① 我想知道一些基本的金属化薄膜电容器的型号、具体的特点以及各方面的基本参数(详细)
特点及用途:
☆ 金属化聚酯膜卷绕,无感式结构
☆ 环氧树脂包封,CP线单向引出
☆ 自愈性能好,绝缘电阻高,电容量稳定
☆穗孝岩 适用于直流和脉动电路,广泛应用于各种电子电器电工设备的滤波、隔直、旁路、耦合和降噪等场合
技术要求:
☆ 引用标准:GB 7335
☆ 气候类别:55/085/21
☆ 额定电压:100V/160V、250V、400V、630V
☆ 电容量范围:0.01-10μF
☆ 电容量偏差:J(±5%), K(±10%)
☆ 耐电压:1.60UR(5s)
☆ 绝缘电阻:CR≤0.33μF, ≥10000MΩ (20℃, 1min)
CR>0.33μF, ≥5000MΩ·μF (20℃, 1min)
☆ 损耗角正切:≤1.0%(20℃,1KHz)
1. 金属化聚酯膜电容器CL21X
容量范围:0.01UF – 2.2UF
额定电压:50VDC- 100VDC
2. 金属化内串式聚丙烯电容器CBB221(高压型MPEH)
容量范围:0.01UF – 0.47UF
额定电压:50VDC- 100VDC
3. 金属化聚酯膜电容器CL21(含浸型MEF)
容量范围:0.001UF – 6.8UF
额定电压:100VDC- 630VDC
4. 金属化聚丙烯膜电慎颤容器CBB22(含浸型MPF)
容量范围:0.001UF – 3.3UF
额定电压:100VDC- 630VDC
5. 金属箔 金属化复合电极聚丙烯膜电容器CBB81(高压型PPS)
容量范围:0.00033UF – 0.22UF
额定电压:630VDC- 2000VDC
6. 盒式金属化内串式聚丙烯膜电容器CBB82(盒式高压PPC)
容量范围:0.01UF – 0. 22UF
额定电压:1000VDC- 2000VDC
7.金属箔式聚酯膜电容器CL11(有感PEI)
容量范围:0.001UF – 0.47UF
额定电压:100VDC- 1200VDC
8.金属膜化聚丙烯膜抗干扰电容器MKP61(X2类)
容量范围:0.0047UF – 1.0UF
额定电压:250VAC- 275VAC
9.高压金属化聚丙烯膜电容器MKP81
容量范围:0.0033UF – 2UF
额定电压:1000VDC- 1600VDC
10.盒式金属化聚酯膜电容器CL21H(盒式型MEC)
容量范围:0.001UF – 6.8UF
额定电压:63VDC- 630VDC
11.金属化聚丙烯膜交流电机电容器CBB61
容量范围:0.5UF – 10UF
额定电压:250VAC- 450VAC
12.塑壳式金属化聚酯薄膜电容器CL23
容量范围:0.001UF – 1.0UF
额定电压:50VDC- 400VDC
13.轴向金属化猜御聚酯电容器CL20
容量范围:0.001UF – 10UF
额定电压:100VDC- 630VDC
14. 轴向金属化聚丙烯膜电容器CBB20
容量范围:0.001UF – 10UF
额定电压:100VDC- 630VDC
15. 金属化聚丙烯膜交流电容器CBB62 (含浸型.盒式型)
容量范围:0.001UF – 10UF
额定电压:125VAC- 600VAC
16. 金属箔式聚酯膜电容器CL12(无感型PEN)
容量范围:0.001UF – 0.47UF
额定电压:50VDC- 100VDC
16. 金属箔式聚酯,聚丙烯复合膜电容器CH11
容量范围:0.001UF – 0.1UF
额定电压:63VDC- 1200VDC
17. 金属化聚酯膜交流电容器CL61(含浸型,盒式型)
容量范围:0.001UF – 4.7UF
额定电压:125VAC- 300VAC
18. 金属化聚丙烯膜交流电动机电容器CBB65
容量范围:4UF – 100UF
额定电压:110VAC- 450VAC
② 透射电镜和扫描电镜的特点及应用(越全越好)
1、透射电子显微镜电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。
透射电子显微镜在材料科学、生物学上应用较多。由于电子易散射或被物体吸收,故穿透力低,样品的密度、厚度等都会影响到最后的成像质量,必须制备更薄的超薄切片,通常为50~100nm。所以用透射电子显微镜观察时的样品需要处理得很薄。
常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常是挂预处理过的铜网上进行观察。
2、扫描电镜的特点:有较高的放大倍数,2-20万倍之间连续可调;有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;试样制备简单。
生物:种子、花粉、细菌;
医学:血球、病毒;
动物:大肠、绒毛、细胞、纤维;
材料:陶瓷、高分子、粉末、金属、金属夹杂物、环氧树脂;
化学、物理、地质、冶金、矿物、污泥(杆菌)、机械、电机及导电性样品,如半导体(IC、线宽量测、断面、结构观察)电子材料等。
(2)真空穿透电极环氧树脂扩展阅读
透射电镜的总体工作原理是:由电子枪发射出来的电子束,在真空通道中沿着镜体光轴穿越聚光镜,通过聚光镜将之会聚成一束尖细、明亮而又均匀的光斑,照射在样品室内的样品上;透过样品后的电子束携带有样品内部的结构信息,样品内致密处透过的电子量少,稀疏处透过的电子量多;
经过物镜的会聚调焦和初级放大后,电子束进入下级的中间透镜和第1、第2投影镜进行综合放大成像,最终被放大了的电子影像投射在观察室内的荧光屏板上;荧光屏将电子影像转化为可见光影像以供使用者观察。
扫描电子显微镜的制造依据是电子与物质的相互作用。扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接收、放大和显示成像,获得测试试样表面形貌的观察。
③ 电路中标注用电解电容,能用普通贴片电容代替吗值一样大!!
当然可以。问题在于,电解电容一般容量很大。你如果能找到知蠢纤容量一档前样大搭仿的自然可以。
④ 表面处理是做什么的
表面处理是满足产品的耐蚀性、耐磨性、装饰或其他特种功能要求。
常见表面处理工艺有喷涂、电泳、植绒销笑、水镀、模外装饰、真空镀、I-SD系统、电铸、自我修复镀膜、IMD、防水镀层、丝印、移印、水转印、热转印、热升华染料印刷、烤漆、氧弯镇化、机械拉丝、镭雕、高光切边、批花、喷砂、腐蚀、抛光等。
生活中,通常用表面处理技术来改变固体材料的表面性质,以改善外观,提高耐腐蚀性,亏闹含耐磨损性,降低摩擦,提高硬度,提高表面疲劳强度和耐热性。
(4)真空穿透电极环氧树脂扩展阅读:
表面处理技术可提供特殊的磁,光,电,热等物理性能,甚至改变机械配合,修复磨损或拆车配件,因此,表面的表面处理技术也越来越广泛的开发和应用。
表面处理工艺的原理是,让某机械的氧化物层,金属或非金属层沉积在固体材料的表面上,以获得金属成分的具体特性和覆盖层或材料处理层。其目的是要改变的物理,化学和视觉装饰固体材料等的机械性能的表面特性。
⑤ 请问生产led都需要什么原料,谢谢
LED封装是将芯片置于反射杯内,粘结或烧结在引雀祥线架上,管芯的正极通过球形接触点与金丝,键合为内引线与一条管脚相连,负极通过反射杯和引线架的另一管脚相连,然后其顶部用散射剂与经染料处理的环氧树脂包封。
生产主要工艺过程:
第一步,先对芯片进行扩片,由于LED芯片在划片后依然排列紧密间距很小(约0.1mm),不利于后工序的操作。我们采用扩片机对黏结芯片的膜进行扩张,把LED芯片的间距拉伸到约0.6mm。
第二步,在LED支架的相应位置点上银胶或绝缘胶,将扩张后LED芯片安置在刺片台的夹具上,LED支架放在夹具底下,然后用真空吸嘴将LED芯片吸起并移动位置,再安置在相应的支架位置上。
第三步,打线压焊。先在LED芯片电极上压上第一点,再将金丝源虚或铝丝拉到相应的支架上方,压上第二点后扯断,完成产品内外引线的连接工作。
第四步,LED的封装和烘烤固化。
Lamp-LED的封装采用灌胶封装的形式:先在LED成型模腔内注入已调配好的液态环氧树脂,然后插入压焊好的LED支架,放入烘箱让环氧树脂固化后,将LED从模腔中脱出即成型。
SMD-LED采用模压封装的形式:将压焊好的LED支架放入模具中,将上下两副模具用液压机合模并抽真空,将固态环氧树脂放入注胶道的入口加热用液压顶杆压入模具胶道中,环氧树脂顺着胶道进入各个LED成型槽中并固化。
第五步,进行排测,测试LED的光电参数、检验外形尺寸。
第六步,切筋和划片,由于LED在生产中是连在一起的(不是单个),Lamp封装LED采用切筋切断LED支架的连筋。顷裂搏SMD-LED则是在一片PCB板上,需要划片机来完成分离工作。
第七步,按正向电压、主波长和发光强度进行分光分色,或根据客户要求对LED产品进行分选。
第八步,进行品质检查,并将LED成品进行计数包装。
⑥ 电子显微镜为什么不能观察活性标本(简答题8分)
透射掘信电镜
生物标本
制陪握备过程⑴取材⑵固定:保持细胞内部结构不改变。(
戊二醛
:在蛋白质分子之间形成
共价
键,
将它们交联在一起。
四氧化锇
:除与蛋白共价结合外,还对脂类有良好的固定效果。)脱水:标本必须置于
高真空
中进行电镜观察,所以电镜生物标本不能含水。梯度乙醇。包埋:
为使柔软
生物组织
制成
超薄切片
(良好支撑),并使切片耐受高真空、电子轰击,应在切片前将标本进行包埋,常用环氧芦散庆树脂。切片:电子穿透力很弱,需将样品制成40~50nm厚薄片。约为细胞的1/200厚度。染色:
生物分子
由
原子序数
低的轻元素组成,它们散射电子能力弱,在电镜下几乎不存在明暗反差,需加大生物样品反差,进行染色。重金属浸染。
(透射电镜样品提高反差的方法:⑴
负染
法⑵
冰冻蚀刻
)
扫描电子显微镜
标本制备:取材、清洗、
固定、干燥、镀膜
因为电镜观察所制备的的标本都是将细胞脱水后的死标本,所以不能观察活性标本~
⑦ 电路板如何有效防水、防腐蚀
用派瑞林镀膜吧!可以联系我打版15323582123!Parylene是一种保护性高分子材料,中文名,聚对二甲苯敏册册,派瑞林它可在真空下桥宏气相沉积,Parylene活性分子的良好穿透力能在元件内部、底部,周围形成无针孔,厚度均匀的透明绝缘涂层,给元件提供一个完整的优质防护涂层,抵御酸碱、盐雾、霉菌及各种腐蚀性气件的侵害,因为Parylene不是液体,所以姿迟涂敷过程中不会聚集,桥接式形成弯月面。
⑧ Harrick等离子清洗的优势在哪里
等离子清洗在LED封装工艺中的应用
来源:南京世锋科技等离子研究中心 2009-10-21
________________________________________
(南京世锋科技有限公司,南京 030026)
摘 要:LED封装工艺过程中,支架、芯片表面的氧化物及颗粒污染物会降低产品质量,如果在封装工艺过程中的点胶前、引线键合前及封装固化前进行等离子清洗,则可有效去除这些污染物。介绍了等离子清洗原理及清洗设备,并对清洗前后的效果做了对比。
关键词:等离子清洗;LED;封装工艺
Application of Plasma Cleaning in LED Package Process
Wang Da-wei,Jia Juan-fang,Miao Dai
(The 2nd Research Institute of CETC,Taiyuan 030024,China)
Abstract:In LED package process, oxide and particle contamination on chip surface can rece quality, but RF plasma cleaning before dispensing、wire bonding or solidification could efficiently remove this contamination. This article introces plasma cleaning theory and equipment, and compares the effect after cleaning with it before.
Key words: Plasma Cleaning;LED;Package Process
0 引言
LED是可直接将电能转化为可见光的发光器件,它有着体积小、耗电量低、使用寿命长、发光效率高、高亮度低热量、环保、坚固耐用及可控性强等诸多优点,发展突飞猛进,现已能批量生产整个可见光谱段各种颜色的高亮度、高性能产品。近几年,LED广泛用于大面积图文显示屏,状态指示、标志照明、信号显示、汽车组合尾灯及车内照明等方面,被誉为21世纪新光源,然而在其封装工艺中存在的污染物一直是其快速发展道路上的一只拦路虎,如何能够简单快速及无污染的解决掉这个问题一直困扰着人们。等离子体清洗,一种无任何环境污染的新型清洗方式,将为人们解决这一问题。激春
1 LED的发光原理及基本结构
发光原理:LED(light emitting diode),拿帆发光二极管,是一种固态的半导体发光器件,它可以直接把电转化为光,其核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结,因此它具有一般pn结的I-N特性,即正向导通、反向截至及击穿特性,在一定条件下,它还具有发光特性。正向电压下,这些半导体材料的pn结中,电流从LED阳极流向阴极,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来。半导体晶体可以发出从紫外到红外不同颜色的光线, 其波长和颜色由组明敏耐成pn结的半导体物料的禁带能量所决定,而光的强弱则与电流有关。
基本结构:简单来说,LED可以看作是将一块电致发光的半导体材料芯片,通过引线键合后四周用环氧树脂密封。其芯片及典型产品基本结构见图1(芯片与透镜间为灌封胶)。
2 LED封装工艺
在LED产业链中,上游为衬底晶片生产,中游为芯片设计及制造生产,下游为封装与测试。研发低热阻、优异光学特性、高可靠的封装技术是新型LED走向实用、走向市场的必经之路,从某种意义上讲封装是连接产业与市场之间的纽带,只有封装好才能成为终端产品,从而投入实际应用。LED封装技术大都是在分立器件封装技术基础上发展与演变而来的,但却与一般分立器件不同,它具有很强的特殊性,不但完成输出电信号、保护管芯正常工作及输出可见光的功能,还要有电参数及光参数的设计及技术要求,所以无法简单地将分立器件的封装用于LED。经过多年来的不断研究与发展,LED封装工艺也发生了很大的变化,但其大致可分为以下几个个步骤:
Ø 芯片检验:材料表面是否有机械损伤及麻点麻坑;
Ø LED扩片:采用扩片机对黏结芯片的膜进行扩张,将芯片由排列紧密约0.1mm的间距拉伸至约0.6mm,便于后工序的操作;
Ø 点胶:在LED支架的相应位置点上银胶或绝缘胶;
Ø 手工刺片:在显微镜下用针将LED芯片刺到相应的位置;
Ø 自动装架:结合点胶和安装芯片两大步骤,先在LED支架上点上银胶(绝缘胶),然后用真空吸嘴将LED芯片吸起移动位置,再安置在相应的支架位置上;
Ø LED烧结:烧结的目的是使银胶固化,烧结要求对温度进行监控,防止批次性不良;
Ø LED压焊:将电极引到LED芯片上,完成产品内外引线的连接工作;
Ø LED封胶:主要有点胶、灌封、模压三种,工艺控制的难点是气泡、多缺料、黑点;
Ø LED固化及后固化:固化即封装环氧的固化,后固化是为了让环氧充分固化,同时对LED进行热老化,后固化对于提高环氧与支架(PCB)的粘接强度非常重要;
Ø 切筋划片:LED在生产中是连在一起的,后期需要切筋或划片将其分离;
Ø 测试包装:测试LED的光电参数、检验外形尺寸,根据客户要求对LED产品进行分选,将成品进行计数包装。
3 等离子清洗原理及设备
3.1 概述:是正离子和电子密度大致相等的电离气体。由离子、电子、自由激进分子、光子以及中性粒子组成,是物质的第四态。人们普遍认为的物质有三态:固态、液态、气态。区分这三种状态是靠物质中所含能量的多少。给气态物质更多的能量,比如加热,将会形成等离子体,在宇宙中99.99%的物质处于等离子状态。
3.2清洗原理:通过化学或物理作用对工件表面进行处理,实现分子水平的污染物去除(一般厚度为3~30nm),从而提高工件表面活性。被清除的污染物可能为有机物、环氧树脂、光刻胶、氧化物、微颗粒污染物等。对应不同的污染物,应采用不同的清洗工艺,根据选择的工艺气体不同,等离子清洗分为化学清洗、物理清洗及物理化学清洗。
化学清洗:表面反应以化学反应为主的等离子体清洗,又称PE。
例1:O2+e-→ 2O※ +e- O※+有机物→CO2+H2O
从反应式可见,氧等离子体通过化学反应可使非挥发性有机物变成易挥发的H2O和CO2。
例2:H2+e-→2H※+e- H※+非挥发性金属氧化物→金属+H2O
从反应式可见,氢等离子体通过化学反应可以去除金属表面氧化层,清洁金属表面。
物理清洗:表面反应以物理反应为主的等离子体清洗,也叫溅射腐蚀(SPE)。
例:Ar+e-→Ar++2e- Ar++沾污→挥发性沾污
Ar+在自偏压或外加偏压作用下被加速产生动能,然后轰击在放在负电极上的被清洗工件表面,一般用于去除氧化物、环氧树脂溢出或是微颗粒污染物,同时进行表面能活化。
物理化学清洗:表面反应中物理反应与化学反应均起重要作用。
3.3等离子清洗设备
等离子清洗设备的原理是在真空状态下,压力越来越小,分子间间距越来越大,分子间力越来越小,利用射频源产生的高压交变电场将氧、氩、氢等工艺气体震荡成具有高反应活性或高能量的离子,然后与有机污染物及微颗粒污染物反应或碰撞形成挥发性物质,然后由工作气体流及真空泵将这些挥发性物质清除出去,从而达到表面清洁活化的目的。是清洗方法中最为彻底的剥离式清洗,其最大优势在于清洗后无废液,最大特点是对金属、半导体、氧化物和大多数高分子材料等都能很好地处理,可实现整体和局部以及复杂结构的清洗。
4 等离子清洗在LED封装工艺中的应用
LED封装工艺直接影响LED产品的成品率,而封装工艺中出现问题的罪魁祸首99%来源于支架、芯片与基板上的颗粒污染物、氧化物及环氧树脂等污染物,如何去除这些污染物一直是人们关注的问题,等离子清洗作为最近几年发展起来的清洗工艺为这些问题提供了经济有效且无环境污染的解决方案。针对这些不同污染物并根据基板及芯片材料的不同,采用不同的清洗工艺可以得到理想的效果,但是错误的工艺使用则可能会导致产品报废,例如银材料的芯片采用氧等离子工艺则会被氧化发黑甚至报废。所以选择合适的等离子清洗工艺在LED封装中是非常重要的,而熟知等离子清洗原理更是重中之重。一般情况下,颗粒污染物及氧化物采用5%H2+95%Ar的混合气体进行等离子清洗,镀金材料芯片可以采用氧等离子体去除有机物,而银材料芯片则不可以。选择合适的等离子清洗工艺在LED封装中的应用大致分为以下几个方面:
Ø 点银胶前:基板上的污染物会导致银胶呈圆球状,不利于芯片粘贴,而且容易造成芯片手工刺片时损伤,使用等离子清洗可以使工件表面粗糙度及亲水性大大提高,有利于银胶平铺及芯片粘贴,同时可大大节省银胶的使用量,降低成本。
Ø 引线键合前:芯片粘贴到基板上后,经过高温固化,其上存在的污染物可能包含有微颗粒及氧化物等,这些污染物从物理和化学反应使引线与芯片及基板之间焊接不完全或粘附性差,造成键合强度不够。在引线键合前进行等离子清洗,会显著提高其表面活性,从而提高键合强度及键合引线的拉力均匀性。键合刀头的压力可以较低(有污染物时,键合头要穿透污染物,需要较大的压力),有些情况下,键合的温度也可以降低,因而提高产量,降低成本。
Ø LED封胶前:在LED注环氧胶过程中,污染物会导致气泡的成泡率偏高,从而导致产品质量及使用寿命低下,所以,避免封胶过程中形成气泡同样是人们关注的问题。通过等离子清洗后,芯片与基板会更加紧密的和胶体相结合,气泡的形成将大大减少,同时也将显著提高散热率及光的出射率。
通过以上几点可以看出材料表面活化、氧化物及微颗粒污染物的去除可以通过材料表面键合引线的拉力强度及侵润特性直接表现出来。
某几家LED厂产品封装工艺中以上几点工艺前添加等离子清洗,测量键合引线的拉力强度与未进行等离子清洗相比,键合引线拉力强度有明显增加,但由于产品不同,所以增加的幅度也大小不等,有的只增加12%,有的却可以增加80%,也有的厂家测量的数据反映平均拉力没有明显增加,但是最小键合拉力却明显提高,对于确保产品可靠性来说,这仍然是十分有益的。图3为某LED厂家一批氧化的LED等离子清洗前后对比,图4为某LED厂家对一批LED在等离子清洗前后进行的键合引线拉力对比图。
等离子清洗过后,检测芯片与基板清洗效果的另一指标为其表面的浸润特性,通过对几家产品进行实验检测表明未进行等离子清洗的样品接触角大约为40°~68°左右;表面进行化学反应机制等离子体清洗的样品接触角大约为10°~17°左右;表面进行物理反应机制等离子体清洗过的样品接触角为20°~28°左右。不同厂家、不同产品及不同清洗工艺的清洗效果是不同的,浸润特性的提高表明在上述几点封装工艺前进行等离子清洗是十分有益的。图5为等离子清洗前后在某种LED工件表面滴落7微升纯净水并利用接触角检测仪进行检测的接触角对比。
5 结束语
近年来,由于半导体光电子技术的进步,LED的发光效率迅速提高,预示着一个新光源时代即将到来。就发光二极管的技术潜力和发展趋势来看,其发光效率将达到400lm/w以上,远远超过当前光效最高的高强度气体放电灯,成为世界上最亮的光源。因此,业界认为,半导体照明将创造照明产业的第四次革命。而有利于环保、清洗均匀性好、重复性好、可控性强、具有三维处理能力及方向性选择处理的等离子清洗工艺应用到LED封装工艺中,必将推动LED产业更加快速的发展。
参考文献:
[1]Polack,et al, Plasma Chemistry[M]. 1998
[2]T.J.M.Boyd and J.J.Sanderson,The Physics Of Plasmas[M].CAMBRIDGE.2004
[3]陈元灯,LED制造技术与应用[M].电子工业出版社.2007
[4]杨丽敏,如何有效的提高功率型LED封装工艺[J].现代显示.2007年04期
[5]孙卓,真空等离子体装备技术及应用[OL].中国真空网.2005.2
[6]张国柱 杜海文等,等离子清洗技术[J].机电元件 2000.12
[7]梁治齐,实用清洗技术手册[M].化学工业出版社.2000.1
联系人:网络关键词搜索 冯涛 等离子清洗在LED封装工艺中的应用
⑨ 真空断路器的工作原理特别是跳闸线圈和合闸线圈的原理
断路器处于合闸位置时,其对地绝缘由支持绝缘子承受,一旦真空断路器所连接的线路发生永久接地故障,断路器动作跳闸后,接地故障点又未被清除,则有电母线的对地绝缘亦要由该断路器断口的真空间隙承受;各种故障开断时,断口余慎一对触子间的真空绝缘间隙要耐受各种恢复电压的作用而不发生击穿。因此,真空间隙的绝缘特性成为提高灭弧室断口电压,使单断口真空断路器向高电压等级发展的主要研究课题。 关键词: 真空断路器 绝缘特性 断口电压 无标题文档 真空断路器处于合闸位置时,其对地绝缘由支持绝缘子承受,一旦真空断路器所连接的线路发生永久接地故障,断路器动作跳闸后,接地故障点又未被清除,则有电母线的对地绝缘亦要由该断路器断口的真空间隙承受;各种故障开断时,断口一对触子间的真空绝缘间隙要耐受各种恢复电压的作用而不发生击穿。因此,真空间隙的绝缘特性成为提高灭弧室断口电压,使单断口真空断路器向高电压等级发展的主要研究课题。 真空度的表示方式 绝对压力低于一个大气压的气体稀薄的空间,称为真空空间,真空度越高即空间内气体压强越低。真空度的单位有三种表示方式:托(即1个mm水银柱高),毫巴(103bar)或帕(帕斯卡:Pa)。(1托=131。6Pa,1毫巴=100Pa)我们通常所说真空灭弧室内部的真空度要达10-4托是指灭弧室内的气体压强仅为"万分之一mm水银柱高",亦即是1。31x10-2Pa。 "派森定理"亦有译为"巴申定律",是指间隙电压耐受强度与气体压力之间的关系。图1表示派森定理的关系曲线呈"V"字形,即充气压力的增加或降低,都能提高极间间隙绝缘强度。其击穿机理至今还不清楚,因为真空灭弧室内部真空度高于10-4托,这样稀薄空气的空间,气体分子的自由行程为103mm,在真空灭弧室这么大小的容积内,发生碰撞的机率几乎是零。因此不会发生碰撞游离而使真空间隙击穿。派森定理的"V"形曲线是实验得出的,条件是在均匀电场的情况下,其间隙击穿电压Uj可表示为: Uj=KLa L------间隙距离; a------间隙系数(间隙<5mm时a=1,>5mm时,a=0。5) 由派森定理的"V"形关系曲线中看出,当真空度达103托时出现拐点,拐点附近曲线变得平坦,击穿电压几乎无变化。 当真空度和间隙距离相同时,其击穿电压则随触头电极材料发生变化,电极材料机械强度高,熔点高时,真空间隙的击穿电压亦随之提高。 真空绝缘的破坏机理 前面已说过,在真空灭弧室这样高度真空度的空间内,气体分子的自由行程很大,不会发生碰撞分离而使真空间隙在高压电作用下会击穿又是客观存在,于是就有种解释真空绝缘会破坏的机理,场致发射引起击穿,微块引起击穿和微放电导致击穿。 场致发射论对真空间隙所以能发生击穿的解释 间隙电场能量集中,在电极微观表面的突出部分发生电子发射或蒸发逸出,撞击阳极使局部发热,继续放出离子或蒸汽,正离子再撞击阴极发生二次发射,相互不断积累,最后导致间隙击穿。 著名的Fowler and Noraheim场发射电流I表达式为: I=AE2e-B/E 式中 E------电场强度; A------常数,与发射点的面积有关; B------常数,与电极表面的逸出有关。 在小的间隙(<1mm)及短脉冲电压情况下,可以合理地认为真空间隙击穿是由场致发射引起的,但在长间隙及连续加压与长脉冲电压下,有的学者认为真空的击穿尚存在其它机理: (1)阴极引起的击穿;在强电场下,由于场发射电流的焦耳发热效应,使阴极表面突出物的温度升高,当温度达到临界点时,突出物熔化产生蒸汽引起击穿。 (2)阳极引起的击穿:由于阴极发射绝腔的电子束,轰击阳极使某点发热产生熔化和蒸汽而发生间隙击穿。产生阳极引起击穿的条件与电场提高系数和间隙距离有关。 微块引起击穿的解释 假设在电极表面附着较轻松的微块,在电场作用下,微块脱落而且加速,这微块撞击对面的电极时,由于冲击发热可使其本身熔化产生蒸汽,引起击穿。 微放电导致真空间并毁衫隙击穿的解释 电极的阴极表面沾污,将发生微放电现象。微放电是一种小的自抑制熄灭的电流脉冲,它的总放电电荷3107C,存在时间由50ms到几ms,放电一般发生在大于1mm的间隙中。 这些真空间隙的击穿机理表明,真空电极的材料与电极的表面状况对真空间隙的绝缘都是非常关键的因素。 真空间隙的绝缘耐受能力与在先的分合闸操作工况有关 真空断路器接触间隙的击穿电压,因耐压实验前不同工况的分合闸操作有相应的不同结果,意大利哥伦布(Colombo)工程师在设备讨论会上有文论述过这方面的问题:试验对象是24KV断路器,铜铬触头,额定开断电流16KA,额定电流630A,触头开距15。8mm,触头分闸速度1。1m/s,合闸速度为0。6m/s。试验程序列于表1。 在关合---分闸操作(试验系列2~5)后产生的最大击穿电压比空载循环(试验系列1)后给出的数值低,这意味着触头击穿距离受电弧电流的影响而减小;同时,系列2和系列5所测得的数值亦小于系列3和系列4的试验值,而电流过零波形和极性似乎无明显影响。试验结果证实了开闭操作的形式对断路器触头之间的绝缘耐受能力有影响,击穿电压在30~50kV范围内,击穿距离为0。6~2mm之间,击穿时触头的电场强度为25~44kV。 表1试验程序及内容表 试验序号 试验电流 项号 操作/试验顺序 1 1-1 1-2 1-3 1-4 合闸-分闸 冲击绝缘电流 1分钟工频试验 高频熄弧能力试验 2 100%额定开断电流 2-1 2-2 2-3 2-4 关合--开断 冲击绝缘试验 1分钟工频试验 高频熄弧能力试验 3 30%额定开断电流 用30%额定开断电流值,不同的电流波极性按2。1~2。4逐项试验 4 10%额定开断电流 用60%额定开断电流值重复进行2。1~2。4的逐项试验 意大利哥伦布工程师上述实验的结果表明,真空开关在开断大电流后,其真空减小绝缘强度会下降是一种普遍现象。因此,我国早期的真空断路器在开断故障后,间隙绝缘会下降,达不到产品技术条件的绝缘水平,故能源部对户内高压真空断路器订货要求(部标DL403--91)允许在真空断路器电寿命试验后,极间耐压值降为原标准的80%作试验,如果通过,就认为该断路器的型式试验合格。那么,如何解释目前许多真空断路器制造厂在作产品介绍时,反复强调它们的真空断路器电寿命试验后,间隙的绝缘强调不降低呢?我们以10kV真空断路器为例来对此作说明:真空灭弧室经过技术和工艺改进,极间绝缘水平同早期产品比较,提高很多例如可达到A值,远比产品标准规定的耐压值C(工频42kV,冲击75kV)高得多,出厂新品按C值试验当然不会击穿,电寿命试验后,间隙绝缘水平由A值降为B值,但B值>C值,故按C值去校核其绝缘,试验时亦不会发生击穿。而老产品的A值是大于C值,出厂新品按C值考核,当然能通过,开断故障后,由A值降到B值。热B<C值,就出现了我们通常所说的绝缘水平下降。就表明其产品质量差而应该予以淘汰。 提高真空灭弧室绝缘耐受能力的措施 真空断路器要向高电压使用领域发展,提高真空灭弧室断口极间绝缘耐受能力制成额定电压较高的单独断口真空灭弧室的经济意义是巨大的,不但可减少串联断口的数量,而且使断路器结构简单,从而提高了设备可靠性并使设备造价亦相应降低。提高单断口真空灭弧室的绝缘耐受能力主要在下列三方面采取措施。 真空灭弧室内触头间耐压强度的提高 前面以说过,在灭弧室内部高度真空的情况下,触头间存在的气体非常稀少,不会受极间电压而产生游离,但极间发生击穿是客观存在,从而产生几种真空绝缘破坏机理的解释。真空间隙实际击穿时,有可能是几种机理同时发生作用,而且击穿途径中总是有游离气体存在,这是由施加电压后产生的金属蒸汽或触头释放了所吸附的气体提供的。基于此点出发,采取下列措施以提高真空灭弧室触头间隙的耐压性能: (1)选择熔点或沸点高,热传导率小,机械强度和硬度大的触头材料; (2)预先向触头间隙施加高电压,使其反复放电,使触头表面附着的金属或绝缘微粒熔化,蒸发,即所谓"老炼处理"; (3)清除吸附在触头或灭弧室表面上的气体,即进行加热脱气处理; (4)选择合适的触头形状,改善触头的电场分布。 提高开断电流后触头极间的绝缘恢复速度 通常断路开断电流成功的关键在于电弧电流过零后,触头间隙绝缘恢复速度快于触头间隙间的暂态恢复电压速度,就不会发生重燃而达到成功开断。真空灭弧室开断电流时,电弧放出的金属蒸汽在电弧电流过零时会迅速扩散,遇到触头或屏蔽罩表面会立即凝结。因此欲求在开断电流相应的触头尺寸,材质,形态,触头间隙以及电流开断时产生的金属蒸汽密度,带电粒子密度等影响因素进行反复实验取得试验数据作分析研究。发现触头直径越大且触头间隙越小,电流开断后的绝缘强度恢复越快;纵向磁场触头结构的采用,有极为良好的弧后绝缘恢复特性。 提高真空灭弧室的外部绝缘 真空灭弧室的外部表面,如处于正常的大气之中,则绝缘耐压是很低的,不能适合高电压条件下使用,随着真空断路器向高电压,小型化方向发展,对真空灭弧室外部表面采取下列强化措施: (1)用环氧树脂绝缘包裹真空灭弧室陶瓷外壳表面,环氧树脂具有高绝缘性能,其冲击电压为50kV/mm,工频耐压为30kV/mm,而且其制品机械强度高,浇注加工性能好,可以较容易成型复盖于陶瓷外壳表面,从而达到灭弧室外表面绝缘强化的目的。并提高了耐污性能,使所需对地绝缘更趋合理化。户外真空断路则往往采用带有裙边的硅胶外套作管,复盖于陶瓷外壳的表面,具有更好的抗雾闪性能,但机械强度则不如环氧树脂制间。 (2)将真空灭弧室置于SF6气体之中,使陶瓷外壳为SF6气体所包围,由于SF6气体只起绝缘作用,其充气压力一般是不高的
⑩ 等离子清洗机应用领域及作用
等离子清洗机广泛用于LED,LCD, LCM,手机配件,笔记本电脑按键及外壳,光学元器件,光学镜片,电子芯片,集成电路,五金,精密零件,塑胶制品,生物材料,医疗器皿,晶圆等的表面处理。 经过等离子处理的物件表面活化效果最好,物件的水浸润效果也是最佳的。如微晶玻璃,光学镜片镀腊粘接前等离子处理,能有效提升产品品质。