A. 不含甲醛的氨基树脂
氨基树脂因其具有机械强度高、电绝缘性好、表面硬度高、耐刮伤、无色透回明、可制得答
色泽鲜艳的产品等优点,广泛应用于餐具、日用品等方面;
酚醛树脂也因原料价格便宜,生
产工艺简单成熟,制造及加工设备投资少,成型容易而被广泛应用,目前这两种树脂的成型 品被广泛用作餐具。
由于加工过程的反应不完全,以上两类产品都会有甲醛残留,在使用过程中甲醛会有不
同程度的释放,对于作为餐具的制品,甲醛会污染所盛食品。
甲醛(HCHO)是高挥发性有机
化合物,是一种无色、具有强烈刺激性的气体。
它是一种原生质毒。
对眼部及呼吸、神经和
内分泌等系统均具有毒性,此外还有致癌、致突变的遗传效应,进而对人体健康带来危害。
B. 请教不同的氨基树脂种类如何选择
一个是要看什么醇醚化的氨基,我知道的有甲醇醚化氨基(长春树脂),丁醚化氨基(582等),好像还有辛醇醚化氨基,甲醚化氨基极性大较易溶于水,生产时收获率较低,所以成本较高,而且反应活性高,漆膜硬度高,易脆,一般用到桶漆较多,丁醚化氨基,极性适中,生产时收获率较高,成本适中,反应活性没甲醚化的高,漆膜流平好,丰满度高,柔韧性好,一般用到OEM漆中较多,辛醇醚化氨基极性很小,因无法一步醚化成功,成本较高,所以市场上较少见.
第二个是要看醚化承度,有部分醚化,还有全部醚化的.
这是我个人的一点了解,
C. 英力士氨基树脂ce8824有什么特点
INEOS 英力士 Resimene CE 8824 甲乙混醚化苯代氨基树脂:
CE8824------------四醚化苯代氨基树脂(水油两用) 四醚化程度苯代氨基树脂,甲醚/乙醚=1:1;抗水性、耐洗涤剂性好;优异的耐候性;高柔韧性;适用于水性玻璃涂料,洗衣机、冰箱涂料,外罐涂料等。
甲醚化氨基树脂中产量最大、应用最广的是六甲氧基甲基三聚氰胺树脂(HMMM),它是一个6官能度单体化合物,属于单体型高甲醚化三聚氰胺树脂。HMMM可溶于醇类、酮类、芳烃、酯类、醇醚类溶剂,部分溶于水。工业级HMMM分子结构中含极少量的亚氨基和羟甲基,它作交联剂时固化温度高于通用型丁醚化三聚氰胺树脂,有时还需加入酸性催化剂帮助固化,固化涂膜硬度大、柔韧性大。HMMM可与醇酸、聚酯、热固性丙烯酸树脂、环氧树脂中羟基、羧基、酰胺基进行交联反应,也可作织物处理剂、纸张涂料,或用于油墨制造、高固体涂料。
聚合型部分甲醚化三聚氰胺树脂可溶于醇类,也具有水溶性,可用于水性涂料。树脂中的反应基团主要是甲氧基甲基和羟甲基。它与醇酸树脂、环氧树脂、聚酯树脂、热固性丙烯酸树脂配合作交联剂时,易于基体树脂的羟基进行缩聚反应,同时也进行自缩聚反应,产生性能优良的涂膜。基体树脂的酸值可有效地催化固化反应,增加配方中的氨基树脂的用量,涂膜的硬度增加,但柔韧性下降。与丁醚化三聚氰胺相比,它具有快固性,有较好的耐化学性,可代替丁醚化三聚氰胺树脂应用于通用型磁漆及卷材涂料中。
苯代三聚氰胺分子中引入了苯环,与三聚氰胺相比,降低了整个分子的极性。因此与三聚氰胺相比,苯代三聚氰胺在有机溶剂的溶解性增大,与基体树脂的混容性也大为改善。以苯代三聚氰胺交联的涂料初期有高度的光泽,其耐碱性、耐水性和耐热性也有所提高。但由于苯环的引入,降低了官能度,因而涂料的固化速度比三聚氰胺树脂慢,涂膜的硬度也不及三聚氰胺,耐候性较差。一般来说,苯代三聚氰胺适用于室内用漆。
D. 氰特325和氰特303哪个氨基当量多
CYMEL325氨基树脂和CYMEL330氨基树脂区别
一、CYMEL325甲基醚化高亚氨基三聚氰胺树脂
CYMEL 325是一款高反应活性,低温固化的氨基树脂。
低温反应,快干:氰特CYMEL 325树脂只需弱酸催化,与其配合的主体树脂的低酸值已足够催化交联反应。另外,也可外加有机或无机弱酸催化如马来酸、柠檬酸、磷酸、烷基磷酸、少量的对甲苯磺酸或CYCAT® 1 4040催化剂。
硬度与柔韧性平衡:与部分甲醚化树脂相似,氰特CYMEL325 氨基树脂能自聚,因此提高氨基交联剂用量,可以增加漆膜硬度。而325比其他牌号的低自聚性,可以使硬度和柔韧性平衡,不会造成只硬不柔韧的“脆性”。
降低烘烤环境要求:325氨基树脂在低温下能快速反应,对烘烤温度不稳定的环境也可以反应并自干,对许多生产厂家有较大保证。而且低分子量树脂挥发的可能性降低了,因此很适合用于对烘烤废气排放要求较严格的场合。
改善耐湿、耐盐雾性能:在某些水稀释涂料体系中,与部分甲醚化三聚氰胺甲醛树脂相比,氰特CYMEL 325氨基树脂能改善耐湿及耐盐雾性能。
低挥发、低起泡它在烘烤过程中的热失重明显低于部分甲醚化三聚氰胺甲醛树脂;它的烘烤挥发物中甲醛含量很少;并且在漆膜较厚的情况下,由于失重低,氰特CYMEL 325氨基树脂交联固化时起泡倾向低。
CYMEL325技术参数
不挥发物%(铝箔法,45度45分钟):80+2
溶剂:异丁醇
烷基醇:甲醇
粘度,泊,近似:20-46
比重,克/毫升:1.12
主反应集团:烷氧基/亚氨基
羟甲基含量:低
游离甲醛量,%,最大:0.75
重要特性:高反应活性,低温固化
溶解特性
CYMEL 325氨基树脂可以溶解在大多数常用有机溶剂中,如芳香族溶剂、乙醇、酯类和酮类溶剂等。CYMEL 325在水中的溶解力是有限的,但是,当CYMEL 325与其它水性树脂混合时,也能够被水稀释。
稳定性
含有CYMEL 325树脂的溶剂性涂料配方,可以通过添加醇类溶剂或者胺类来增加稳定性。对于多数高固含量的配方,通常需要两者配合使用。一般地,为了最佳的存储稳定性,一个在125℃固化的配方,可以用1%的CYCAT4045催化剂(对基苯磺酸胺盐)催化,并且使用20-30%的丁醇溶剂,两者都是根据树脂的固含量。对于水性体系,为了得到最佳的稳定性,PH值应该保持在>8。
反应与催化
因为高度烷基化,CYMEL 325与其它含有羟基、羧基和酰氨基的树脂反应必须有强酸催化。通常推荐添加0.5%-1.0%(根据固体)的CYCAT4040或者CYCAT 600催化剂,在120-150℃烘烤15-20分钟。如果配方中含有颜料或者助剂,酸催化剂的添加量还应该更大些。因为它的高功能性和低的自聚倾向,CYMEL 325是一种非常有效的交联剂。尤其是与聚酯树脂交联时,能够为漆膜提供良好的柔韧性和成型性。它的有效当量为130-190,CYMEL 325的用量应该根据最佳性能通过实验确定。
CYMEL325应用
高固体份氨基树脂广泛用于卷材涂料,高温涂料,水性涂料等各种应用
二、美国氰特CYTEC化学公司的CYMEL303六甲氧基甲基三聚氰胺树脂
由美国氰特公司生产的CYMEL303是一种商业级别的六甲氧基甲基三聚氰胺树脂,其液体状态,不挥发份含量>98%。它可作为多种聚合物材料的交联剂,这种聚合物材料应该包含有酰氨基、羧基和羟基,如丙烯酸树脂、醇酸树脂、聚酯树脂及环氧树脂等
CYMEL303应用领域:高固体含量涂料、水性涂料、卷钢涂料、汽车涂料、罐头涂料、金属涂料、油墨。
CYMEL303优点:
1、不含挥发性溶剂
2、良好的混溶性和溶解性
3、稳定性好
4、提高硬度的同时也能获得好的柔韧性
5、快速催化固化
6、成本经济
溶解特性:
CYMEL 303树脂可以溶解在大多数常用有机溶剂中,如芳香族溶剂、乙醇、酯类和酮类溶剂等。CYMEL 303在水中的溶解力是有限的,但是,当CYMEL 303与其它水性树脂混合时,也能够被水稀释。
反应与催化:
因为高度烷基化,CYMEL 303与其它含有羟基、羧基和酰氨基的树脂反应必须有强酸催化。通常推荐添加0.5%-1.0%(根据固体)的CYCAT 4040或者CYCAT 600催化剂,在120-150℃烘烤15-20分钟。如果配方中含有颜料或者助剂,酸催化剂的添加量还应该更大些。因为它的高功能性和低的自聚倾向,CYMEL 303是一种非常有效的交联剂。尤其是与聚酯树脂交联时,能够为漆膜提供良好的柔韧性和成型性。它的有效当量为130-190,CYMEL303的用量应该根据最佳性能通过实验确定。
稳定性:
含有CYMEL303树脂的溶剂性涂料配方,可以通过添加醇类溶剂或者胺类来增加稳定性。对于多数高固含量的配方,通常需要两者配合使用。一般地,为了最佳的存储稳定性,一个在125℃固化的配方,可以用1%的CYCAT4045催化剂(对基苯磺酸胺盐)催化,并且使用20-30%的丁醇溶剂,两者都是根据树脂的固含量。对于水性体系,为了得到最佳的稳定性,PH值应该保持在>8。
典型性能:
外观 透明粘性液体
不挥发份含量,%重量 不小于98%
颜色, Gardner 1963 最大1
黏度, Gardner-Holdt,25°C Y-Z2
黏度, Cone/Plate cps2600-5000
重量/加仑, 磅 10.0
比重, 25°C 1.20
折射率 1.515-1.520
闪点 °F >200
甲醛含量 0.5 %
三、由上可知CYMEL 325氨基树脂的有效当量为130-190,CYMEL303氨基树脂的有效当量为130-190,是一样的。
E. 如何增加丙烯酸树脂与氨基树脂相拼的烤漆的韧性
首先325 在120度烘烤绝抄对没完全反应,袭有可能当天做实验时,测试时达到要求,但第二天可能就不行,这是因为有残留的325没参加反应造成的。建议160-180°c烘烤。
树脂的选择也很重要,要一支耐水煮的,或找一支辅助材料(提高交联密度,提高附着力的)
考虑树脂,氨基和其他辅助材料的PH值对耐水煮也有一定的影响,氨基本身是酸的。
考验考虑聚酯树脂+丙烯酸树脂+氨基。
F. 多肽合成方法有哪些
多肽合成方法:
酰基叠氮物法
早在1902年,TheodorCurtius就将酰基叠氮物法引入到肽化学中,因此它是最古老的缩合方法之一。在碱性水溶液中,除了与酰基叠氨缩合的游离氨基酸和肽以外,氨基酸酯可用于有机溶剂中。与其他许多缩合方法不同的是,它不需要增加辅助碱或另一等当量的氨基组分来捕获腙酸。
长期以来,一直认为叠氮物法是唯一不发生消旋的缩合方法,随着可选择性裂解的氨基酸保护基引入,该方法经历了一次大规模的复兴。该方法的起始原料分别是晶体状的氨基酸酰肼或肽酰肼64,通过肼解相应的酯很容易得到。在-10℃的盐酸中,用等当量的亚硝酸钠使酰肼发生亚硝化而转化为叠氮化物65,依次洗涤、干燥,然后与相应的氨基组分反应。有些叠氮化物可用冰水稀释而沉淀出来。 二苯磷酰基叠氮化物(DPPA)也可以用于酰基叠氮化物的合成。Honzl-Rudinger方法采用亚硝酸叔丁作为亚硝化试剂,并且使叠氮缩合反应可在有机溶剂中进行。因酰基叠氮化物的热不稳定性,缩合反应需在低温下进行。当温度较高时,Curtius重排,即酰基叠氮转化为异氰酸酯的反应成为一个主要的副反应,最终导致生成副产物脲。由于反应温度低(如4℃)而导致反应速率相当慢,使得肽缩合反应通常需要几天才能完全。 对于较长的N端保护的肽链,酯基的肼解一般比较困难,因此,使用正交的N保护肼衍生物是一种选择。在肼基的选择性脱除后,按倒接(backing-off)策略组合的肽片段可以用于叠氮缩合。
如前所述,虽然叠氮法一直被认为是消旋化倾向最小的缩合方法,但在反应中,过量的碱会诱发相当大的消旋。因此,在缩合反应期间要避免与碱接触,例如,氨基组分的铵盐应采用N,N-二异丙胺或N-烷基吗啉代替三乙胺来中和。
虽然有上述局限性,但该方法仍很重要,尤其对于片段缩合而言,因为该方法具有较低的异构化倾向,适用于羟基未保护丝氨酸或苏氨酸组分时,Nˊ保护的本行酰肼还具有多种用途。
酸酐法
在多肽合成中,最初考虑应用酸酐要追溯到1881年TheodorCurtius对苯甲酰基氨基乙酸合成的早期研究。从氨基乙酸银与苯甲酰氯的反应中,除获得苯甲酰氨基乙酸外,还得到了BZ-Glyn-OH(n=2-6)。早期曾认为,当用苯甲酰氯处理时,N-苯甲酰基氨基酸或N-苯甲酰基肽与苯甲酸形成了活性中间体不对称酸酐。 大约在70年后,TheodorWieland利用这些发现将混合酸酐法用于现代多肽合成。目前,除该方法外,对称酸酐以及由氨基酸的羧基和氨基甲酸在分子内形成的N-羧基内酸酐(NCA,Leuchsanhydrides)也用肽缩合。最后应该提到,不对称酸酐常常参与生化反应中的酰化反应。
混合酸酐法
有机羧酸和无机酸皆可用于混合酸酐的形成。然而,仅有几个得到了广泛的实际应用,多数情况下,采用氯甲酸烷基酯。过去频繁使用的氯甲酸乙酯,目前主要被氯甲酸异丁酯所替代。
由羧基组分和氯甲酸酯起始形成的混合酸酐,其氨解反应的区域选择性依赖依赖于两个互相竞争的羰基的亲电性和(或)空间位阻。在由N保护的氨基酸羧酸盐(羧基组分)和氯甲酸烷基酯(活化组分,例如源于氯甲酸烷基酯)形成混合酸酐时,亲核试剂胺主要进攻氨基酸组分的羧基,形成预期的肽衍生物,并且释放出游离酸形式的活性成分。当应用氯甲酸烷基酯(R1=异丁基、乙基等)时,游离的单烷基碳酸不稳定,立即分解为二氧化碳和相应的醇。然而,对于亲核进攻的区域选择性,也有一些相反的报道,产物为氨基甲酸酯和原来的N保护氨基酸组分。 为了形成混合酸酐,将N保护的氨基酸或肽分别溶于二氯甲烷、四氢呋喃、二氧六环、乙腈、乙酸乙酯或DMF中,用等当量的三级碱(N-甲基哌啶、N-甲基吗啉、N-乙基吗啉等)处理。然后,在-15℃--5℃,剧烈搅拌的同时加入氯甲酸烷基酯以形成不对称酸酐(活化)。经短时间活化后,加入亲核性氨基酸组分。如果作为铵盐使用(需要更多的碱),必须避免碱的过量使用。如果严格按照以上的反应条件,混合酸酐法很容易进行,是最有效的缩合方法之一。
对称酸酐法
Nα-酰基氨基酸的对称酸酐是用于肽键形成的高活性中间体。与混合酸酐法相反,它与胺亲核试剂的反应没有模棱两可的区域选择性。但肽缩合产率最高,为50%(以羧基组分计)。
虽然由对称酸酐氨解形成的游离Nα-酰基氨基酸可以和目标肽一起,通过饱和碳酸氢钠溶液萃取回收,但在最初,这种方法的实用价值极低。对称酸酐可以用Nα-保护氨基酸与光气,或方便的碳二亚胺反应制得。两当量的Nα-保护氨基酸与-当量的碳二亚胺反应有利于对称酸酐的形成,对称酸酐可以分离出来,也可不经纯化而直接用于后面的缩合反应。基于Nα-烷氧羰基氨基酸的对称酸酐对水解稳定,可采用类似上述纯化混合酸酐的方法进行纯化。
由于Boc-保护氨基酸的商品化和合理的价格,在肽链的逐步延长中,使用对称酸酐法日益受到重视。虽然可以买到晶状的对称酸酐,但原位制备仍然是一种不错的选择。
碳二亚胺法
碳二亚胺类化合物可用于氨基和羧基的缩合。在该类化合物中N,Nˊ-二环己基碳二亚胺(DCC)相对便宜,而且可溶于肽合成常用的溶剂。在肽键形成期间,碳二亚胺转变为相应的脲衍生物,N,Nˊ-二环己基脲可以从反应液中沉淀出来。显然,碳二亚胺活化后的活性中间体氨解和水解速率不同,使肽合成能在含水介质进行。经几个课题组的大量研究,确立了以碳二亚胺为缩合剂的肽缩合反应机理,羧酸根离子加成到质子化的碳二亚胺,形成高活性的O-酰基脲;虽然还没有分离出这个中间体,但通过非常类似的稳定化合物推断了它的存在。O-酰基脲与氨基组分反应,产生被保护的肽和脲衍生物。或者,与质子化形式处于处于平衡状态的O-酰基异脲,被第二个羧酸酯亲核进攻,产生对称的氨基酸酐和N,Nˊ-二取代脲。前者与氨基酸反应得到肽衍生物和游离氨基酸。在碱催化下,使用DCC的副反应使酰基从异脲氧原子向氮原子转移,产生N-酰基脲71,它不再发生进一步的氨解。不仅过量的碱可催化O-N的酰基转移,而且碱性的氨基组分或碳二亚胺也可催化该副反应。
另外,极性溶剂有利于这一反应途径。
G. 氨基树脂醚化后极性的变化,溶解性的变化,还有与树脂的相容性
约
环氧树脂材料一般是指含两个或多个环氧基团的有机聚合物,除了少数分子,但它们不是高相对分子质量。环氧树脂的分子结构为含有其特点活性环氧基团的分子链,环氧基团可以位于分子链,或环状的中间结构的末端。自含有反应性环氧基团,以便他们可以采取各种类型的固化剂的地方交联反应而形成不溶性的,不熔的聚合物具有三到网状结构中的分子结构。
[编辑本段]应用特性
1,形式。各种树脂,固化剂,改性剂系统可适应几乎所有类型的对的形式提出申请的要求,其范围可以从非常低的粘度,以高熔点的固体。
2,容易治愈。使用各种不同的固化剂,环氧树脂体系可以在一定温度下几乎为0180℃范围固化。
3,附着力强。固有环氧树脂分子链的存在和极性羟基醚键的各种具有高粘附性的物质。环氧固化收缩率低,产生的内部压力,这也有助于提高粘合强度。
4,低收缩。环氧树脂和固化剂的反应所使用的直接加成反应的环氧树脂分子或开环聚合反应进行时,没有水或释放其它挥发性副产物。它们是不饱和聚酯树脂,相比在固化过程中表现出非常低的收缩率(小于2%)酚醛树脂。
5,机械性能。固化的环氧树脂体系具有优良的机械性能。
6,电性能。固化的环氧树脂体系是一种高介电性能,耐表面漏电,耐电弧优异的绝缘材料。
7,化学稳定性。通常情况下,具有优良的耐碱性,耐酸性和耐溶剂性的固化环氧树脂体系。像固化的环氧体系的其它性质,如化学稳定性也依赖于树脂和固化剂的选择。适当选择环氧树脂和连同特殊的化学稳定性的固化剂。
8,尺寸稳定性。所有的环氧树脂系统的组合的许多特性具有突出的尺寸稳定性和耐久性。
9,耐霉变。固化的环氧树脂体系耐大多数真菌,能在恶劣的热带条件下使用。