污水处理厂因缺少相专关设施,属05年上半年有一次大量含油废水混入导致系统瘫痪后许多城市都增加了相关设施),杀菌消毒,污泥处置等附属处理工序,组成一套完整的处理系统。可配备物化混凝沉淀(或混凝气浮)(水质不稳定或有工业污水大量混入地区选用);石英沙活性炭过滤;膜滤(深度处理工艺)等选配工序。生物化学处理工艺说不上哪种工艺更好,各有优缺点和适用性,像生物膜法工艺就比活性污泥工艺稳定性更强,更易于管理,但处理效果比活性污泥工艺略低,工程投入也更大。像你提问里的水量为40000方每天,不是特别大,就可选用接触氧化工艺(如湖南怀化市鹤城区污水处理厂,07年新建),但目前我国大中型城市的污水处理仍以好氧厌氧结合的环流式或推流式活性污泥工艺为主流。也有使用兼氧性的生物塘;的麦可工艺等的。一些城市污水处理设施在改造提标过程中,引入人工湿地(如杭州西湖边的湿地公园),MBR等新工艺,但目前应用仍较少。
D. 污水处理的SBR工艺的优缺点有哪些
SBR 工艺处来理污水, 其核心处自理设备是一个序批式间歇反应器 , SBR 省去了许多处理构筑物, 所有反应器都在一个SBR 反应器中运行, 通过时间控制来使SBR 反应器实现各阶段的操作目的。整个运行周期由进水、反应、沉淀、出水和闲置5 个基本工序组成, 都在一个设有曝气或搅拌的反应器内依次进行。SBR最大优点就是:对水质水量比变化的适应性强,分时控制。特别适用与水量变化较大的场所。 缺点:不适合大型污水处理厂使用,而且不连续出水, 使得SBR 工艺串联其他连续处理工艺时较为困难
E. 过滤法处理的污水的优缺点分别有什么
过滤只能去除SS,对COD,BOD高的污水效果不大,而且过滤的动力消耗高,污水处理成本增加,呵回呵,我估计你讲的不答是过滤,是下面这个?!
相对于传统的深度处理工艺,采用转盘式过滤器处理工艺主要有以下特点:①对于新建项目,由于设备水头损失小(约0.7m),可取消提升装置及提升构筑物;②当进入过滤阶段处理水SS小时,可省掉沉淀构筑物,采取转盘式过滤器直接过滤(必要时增加滤盘数量);③ 一般砂滤为防止滤料内长生物膜,需要采取前加氯措施,而转盘式过滤器滤布采用特殊材料及特殊构造,不存在长生物膜的问题;④当进水只要求处理SS时,可省去加药环节;⑤由于滤布反冲洗时采用负压抽吸的方式,不需要反抽吸水池。因此对于一般污水处理厂二级处理出水,采用简单的工艺处理流程(图8)就可大幅提高出水水质。
F. 污水处理cass工艺的缺点有什么
CASS工艺的主要技术特征
1 连续进水,间断排水
传统SBR工艺为间断进水,间断排水,而实际污水排放大都是连续或半连续的,CASS工艺可连续进水,克服了SBR工艺的不足,比较适合实际排水的特点,拓宽了SBR工艺的应用领域。虽然CASS工艺设计时均考虑为连续进水,但在实际运行中即使有间断进水,也不影响处理系统的运行。
2 运行上的时序性
CASS反应池通常按曝气、沉淀、排水和闲置四个阶段根据时间依次进行。
3 运行过程的非稳态性
每个工作周期内排水开始时CASS池内液位最高,排水结束时,液位最低,液位的变化幅度取决于排水比,而排水比与处理废水的浓度、排放标准及生物降解的难易程度等有关。反应池内混合液体积和基质浓度均是变化的,基质降解是非稳态的。
4 溶解氧周期性变化,浓度梯度高
CASS在反应阶段是曝气的,微生物处于好氧状态,在沉淀和排水阶段不曝气,微生物处于缺氧甚至厌氧状态。因此,反应池中溶解氧是周期性变化的,氧浓度梯度大、转移效率高,这对于提高脱氮除磷效率、防止污泥膨胀及节约能耗都是有利的。实践证实对同样的曝气设备而言,CASS工艺与传统活性污泥法相比有较高的氧利用率。
与传统活性污泥法相比,CASS法的优点是: 建设费用低: 省去了初次沉淀池、二次沉淀池及污泥回流设备,建设费用可节省10-25%。以10万吨的城市污水处理厂为例,传统活性污泥法的总投资约1.5亿,CASS法总投资约1.1亿。 工艺流程短,占地面积少: 污水厂主要构筑物为集水池、沉砂池、CASS曝气池、污泥池,而没有初次沉淀池、二次沉淀池,布局紧凑,占地面积可减少20-35%。以10万吨的城市污水厂为例,传统活性污泥法占地面积约为180亩,CASS法占地面积约120亩。 运转费用省: 由于曝气是周期性的,池内溶解氧的浓度也是变化的,沉淀阶段和排水阶段溶解氧降低,重新开始曝气时,氧的浓度梯度大,传递效率高,节能效果显著,运转费用可节省10-25%。 有机物去除率高,出水水质好: 根据研究结果和工程应用情况,通过合理的设计和良好的管理,对城市污水,进水COD为400mg/L时,出水小于30mg/L以下。对可生物降解的工业废水,即使进水COD高达3000mg/L,出水仍能达到50mg/L左右。对一般的生物处理工艺,很难达到这样好的水质。所以,对CASS工艺,二级处理的投资,可达到三级处理的水质。 管理简单,运行可靠: 污水处理厂设备种类和数量较少,控制系统比较简单,工艺本身决定了不发生污泥膨胀。所以,系统管理简单,运行可靠。 污泥产量低,污泥性质稳定。 具有脱氮除磷功能。 无异味。 CASS工艺特点 设备安装简便,施工周期短,具有较好的耐水、防腐能力,设备使用寿命长; 对原水的水质水量的变化有较强的适应能力,处理效果稳定,出水水质好,可回用于污水处理厂内的如绿化、浇地、洗车等有关杂用用途; 处理工艺在国内外处于先进水平,设备自动化程度高,可用微机进行操作和控制; 整个工艺运转操作较为简单,维修方便,处理厂内不产生污染环境的臭气和蚊萤; 投资较省,处理成本低,工艺有推广应用价值。
缺点吧,我自己来说说:
1. 冬季或低温会对运行有影响
2.加入四个池子的连续进水有点浪费~
3,构造相对SBR复杂点,维护提高。
4,适用于中小型污水处理站。
G. 污水处理生物膜法的优缺点有哪些
污水处理生物膜法也是城市污水二级生物处理的一种常用方法,具有以下优点:
一是生物膜对污水水质、水量的变化有较强的适应性,管理方便,不会发生污泥膨胀。
二是微生物固着在载体表面、世代时间较长的微生物也能增殖,生物相对更为丰富、稳定,产生的剩余污泥少。三是能够处理低浓度的污水。
污水处理生物膜法的不足之处在于生物膜载体增加了系统的投资;载体材料的比表面积小,反应装置容积有限、空间效率低,在处理城市污水时处理效率比活性污泥法低;附着于固体表面的微生物量较难控制,操作伸缩性差;靠自然通风供氧,不如活性污泥供氧充足,容易产生厌氧。
H. 对污水处理主要工艺及优缺点没有
生化处理工艺,复配置隔栅拦截制,沉沙,除油(使用略少,2005年深圳红树林?污水处理厂因缺少相关设施,05年上半年有一次大量含油废水混入导致系统瘫痪后许多城市都增加了相关设施),杀菌消毒,污泥处置等附属处理工序,组成一套完整的处理系统。可配备物化混凝沉淀(或混凝气浮)(水质不稳定或有工业污水大量混入地区选用);石英沙活性炭过滤;膜滤(深度处理工艺)等选配工序。
生物化学处理工艺说不上哪种工艺更好,各有优缺点和适用性,像生物膜法工艺就比活性污泥工艺稳定性更强,更易于管理,但处理效果比活性污泥工艺略低,工程投入也更大。像你提问里的水量为40000方每天,不是特别大,就可选用接触氧化工艺(如湖南怀化市鹤城区污水处理厂,07年新建),但目前我国大中型城市的污水处理仍以好氧厌氧结合的环流式或推流式活性污泥工艺为主流。也有使用兼氧性的生物塘;的麦可工艺等的。一些城市污水处理设施在改造提标过程中,引入人工湿地(如杭州西湖边的湿地公园),MBR等新工艺,但目前应用仍较少。
I. 想问下污水处理UASB工艺和ABR工艺的使用范围是哪些以及UBF工艺的缺点请安问题回答,谢谢
UASB和ABR都是抄用于高浓度污水厌氧的工艺,具体范基本上都围绕着高浓度,COD≥800mg/L的污水而言的,低于这个浓度个人认为水解酸化或者直接好氧工艺就行了。只要污水中没有危害微生物的成分,PH合理水温合理基本上都能用。
ABR比UASB有更好的分区处理的效果,能够养出专属菌群,避免前后相互干扰,但是后几级的分级的处理效率会明显下降,甚至是没效果,更糟糕的是还有副作用(比如在SRB硫酸盐还原菌作用下会出现更多的硫化氢危害后续好氧工艺令其中毒,需要用CAF可以简单缓解)。
UBF是UASB的改良加强版,目前很常见,同样尺寸的效果比UASB好些一般COD去除效率能强10~20%,微生物也有很好的载体利于培养特别是世代时间很差的甲烷菌。当然缺点也很明显,除了投资增加外,毕竟内部金属零件支架多了更容易被硫化氢腐蚀(厌氧构筑物通病),防腐需要认真做、好好做,尽量避免使用太多的金属材质,而且如果填料没有选择好日后更换的机会都没有。
J. mbr法生活污水处理有什么优缺点
MBR 工艺废水处理具有以下主要特点:
优点:
1 出水水质优质稳定
由于膜的高效分离作用,分离效果远好于传统沉淀池,处理出水极其清澈,悬浮物和浊度接近于零,细菌和病毒被大幅去除,出水水质优于建设部颁发的生活杂用水水质标准( CJ25.1-89 ),可以直接作为非饮用市政杂用水进行回用。 同时,膜分离也使微生物被完全被截流在生物反应器内,使得系统内能够维持较高的微生物浓度,不但提高了反应装置对污染物的整体去除效率,保证了良好的出水水质,同时反应器对进水负荷(水质及水量)的各种变化具有很好的适应性,耐冲击负荷,能够稳定获得优质的出水水质。
2 剩余污泥产量少
该工艺可以在高容积负荷、低污泥负荷下运行,剩余污泥产量低(理论上可以实现零污泥排放),降低了污泥处理费用。
3 占地面积小,不受设置场合限制
生物反应器内能维持高浓度的微生物量,处理装置容积负荷高,占地面积大大节省;该工艺流程简单、结构紧凑、占地面积省,不受设置场所限制,适合于任何场合,可做成地面式、半地下式和地下式。
4 可去除氨氮及难降解有机物
由于微生物被完全截流在生物反应器内,从而有利于增殖缓慢的微生物如硝化细菌的截留生长,系统硝化效率得以提高。同时,可增长一些难降解的有机物在系统中的水力停留时间,有利于难降解有机物降解效率的提高。
5 操作管理方便,易于实现自动控制
该工艺实现了水力停留时间( HRT )与污泥停留时间( SRT )的完全分离,运行控制更加灵活稳定,是污水处理中容易实现装备化的新技术,可实现微机自动控制,从而使操作管理更为方便。
6 易于从传统工艺进行改造
该工艺可以作为传统污水处理工艺的深度处理单元,在城市二级污水处理厂出水深度处理(从而实现城市污水的大量回用)等领域有着广阔的应用前景。
缺点:
膜-生物反应器也存在一些不足。主要表现在以下几个方面:
1膜造价高,使膜 - 生物反应器的基建投资高于传统污水处理工艺;
2 膜污染容易出现,给操作管理带来不便;
3 能耗高:首先 MBR 泥水分离过程必须保持一定的膜驱动压力,其次是 MBR 池中 MLSS 浓度非常高,要保持足够的传氧速率,必须加大曝气强度,还有为了加大膜通量、减轻膜污染,必须增大流速,冲刷膜表面,造成 MBR 的能耗要比传统的生物处理工艺高。
由于膜通量的提高、膜寿命的延长会大幅度降低MBR的运行费用,因此,在保证出水水质的前提下,膜通量应尽可能大,这样可减少膜的使用面积,降低基建费用与运行费用。因此控制膜污染,保持较高的膜通量,是MBR研究的重要内容。而膜通量与膜材料、操作方式、水力条件等因素密切相关。
能耗
能耗是污水处理工艺的一个重要的评价指标,直接关系到处理方法的可行性。目前,常规分离式MBR运行能耗为3~4 kW•h/m3,淹没式MBR运行能耗为0.6~2 kW•h/m3,高于活性污泥法的0.3~0.4 kW•h/m3。
较高的动力费用是MBR推广应用中遇到的主要问题之一。许多研究结果也表明:能耗是造成MBR运行费用高的主要原因。
分离式MBR的能耗组成:泵的热能损失、曝气能耗、管道阻力能耗、膜组件能耗和回流污泥水头损失能耗,其耗能大小依次为:膜组件>泵>曝气>管道>回流污泥,膜组件能耗占总能耗的40%~50%,其中80%用于膜过滤的能量以热能的方式散发。其中曝气的能耗占总能耗的96%以上。
希望能够帮助到你,资料参考与易净水网资料库