导航:首页 > 耗材问题 > 环氧树脂014u

环氧树脂014u

发布时间:2023-05-11 01:24:46

Ⅰ 环氧树脂固化剂CYD-128,cyd-011,cyd-014u是危险品吗

CYD-128、CYD-011、CYD-014都是巴陵石化生产的环氧树脂即E-51、E-20、E-12环氧树脂,都不属于危险品

Ⅱ 环氧树脂标准

环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。

环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。

凡分子结构中含有环氧基团的高分子化合物统称为环氧树脂。固化后的环氧树脂具有良好的物理化学性能,它对金属和非金属材料的表面具有优异的粘接强度,介电性能良好,变定收缩率小,制品尺寸稳定性好,硬度高,柔韧性较好,对碱及大部分溶剂稳定,因而广泛应用于国防、国民经济各部门,作浇注、浸渍、层压料、粘接剂、涂料等用途。[1]

中国自1958年开始对环氧树脂进行了研究,并以很快的速度投入了工业生产,至今已在全国各地蓬勃发展,除生产普通的双酚A-环氧氯丙烷型环氧树脂外,尚生产各种类型的新型环氧树脂,以满足国防建设及国发经济各部门的急需。

材料特点概括:固化方便,附着力强,收缩性低,化学性稳定,耐霉菌。工艺简单,无需施加过高的压力,具有良好的绝缘性,耐化学腐蚀,具有较好的耐油性和耐溶剂性。

贮存使用注意事项:存放在阴凉通风处; 必须与固化剂配套使用。

《2013-2018年中国环氧树脂市场全景调查及未来发展趋势报告》中资料显示,环氧树脂的生产主要集中在中、日、欧三个地区,其他还有韩国、美国、台湾地区、泰国、南非和委内瑞拉等。中国大陆的生产能力约占世界总生产能力的60%。

尽管如此,巨大的市场潜力仍为国内企业提供了生存和发展空间。预计未来中国环氧树脂产能还将进一步增长。未来5-10年,中国环氧树脂行业将会进一步规范化,生产成本过高、环保不合格、产品档次低的企业将被淘汰。同时,国内支柱产业加快发展给环氧树脂行业带来无限商机,如汽车领域,信息产业,能源、交通运输、建筑产业,这些发展方兴未艾的支柱产业都是应用环氧树脂的生力领域,会对环氧树脂带来巨大的市场需求。

Ⅲ 水性环氧的生产工艺,以及配方,注意事项

环氧树脂具有优良的物理、机械、电绝缘性能及对各种材料的粘接性能,广泛应用于涂料、复合材料、浇铸料、胶粘剂、模压材料和注射成型材料等领域¨ 。随着工业的发展及社会的进步,人们的环保意识逐渐增强,不含挥发性有机化合物(VOC)或少含VOC、以及不含有害空气污染物(HAP)的体系已成为新型材料的研究方向 。近年来,以水为溶剂或分散介质的水性环氧树脂越来越受到重视。水性环氧树脂通常是指以微粒或液滴形式分散在以水为连续相的分散介质中而配制的稳定分散体系。一般可分为水乳型环氧树脂胶液(环氧树脂水乳液)以及水溶性环氧树脂胶液(环氧树脂水溶液)两类,既保持了溶剂型环氧树脂的优点,还具有合理的固化时间并
有着很高的交联度和很大的粘度可调范围,操作性能好,施工工具可直接用水清洗,可与其它水性聚合物体系混合使用,以及价廉、无气味、VOC含量低、不燃,储存、运输和使用过程中安全性高等特点 。
随着生产技术的不断成熟和发展,水性环氧树脂的应用前景良好。国内外已研究和开发了很多新的品种,并将其不断地推广到各个相关领域 l。
1 水性环氧树脂的制备
水性环氧树脂制备方法主要有以下几种:
1.1 直接乳化法
直接乳化法又称机械法、直接法,通过球磨机、胶体磨、超声波振荡、高速搅拌,均质机乳化等手段将环氧树脂磨碎,在乳化剂水溶液的作用下,再通过机械搅拌将粒子分散于水中;或将环氧树脂和乳化剂混合,加热到适当的温度,在激烈的搅拌下逐渐加入水而形成乳液。可采用的乳化剂有聚氧乙烯烷芳基醚(HLB=10 9~19、5)、聚氧乙烯烷基醚(HLB=10.8~16 5)、聚氧乙烯烷基酯(HLB=9 0~16 5)等,另外也可自制活性乳化剂 】。
机械法制备水性环氧树脂乳液的优点是工艺简单,所需乳化剂的用量较少,但乳液中环氧树脂分散相微粒的尺寸较大,约50/tm左右,粒子形状不规则且粒度分布较宽,所配得的乳液稳定性差,时间一长乳液就会分层,并且乳液的成膜性能也不是很好。
1.2 相反转法
相反转原指多组分体系中的连续相在一定条件下相互转化的过程,如在油/水/乳化剂体系中,当连续相由水相向油相(或从油相向水相)转变时,在连续相转变区,体系的界面张力最低,因而分散相的尺寸最小。通过相反转法将高分子树脂乳化为乳液,其分散相的平均粒径一般为1~2 ILm。
相反转法是一种制备高分子树脂乳液较为有效的方法,几乎可将所有的高分子树脂借助于外加乳化剂的作用并通过物理乳化的方法制得相应的乳液。用相反转法制备水性环氧树脂乳液的具体过程是在高速剪切作用下先将乳化剂和环氧树脂混合均匀,随后在一定的剪切条件下缓慢地向体系中加入蒸馏水,随着加水量的增加,整个体系逐步由油包水向水包油转变,形成均匀稳定的水可稀释体系。在这一过程中,水性环氧树脂乳液的许多性质会发生突变,如体系的粘度、导电性和表面张力等,通过测定体系乳化过程中的电导率和粘度的变化就可判断相反转是否完全。该乳化过程可在室温环境下进行,对于固体环氧树脂,则需要借助于少量有机溶剂或进行加热来降低环氧树脂的本体粘度,然后再进行乳化 -8l。
有研究按一定比例将环氧树脂和表面活性剂通过加热及过硫酸钾溶液催化,制得反应型环氧树脂乳化剂溶液,大大改善了乳化剂与环氧树脂的相容性。然后将双酚A型环氧树脂的乙二醇单乙醚溶液和反应型环氧树脂乳化剂按一定比例搅拌混合均匀,滴加蒸馏水至体系的粘度突然下降,此时体系的连续相由环氧树脂溶液相转变为水相,发生了相反转,继续高速搅拌一段U?I司后加入适量蒸馏水稀释到一定的浓度,制得水性环氧树脂乳液 l。
1.3 自乳化法
自乳化法,又称化学法,或化学改性法。在环氧树脂中,环氧基的存在使其具有较好的反应活性,因为环氧环为三元环,张力大,C、0电负性的不同使该三元环具有极性,容易受到亲核试剂或亲电试剂进攻而发生开环反应;分子骨架上所悬挂的羟基虽然具有一定反应活性,但由于空间位阻,其反应程度较差 。。。因此可在环氧树脂分子骨架中引入一定量的强亲水性基团,如磺酸基、羧酸基等酸性基团;胺基等碱性基团,聚醚等非离子基团。这些亲水性基团能帮助环氧树脂在水中分散,使改性树脂具有亲水亲油的两亲性能,当这种改性聚合物加水进行乳化时,疏水性高聚物分子链就会聚集成微粒,离子基团或极性基团分布在这些微粒的表面,由于带有同种电荷而相互排斥,只要满足一定的动力学条件,就可形成稳定的水性环氧树脂乳液,从而使所得的改性环氧树脂不用外加乳化剂即可自分散于水中形成乳液。所需亲水基团的最低数量与亲水基团的极性大小,树脂的结构以及平均相对分子质量有关。树脂的相对分子质量小,相对分子质量分布宽时,其水溶性较好。因为高相对分子质量的分子在水中的扩散速度慢,且其溶液的粘度也大,增加了分子运动的阻力。而分子间的互溶效应则可使相对分子质量分布宽时的溶液的水溶性得到改善。
如用相对分子质量为4 000~20 000的双环氧端基乳化剂与环氧当量为190的双酚A环氧树脂和双酚A混合,以三苯基膦化氢为催化剂进行反应,可制得含亲水性聚氧乙烯、聚氧丙烯链段的环氧树脂,该树脂不用#F;bu-~L化剂便可溶于水,且耐水性强⋯ 。
根据反应类型的不同,可将自乳化法分为以下几类:
1.3.1 醚化反应型
由亲核试剂直接进攻环氧环上的C原子即为醚化反应型。可用的方法有:将环氧树脂和对位羟基苯甲酸甲酯反应,而后水解、中和;将环氧树脂与巯基乙酸反应,而后水解、中和;将对位氨基苯甲酸与环氧树脂反应,产物可稳定分散于合适的胺/水}昆合溶剂中[12l~
1.3.2 酯化反应型
酯化反应型与醚化反应型不同的是氢离子先将环氧环极化,酸根离子再进攻环氧环,使其开环。可行的方法有:用不饱和脂肪酸酯化环氧树脂,再将所得产物与马来酸酐反应,引入极性基;或者将不饱和脂肪酸先与马来酸酐反应,所得中间产物与环氧树脂发生酯化反应,然后中和产物上未反应的羧基。
在较激烈反应条件下,环氧树脂可以和羧酸发生酯化反应,按化学计量加入二酸,可得到含一游离羧基的环氧酯,用有机胺中和即得稳定分散体:磷酸与环氧树脂反应生成环氧磷酸酯,由于溶液有利于放热反应进行,用环氧树脂溶液反应可得最好结果,磷酸最好与水和醇一起逐步加入溶液中,反应极易制得二酯,二酯在醇作用下易解离成单磷酯,用胺中和,可得不易水解的较稳定水分散体。环氧树脂与丙烯酸树脂发生酯基转移反应,或环氧树脂与丙烯酸单体溶液反应,丙烯酸通过酯键接枝于环氧树脂上,这两种改性方法所得的水乳体系,大量用作罐头内壁涂料。目前,环氧树脂磺化水性化的报道较少,低相对分子质量的含环氧基有机物,在亚硫酸氢钠作用下可以磺化,通过这种方法有可能将低相对分子质量的环氧树脂改性,使其水性化。
酯化法的缺点是酯化产物的酯键会随U?I司增加而水解,导致体系不稳定。为避免这一缺点,可将含羧基单体通过形成碳碳键接枝于高相对分子质量的环氧树脂上 。
1.3.3 接枝型
James.T.K.Woo等人利用甲基丙烯酸单体与环氧树脂在自由基引发剂(BPO)存在的条件下进行接枝聚合,将羧基引入环氧树脂骨架中,制得水性环氧树脂。并研究发现接枝位置为环氧分子链上的脂肪0HjC原子一O—CH:一CH—CH 一O一,接枝效率低于100% ,最后产物为未接枝的环氧树脂、接枝的环氧树脂和聚丙烯酸的混合物, 由于没有酯键,用碱中和,可得稳定的水乳液。引发剂用量至少为单体量的3%, 在自由基引发剂为单体量的3% ~15%范围内,接枝率与引发剂用量呈线性关系,但过多的引发剂导致单体的自聚,或为链终止所消耗,接枝率不能保持原来的增加趋势;用所得产物制得的乳液粒子的粒径随制备时引发剂用量的增加而变小。最后产物中未反应的环氧树脂比原来的环氧树脂平均相对分子质量要低,这是因为高相对分子质量的环氧树脂有更
佳的接枝率,在高相对分子质量的环氧树脂中(数均
相对分子质量约为10 000),大约有34个重复单元O H
l一(卜一CH厂CI{-_一CH厂0一, 则有34 x 5=170个氢原
子可被自由基离解而成为单体反应的起点,而如果使用的是低相对分子质量的环氧树脂,如数均相对分子质量为1 000左右, 则在环氧骨架上约有2个0H一0一CH厂Cl_卜CH厂一0一单元,那么只有1O个氢原子可作反应起点。由于这种接枝与通过酯键接枝于环氧骨架上不同,无需形成酯键,环氧官能基对其无影响,可用苯酚或苯甲酸将环氧官能基封端 。
1.3.4 开环接枝型
选羟基含量较高的环氧树脂作骨架材料,用不饱和脂肪酸进行酯化制成环氧酯,再以不饱和二元羧酸(酐)与环氧酯的脂肪酸上的双键进行自由基引发加成反应,以引进羧基。然后加碱中和,直接加水稀释即得水性环氧乳液。如可用亚麻油酸与环氧树脂制成环氧酯后,与马来酸酐进行自由基反应制备水性环氧树脂 。
这种方法制得的粒子较细,通常为纳米级,相反转法以及直接乳化法制得的粒子较大,通常为微米级。从此意义上讲,化学法虽然制备步骤多,不易操控,且成本高,但在某些方面仍具有实际意义。
1.4 固化剂乳化法
将多元胺固化剂进行扩链、接枝、成盐,使其成为具有亲环氧树脂分子结构的水分散型固化剂,同时它作为阳离子型乳化剂对环氧树脂进行乳化,两组分混合后可制成稳定的乳液。双酚A环氧树脂和过量的二乙烯三胺反应,形成胺封端的环氧树脂加成物,真空蒸馏除去多余的二乙烯三胺,再加入单环氧基化合物将氨基上的伯氢反应掉,最后加入乙酸中和,制成酸中和的环氧树脂固化剂。此固化剂可分散于水中,向其水溶液中直接加入环氧树脂或环氧树脂乳液,均可形成稳定的水乳化环氧一胺组合物,可配制水性常温固化清漆 。
2 水性环氧树脂体系的几个重要参数“
2.1 粒子大小及其分布
粒子大小及其分布对分散体系的性质及涂层的性质是非常关键的。涂层的干燥时间、涂层的透气性等参量随粒径增大而提高;涂层的光泽、耐水性、硬度、乳液与颜料的结合力、乳液的粘度及稳定性等参量随粒径增大而减小。而粒子大小及分布主要取决于制备方法、设备、乳化剂类型及用量等因素。粒子越小,膜的硬化过程越慢,膜的最终硬度越大;相反,较大粒子会加速涂层的硬化过程,但最终硬度较小。所以,若调节体系的粒子大小,使其具有一定分布,不仅可以保证膜快速硬化,又能保证膜的最终硬度。由水性化体系的固化过程可知:粒子大,其表面的固化剂浓度高,导致快速固化;然而,随着固化的进行,固化剂向微粒内部扩散的速度变慢,使粒子的内层来不及固化,导致固化不完全,降低了膜的最终硬度。相反,小粒子表面的固化剂浓度适中,固化速度慢,使固化剂有充分时间扩散到整个微粒,使之固化完全,形成均一的完全化的硬膜。
2.2 乳化剂浓度
乳化剂浓度对环氧树脂微粒化水基化体系性质的影响也是非常显著的,不仅影响粒子大小,而且也影响涂膜的性质,如膜的硬度。随着乳化剂浓度的增加,粒子平均尺寸变小,但当乳化剂浓度较大时(如15PHR),进一步增加乳化剂浓度,平均粒子尺寸减小得不明显。此外,乳化剂含量增加,涂层的硬度显著降低。因为乳液成膜是一个由O/W变为W/0的相反转过程,过多的乳化剂分散于涂膜中,导致膜的不均匀性;同时,乳化剂分散相起着增塑作用。
但可以想象,适量的乳化剂可以作为无机填料的表面处理剂,使无机填料与树脂具有良好的相容性,从而提高涂膜性质。
2.3 其它重要参数 ¨
水性环氧树脂乳液的稳定性也是一个重要参数。无论是外加乳化剂,还是自乳化环氧树Ji~?L液,都处于热力学不稳定状态,尤其是外加乳化剂型乳液(包括外加反应性乳化剂所得的自乳化乳液),仅有一定的贮存期。首先,环氧分子能被水解成a一二醇,它不与胺固化剂反应;其次,大多用非离子表面活性剂乳化环氧树脂,而由于非离子表面活性剂的浊点问题,一旦温度升高,聚醚和水的吸附量减少,即水化层厚度降低,液滴趋向于聚结成较大粒子,最终导致两相分离。通常环氧乳液在20℃时可贮存1年;而在40℃ ,3个月即发生相分离;6o℃时贮存,稳定期不到1个月。用固体或半固体状环氧树脂制
得的环氧乳液比用液体环氧树脂制得的乳液稳定性要好,这是因为固体环氧树脂可以制得粒径较小的乳液。对于自乳化环氧树脂乳液,温度上升,乳液也会沉淀,但一旦温度下降,经搅拌又可恢复原样,稳定性较好。确保乳液长期贮存稳定的最好方法是选择适宜的乳化剂(复合型乳化剂),避免极端温度(如低于0℃ ,或高于40℃)。乳液液滴的粒径和分布对乳液的稳定性也极为重要,小粒径和窄分布会大大增加乳液的稳定性。
此外,乳液流变特性的研究有助于指导施工过程。比较水基体系与有机溶剂体系的粘度与固含量的关系可见:水基体系的粘度更大,尤其是在高固含量时更是如此。这是因为水基体系中微粒表层的乳化剂与水形成强相互作用,导致体系的粘弹性增加所致。

1 水性环氧树脂乳液的制备
众所周知,环氧树脂的亲水亲油平衡值(HI B)在3左右,是一种不溶于水也难于乳化的亲油性聚合物。为使其乳
化形成稳定乳液,目前国内外最常用的方法可归结为外加乳化剂法及自乳化法。
1 1 外加乳化剂法
这是一种藉外加乳化剂使环氧树脂乳化而形成水包油型(O/W)乳液的方法。其最主要的实施方法包括直接乳化
法及相反转法。
(1)直接乳化法Ⅲ 又称机械法 可用球磨机、胶体磨或均
化器等先将环氧树脂磨碎成粉末,然后加入乳化剂水溶液,继而再通过强烈机械搅拌将树脂粒子分散于水中而成。也可将环氧树脂和乳化剂混合后加热到适当温度,在施以激烈机械搅拌后逐渐加入水而形成乳液。乳化剂通常采用较多的有聚氧化乙烯烷基醚(HI B值为10.8-16.5)及聚氧化乙烯烷基酯(HLB值为9.0-16.5)。目前国内外陆续有许多新的乳化剂被开拓应用,如利用双酚A环氧树脂在路易斯酸催化下与聚乙二醇的反应产物,环氧树脂,聚乙二醇与多元胺作用的加成产物等。直接乳化法最大特点就是工艺简单,乳化剂用量也较少,但所得乳液中作为分散相的环氧树脂微粒粒径较大(约50 m)且粒径分布较宽,形状也不规则,乳液稳定性及成膜性相对较差。影响这~ 方法的因素颇多,除乳化剂的选择外,高效搅拌及分散时温度控制都是十分重要的。
(2)相反转法 这是一种有效制备高聚物水乳液的方法,包括从油包水(W/O)到水包油(O/W )的相转变过程,
在此过程中乳液的黏度、导电性及表面张力等诸多性质均会发生突变。在室温高速剪切作用下先将液态环氧树脂与乳化剂均匀混合,然后继续在一定剪切作用下缓慢地逐步向其中加入蒸馏水,增加到一定水量后,即出现整个体系逐步由油包水型向水包油型的转变,而形成均匀稳定并可由水稀释的乳液。若选用高分子质量固体环氧树脂,则需要加少量有机溶剂并加热以降低其本黏度,继而再行转换和乳化。这一方法的影响因素也较多,除必须有高效的高速剪切分散的设备外,乳化剂的类型、分子质量大小、使用浓度及操作温度等,实际上都对相反转过程、粒径控制及分散乳化效果有着直接影响。近来有人 对其相反转过程流变行为及相态发展进行了研究,在相反转点附近,体系油水相的界面张力最
小,此时产生的乳液具有最小分散相尺寸。
1.2 自乳化法
又称化学修饰法,这是利用环氧树脂活性基团的反应活
性将亲水性基团或链段引入到环氧树脂分子上而进行化学修饰改性的方法。这种具有疏水及亲水两性的环氧树脂,有着良好的表面活性,无需添加乳化剂而具有自乳化作用,自行分散于水中形成稳定乳液。亲水性基团及链段的引入主要是充分利用了环氧树脂分子中活性环氧基及活泼的次甲基上氢原子进行的。当然对高分子质量环氧树脂而言,还有仲羟基,但其反应活性相对要低得多。
(1)与环氧基的反应_8 因环氧基有较大张力及极性,很易与亲核试剂及亲电试剂作用而开环,方便地引入亲
水性基团及链段。例如选用氨基酸、氨基苯甲酸、氨基苯璜酸等小分子化合物与环氧树脂反应,则氨基使环氧基开环得到相应含羧基、磺酸基的环氧树脂,再经与氨水等碱性化合行分散于水中,也可用此产物使纯环氧
树脂进行乳化。也有用羟基苯甲酸甲酯、巯基乙酸酯等小分子化合与环氧基反应,然后再进行酯基水解和中和而引入亲水基团的。有人将丙烯酸齐聚物与环氧树脂作用,藉羧基使环氧基开环而引入含多羧基基团的环氧树脂再继而用氨水中和成盐,分散于水中形成稳定乳液。这类反应因使环氧基消失,一般需加入三聚氰胺或氮基树脂等以利固化成膜。也有人选用端环氧基聚氧化乙烯或端环氧基聚氧化丙烯乳化剂及双酚A与双酚A环氧树脂在三苯基膦化氢催化下反应.巧妙得到分别含亲水性聚氧化乙烯及聚氧化丙烯链段并含有环氧基的改性环氧树脂,不仅具有很好水分散性,且成膜后具有良好耐水性。也有以端羟基聚氧化乙烯或端羟基聚氧化丙烯代替上述双环氧乳化剂与之反应的报道。
(2)与次甲基上氢的反应 ” 有人将环氧树脂溶于溶剂,加入引发剂及亲水性单体如丙烯酸或甲基丙烯酸,加
热使引发剂分解产生初级游离基,并进攻环氧树脂次甲基使其活化而产生碳游离基成为新的活性中心,它引发单体进行聚合而使环氧树脂成为含多羧基基团亲水链的产物,用氨水中和得到了良好分散于水的稳定乳液。在游离基反应中一般对环氧基影响不大,但也有人将环氧基先用苯酚或苯甲酸或磷酸等予以保护,反应完后再予以还原。当然保护基的选择应符合易于引入,形成的中间结构能经受所处后继反应条件,并能在反应结束后不损及分子其他结构的条件下除去。
研究表明,这类接枝环氧树脂中丙烯酸链段含量对乳液稳定性影响很大。
(3)与羟基的反应 对于分子质量较大的环氧树脂中的仲羟基,虽然反应活性不及前者,但仍可以通过其反应而引入亲水基团或链段。如有人使用磷酸与其反应形成单、双或三磷酸酯环氧,用氨水中和成盐而具亲水性。也有酸酐与之反应形脂肪酸环氧,也有将不饱和脂肪酸与之反应形成不饱和脂肪酸环氧酯,再通过双键作用与顺丁烯二酸酐反应而制成水性脂肪酸环氧的报道。
1 3 改性固化剂乳化法[. ]
除上述方法外还可采用改性固化剂乳化法,它不需要先
将环氧树脂改性和乳化,而在配制使用前与改性固化剂混合乳化,这种固化剂一般由多元胺固化剂进行加成扩链、接枝、成盐而制得,非极性及具有表面活性的基团和链段的引入,不仅改善了与其环氧树脂的相容性,而且对低分子质量液体树脂有良好乳化作用,因而同时兼有乳化及交联固化功能。
如将多乙烯多胺与单环氧或多环氧化物加成使大部分伯胺氢封闭,再用双酚A环氧树脂与之加成,达适当亲水亲油平衡值后与甲醛作用使伯胺氢羟甲基化。或将过量的多烯多胺与环氧树脂加成后,用脂肪族或芳香族单环氧化合物封闭其伯胺氢,以水(或水溶性有机溶剂)稀释后,以醋酸中和部分伯胺氢。封端的作用主要在于制约伯胺基上的氢的活性。
制备中控制好HLB值可保证其良好水分散性。
2 水性环氧树脂的固化机理[18,1 9j 1 、 、
水性环氧树脂乳液在配制时根据组成及成膜后性质的
不同要求,需调节环氧与固化剂 的摩尔比,当使用分子质量较大的固体环氧时,尚需加入乙二醇醚一类的成膜助剂。颜填料则可分别添加在环氧及固化剂内,最好质量相近。由于这是一种以溶有固化剂的水为连续相,环氧树脂为分散相的多相体系,涂装后水分在适当蒸汽压条件下会逐渐挥发。有人认为随水分大部分挥发,环氧颗粒相互接触形成球体紧密堆积而聚结,而含固化剂的剩余水分则填充于其间,继而固化剂不断扩散人环氧,二者相互作用而交联固化成膜,残余水分及其他添加助剂则扩散到膜表面挥发。但随着交联固化的进行,环氧颗粒内质量增大,黏度及玻璃化转变温度升高,会大大影响固化剂向内部扩散的速度,但速度过快并不利于成膜过程的进行,透射电镜测试也显示了其相应的两相
结构,初步成膜后其固化反应实际上继续进行,到完全固化需要持续一定时间。
由水的挥发,颗粒聚结,固化剂。扩散及交联固化成膜的反应机制充分说明,水分的挥发及固化剂扩散速度是极重要的技术关键,环氧分散相的粒径愈小,固化剂与环氧的相容性愈好,少量成膜助剂的使用及合适的水蒸发的控制手段都将直接影响成膜的过程及性质。陈声锐指出 水分的蒸发分2个阶段,先是流体状态时其蒸发速率恒定,二是成膜后水分需从内部扩散到表面蒸发速率较慢,并指出固化成膜时的温度、膜厚度及环境相对湿度皆制约着水分的蒸发。
3 有待改善的问题
以水性环氧树脂为基础的水性涂料具有环境污染小,对
许多基材包括潮湿基材都有良好附着力 可与水 泥砂浆或水性聚合物配合使用,操作方便,有很好的应用前景,但实践中还是有不少问题需要予以改善。
(1)由于水的蒸汽压及蒸发潜热皆比有机溶剂高,作为
涂料涂装后水的蒸发较慢,在低温及潮湿环境下更甚,微量水分的残留常造成涂膜表干时间延长,涂膜起泡或凹陷。
(2)由于水的冰点低,作为水性涂料,其冻融稳定性较溶
剂型为差。
(3)由于水的表面张力较大,作为水性涂料大大影响了
其对基材及添加的颜填料的润湿及附着。
(4)由于水的电导率高及乳化剂存在,易使涂装金属受
到一定腐蚀。

Ⅳ 环氧树脂胶衣与环氧树脂有什么区别

胶衣抄: 是指不饱和聚酯(UP)中加入颜料和触变剂等分散而成的玻璃钢(FRP)及台面面漆用来开发的着色触变性产品。
环氧树脂: 是指含有两个或多个环氧基团的树脂的总称。
明白这两个概念就可以了,环氧树脂胶衣是指用环氧树脂做的胶衣产品,而其他树脂也是可以做胶衣。

Ⅳ 环氧树脂复合物EP-U是什么意思

环氧树脂复合物EP-U

未增塑的(野祥和unplasticized)环氧树脂,业宴茄内也有译为:无颂盯填料的环氧树脂的。

Ⅵ 请问有哪种环氧树脂可以耐高温,并且可以粘接密封铜管和塑料的间隙

环氧树脂粘接剂不耐高温,最高150度,

不知你在冰箱里做什么用,承受压力情况,粘接面情况,温度以及温度变化情况,这对被选胶的性能指标很重要。

现在耐高温的胶只有有机硅胶可以达到250度以上,但其粘接力差,粘接面大而且不承受太大外力可以选用。

所以你的应用选择还要具体分析,如果是承受较大的外力而温度不会超过100度,可以考虑选用环氧胶。

如果只是瞬时高温,你可以用环氧型密封胶做一下实验,看粘接力会不会受影响,环氧胶瞬时耐温没有明确规定,

至于粘接后在整形我觉得对粘接或者叫灌封很不利,根据你提供的粘接情况,其粘接接触面并不大“估计也就2平方厘米”,而且你的整形属于对粘接面的扯离,胶体应该是无法承受你的整形力。

你为什么不考虑先整形、焊接,再灌封呢?

Ⅶ 液体环氧树脂就是聚氯乙烯PVC糊树脂吗

液体环氧树脂不是聚氯乙烯糊树脂。
液体环氧树脂是双酚A和环氧氯丙烷为原料合回成的,分子中含答有环氧基团的小分子树脂,因为含有大量的环氧基团,环氧基团非常活泼,可以采用胺类固化剂、多元酸类固化剂进行固化,用于生产高端的产品。聚氯乙烯糊树脂是采用聚氯乙烯作为原料,添加了大量的增塑剂进行增塑,加热后塑化得到制品。二者是完全不同的,环氧树脂是热固性树脂,硬度高,耐磨,耐化学腐蚀,PVC糊树脂是热塑性树脂,很软,常用来做皮革,防滑垫,拖鞋等。

Ⅷ 水性环氧水泥砂浆流动性很差怎么解决

水性环氧水泥砂浆是由水性环氧树脂H123A、水性环氧固化剂H123B、水、水泥、砂子、细石子组成,砂子石子无需烘干、一次性可以做厚。采用水性环氧树脂乳液对水泥砂浆进行改性,分析了其对水泥砂浆流变性、抗压和抗折强度、黏结强度以及收缩特性的影响,并结合 SEM 微结构分析,探讨了水性环氧树脂的改性机理。结果表明:掺入水性环氧树脂乳液后,能显著增强水泥颗粒的分散,大幅度提高水泥砂浆的流动性能;水泥砂浆的 7 、 28d 抗折与抗压强度均有所提高,当聚灰比为 3%~9%时存在峰值;经过改性之后水泥砂浆试件的折压比呈现增加趋势,水泥砂浆的韧性有所增加;随着聚灰比的不断增加,黏结强度也不断增加,当聚灰比为 12% 时,黏结强度出现最大值;随着聚灰比的增大收缩率下降幅度越大,当掺量增大到 12% 以后,基本不再减小;掺入水性环氧树脂乳液后氢氧化钙晶体数量明显减少,水化产物得以细化,内部结构密实度显著提高。关键词:水泥砂浆;水性环氧树脂;路用性能;微观结构;改性机理收稿日期:2017-03-20基金项目:“十二五”国家科技支撑计划项目(编号:2011BAE27B04 )作者简介:程毅,男,高级工程师 . 普通水泥基复合材料因具有收缩显著、脆性明显和抗腐蚀性能差等缺陷而给结构物耐久性带来极大影响。尤其是在道路工程领域,随着大型多轴重型载重交通量的日益增长,结构物所受到的高速高频冲击越来越严重,往往导致断板、开裂等早期病害的产生。随着化学工业的发展,聚合物改性水泥砂浆和混凝土由于其优异的物理、力学性能和耐久性而成为道路工程结构物的修补材料被推广应用。目前,常用的水泥基复合材料改性聚合物一般有 4 种:乳液型聚合物、水溶性聚合物、液体聚合物及可再分散的粉料型聚合物。国内外大量研究表明:经过聚合物改性后,水泥基复合材料的抗弯拉强度、耐磨性、韧性和黏性等特征均有明显提升,相同的流动性条件下其断裂能是普通水泥基复合材料的 2 倍以上。此外,改性之后的水泥基复合材料抗氯离子渗透、抗碳化和抗冻性能等均有显著提升。水性环氧树脂溶于水后能在室温条件下和高碱性环境中发生聚合反应而固化,固化后形成的三维网状结构穿插于水泥基体中,大幅提升复合材料的强度,同时还耐水、耐酸碱和耐大多数化学药品。因此,目前已发展成一种重要的水泥基复合材料改性聚合物。前人研究发现,虽然关于聚合物对水泥基复合材料性能的改善已达成共识,但是关于在不同掺加量的条件下水性环氧树脂乳液对水泥基材料各种性能的影响规律一直存在争议,并且其改性作用机理仍有待进一步研究。鉴于此,该文采用一种新型的水性环氧树脂乳液对水泥砂浆进行改性,对其作为道路加固修补材料的路用性能进行分析,并结合微结构测试对其改性机理进行探讨。1 试验1.1 原材料水泥(C ): 42.5R 普通硅酸盐水泥;砂( S ):洁净河砂,细度模数 2.32 ;减水剂( SP ):聚羧酸类高效减水剂,棕黄色,固含量为 30% ,减水率为 25% ;聚合物改性剂(P ):上海双酚 A 型水性环氧树脂乳液 A 、 B 双组分,其性能指标见表 1 ,拌和用水:自来水。1.2 试验方法通过前期研究确定此次试验的对照组即普通水泥砂浆的基准配比,并根据所设置的基准配比,通过改变环氧树脂乳液的掺加量,分别设置了各改性组的配比,以此研究环氧树脂乳液在不同掺加量下对水泥基材料各种路用性能的影响,如表 2 所示。拌和过程中,首先将称量好的水性环氧树脂和固化剂混合均匀后备用,将水泥和砂干拌 30s ,然后加入混合好的聚合物搅拌60s ,再加入水和减水剂搅拌 120s 。5 1 2第 37 卷 第 5 期2017 年 10 月中 外 公 路 网络出版时间:2017-10-24 15:12:52网络出版地址:http://kns.cnki.net/kcms/detail/43.1363.U.20171024.1512.047.html 表 1 水性环氧树脂及固化剂性能指标材料分类 外观密度(25℃ )/(g · cm-3 )固含量/%配比A 组分 - 水性环氧树脂乳白色黏稠液体1.04~1.16 57±2A∶B=1∶2B 组分 - 固化剂黄色透明黏稠液体1.01~1.12 57±2表 2 试验配合比组别 ( P / C )/ %W / C( SP / C )/ %C∶SP-0 0 0.38 0.8 1∶2.72P-1 3 0.38 0.8 1∶2.72P-2 6 0.38 0.8 1∶2.72P-3 9 0.38 0.8 1∶2.72P-4 12 0.38 0.8 1∶2.72P-5 15 0.38 0.8 1∶2.72每组砂浆搅拌均匀后按 GB / T2419-2005 《水泥胶砂流动度测定方法》的规定对其流变性进行评价。根据 GB50728-2011 《聚合物改性水泥砂浆试验规程》规定,成型 40mm×40mm×160mm 棱柱体试件后标准养护,然后分别测试其 7 、28d 的抗折与抗压强度以及不同龄期的收缩率。采用黏结抗折强度试验来评价水泥砂浆的黏结性能:首先成型 40mm×40mm×160mm 普通水泥砂浆棱柱体试件养护至 28d 龄期后用石材切割机从中分线切断,用砂纸对断面打毛;使用前将切断后的普通水泥砂浆试件放在水池中浸泡 5h ,拿出后用毛巾擦掉浮水,将半块试件放在三联模一端,用改性水泥砂浆把三联模的另外一端填满,即制成新老砂浆的黏结试件。当达到规定的龄期后进行抗折强度试验,将所测出的强度试验结果视为黏结强度,来间接评价水泥砂浆的黏结性能。在试件断裂面上取试样,所取试样的表面要尽可能平整,起伏不能过大。然后放入无水乙醇中终止其水化,再喷金处理,采用 HitachiS-4800 场发射扫描电镜(SEM )分析环氧树脂的加入对水泥砂浆内部微结构的影响,探讨其对水泥砂浆的改性机理。2 结果与讨论2.1 改性砂浆流变性各组配比下砂浆的流变性测试结果如图 1 所示。从图 1 可以看出:水性环氧树脂乳液同其他类型 1801501209060300流动度 /mm18 15 12 9 6 3 0聚灰比 /%图 1 水性环氧乳液对流变性的影响的聚合物材料有类似的功能,加入到水泥砂浆之后同样可以大幅度改善水泥砂浆的流动度。即在相同流动度条件下,加入水性环氧树脂乳液会减少拌和用水量,说明其具有减水作用。分析以上原因主要是由于环氧树脂加入后在搅拌过程中易引入气泡,产生“滚珠”效应。并且,由于环氧树脂颗粒有一定的表面活性剂作用,当其附着在水泥微粒的表面后,会使水泥微粒也具有一定的极性,能显著增强水泥微粒的分散作用。随着环氧树脂乳液添加量的增加,其对水泥微粒的分散性进一步提高,将水泥微粒絮凝状结构打开,其内部水分变为自由水,所以改性水泥砂浆的流动性得到增加。2.2 改性砂浆力学性能各组配比的 7 、 28d 力学性能测试结果如图 2~4所示。可以看出:水性环氧树脂的掺入对水泥砂浆的抗压和抗折强度都有一定的改善。 7 、28d 龄期的改性水泥砂浆试件的抗压强度随聚灰比改变其变化规律类似,在一定聚灰比范围内,在水泥砂浆中加入环氧树脂乳液进行改性之后会增加其抗压强度。当聚灰比为3%~9% 时,水泥砂浆经过环氧树脂乳液改性之后其抗压强度存在峰值,当龄期为 7d 时提高幅度为 6%~13% ,当龄期为 28d 时提高幅度为 12%~15% 。图 3 显示,掺入环氧树脂乳液改性之后的水泥砂浆与对照组的普通水泥砂浆相比,其抗折强度均有所提高。在 7 、28d 龄期时,水泥砂浆抗折强度变化规律基本一致。当聚灰比为 9% 时,水泥砂浆经过环氧树脂乳液改性之后其抗折强度达到最大,7d 龄期时较对照组的抗折强度增加了约 23% , 28d 龄期时增加了约 29% 。之后随聚灰比的增大,改性水泥砂浆的抗折抗折强度测试结果 0.300.250.200.150.100.050折压比18 15 12 9 6 3 0聚灰比 /%7 d28 d图 4 折压比测试结果强度开始下降。折压比在一定程度上可反映材料的韧性特征。由图 4 可以看出:掺加环氧树脂乳液后,经过改性之后的水泥砂浆试件的折压比与对照组相比都有所增加,即加入环氧树脂乳液后,水泥砂浆试件的韧性有所提高。因此,水泥砂浆经过环氧树脂乳液改性之后可以改善其脆性破坏特征。2.3 改性砂浆黏结性能在进行结构修补的过程中,结构物能否得到良好的修补主要是由新老水泥基材料之间的黏结强度决定的。因此,黏结强度是聚合物改性水泥砂浆的一项重要性能指标。各组 配比下的 黏结 强 度 测 试 结 果 见图 5 。从图 5 可以看出:水泥砂浆经过环氧树脂乳液改性之后其黏结强度随聚灰比的增大显著变化。当聚灰比为 0 时,即不掺加水性环氧树脂乳液时,普通水泥基材料黏结强度很小,约为 0.8MPa 。随着聚灰比的不 黏结强度 /MPa54321018 15 12 9 6 3 0聚灰比 /%图 5 黏结强度测试结果断增加,改性之后的水泥基材料抗折黏结强度也不断增加,当聚灰比为 12% 时,改性之后的水泥基材料抗折黏结强度出现最大值。当继续加大聚灰比时,其抗折黏结强度则呈现出降低的趋势。出现上述变化的原因是当掺加环氧树脂乳液时,乳液和水泥的水化生成物两者间由于化学键如范德华力和氢键的共同作用,使水泥砂浆内部水泥基相与分散基相(骨料)之间的界面过渡区(ITZ )更加紧密,提高了水泥砂浆内部水泥基相与分散基相之间的黏结,使水泥砂浆的微裂纹更难产生。当聚灰比超过一定范围时,经过改性之后的水泥基材料抗折黏结强度下降的原因主要是聚灰比太大,在经过环氧树脂乳液改性之后的水泥砂浆内部,环氧树脂乳液成为首要的骨架,水泥水化后的生成物所占的比例反而很少,成为次要部分,由于环氧树脂乳液在硬化之后的弹性模量远小于水泥砂浆。因此,当聚灰比太大时,经过环氧树脂乳液改性之后的水泥砂浆抗折黏结强度表现出下降的趋势。该研究进行的抗折黏结强度试验过程中,水泥砂浆试件发生断裂的部位主要是新老砂浆的黏结区域,说明新老砂浆之间的界面过渡区是砂浆较为薄弱的部位,这是因为界面过渡区存在的缺陷要素难以掌控,使新老砂浆之间的黏结力降低。在聚合物改性水泥砂浆中,砂子经过搅拌机搅拌后被水泥浆体裹附。但是,在新老砂浆之间的界面黏结处,砂子被机器振捣后被碾压在两者的界面处,导致砂子和新老砂浆界面之间形成“点接触”,使得老砂浆的黏结面出现较多的孔隙,使改性水泥浆体不能大量进入老砂浆界面孔隙中,无法将硬化后的水泥石润湿。而且,改性水泥砂浆也因此失去大量水泥浆体,使得改性水泥砂浆黏结强度降低,无法与修补界面牢固地黏结在一起。同时,砂子会大量出现在新老砂浆之间的界面处,使两者的界面处各种缺陷更加容易产生,使新老砂浆之间的黏结强度再次减弱。范德华力和机械黏着力是改性水泥砂浆产生黏结强度的主要原因,不像刚成型的水泥砂浆那样完7 1 22017 年 第 5 期 程毅,等:水性环氧改性水泥砂浆路用性能与机理研究 整地连接起来,因此黏结强度要远低于抗折强度。2.4 改性砂浆收缩性能水泥砂浆在硬化过程中不可避免会产生体积收缩,当收缩应力超过砂浆的抗拉强度时就会产生裂缝,不仅会影响到其与结构物的黏结性能,而且会对修补结构的耐久性带来较大影响。因此,该研究对改性水泥砂浆的收缩性能进行了测试,结果如图 6 所示。 收缩率 /%0.100.080.060.040.02035 28 21 14 7 0龄期 /dP-0P-1P-2P-3P-4P-5图 6 收缩性能测试结果从图 6 可以看出:随着养护时间的延长,各组砂浆的收缩率都缓慢增长。但是加入水性环氧树脂后,收缩率迅速下降,随着掺量的增大,收缩率下降幅度越大。当掺量增大到 12% 以后,收缩率基本不再减小,在 28d 龄期时 P-4 的收缩率要比 P-0 小约 32% 。因此,掺入水性环氧树脂后能大幅改善水泥砂浆的收缩特性,减小其出现收缩开裂的倾向。其主要原因在于水性环氧树脂颗粒能在水中均匀分散,其在固化过程中能够较好地成膜,填充了水泥基体内部的空隙,使其结构变得密实,限制了收缩的产生。同时,水性环氧树脂乳液有一定的引气作用,其所引入气体产生的微珠能够有效分担水泥砂浆内部的毛细孔压力,使结构受力均匀,所以减小了收缩。2.5 微结构分析试验选取了 3 种聚灰比的改性水泥砂浆试样( P-0 、 P-1 和 P-3 ),分别将其放大到 5000 倍后的SEM 图片如图 7 所示。从图 7 ( a )可以看出:普通水泥砂浆的结构较为疏松,可以观察到大量的空隙,且含有较多的片状氢氧化钙及针状的钙矾石。相比之下,用环氧树脂乳液改性后的水泥砂浆结构较为密集,而且砂浆空隙率较小,其内部的大量空隙被聚合物所填充,环氧树脂固化后与水化产物交织形成了连续的空间网状结构,氢氧化钙含量明显减少,未经水化的水泥颗粒数量增加,如图 7(b )所示。从图 7 ( c )可以看出:当聚灰比为 9% 时,水化产物相互搭接生长,空隙被填充,基体内部结构更为密实,微裂纹数量减少,所以 P-3 的各项力学性能更优异。由于环氧树脂对水泥砂浆的各种空隙有一定的填充效果,且和水泥水化的生成物和集料之间具有良好的黏结作用使改性水泥砂浆的力学性能较为优异。另外,由于环氧树脂聚合物填充了水泥砂浆的空隙,也会将内部空隙和外部之间的通道堵塞住,在阻止水泥砂浆内部水分挥发的同时,也会防止外界有害物质如二氧化碳、氯离子等进入水泥砂浆内部。因此,加入环氧树脂乳液改性之后,水泥砂浆的干缩大幅度降低,同时水泥砂浆的耐久性如抗氯离子渗透性能和抗碳化性能显著改善。(a) P-0 微结构 (b) P-1 微结构 (c) P-3 微结构图 7 微观分析结果3 结论(1 )水性环氧树脂乳液同其他种类的聚合物乳液类似,在加入水泥砂浆后,能显著增强水泥颗粒的分散性。环氧树脂乳液会大幅度提高水泥砂浆的流动性能,即在相同流动度条件下,加入环氧树脂乳液会减少拌和用水量,具有减水作用。(2 )掺入水性环氧树脂乳液后水泥砂浆的 7 、 28d抗折与抗压强度均有所提高,当聚灰比为 3%~9% 时存在峰值;当聚灰比大于 9% 时,其强度开始衰减。经过改性之后水泥砂浆试件的折压比与普通水泥砂浆相比整体呈现增加趋势,即加入环氧树脂乳液后,水泥砂浆试件的韧性有所增加。(3 )掺入水性环氧树脂乳液改性后水泥砂浆的抗折黏结强度较改性前得到显著提升,而且随着聚灰比的不断增加,抗折黏结强度也不断增加,当聚灰比为12% 时,抗折黏结强度出现最大值。(4 )各组砂浆的收缩率随着养护时间的延长都缓慢增长,但是加入水性环氧树脂乳液后,收缩率迅速下降,随着掺量的增大,收缩率下降幅度越大。当掺量增大到 12% 以后,收缩率基本不再减小。综合力学性能与收缩特性并结合工程实际,建议水性环氧树脂乳液的最佳掺量为 6%~9% 。

Ⅸ 环氧树脂601U有什么用途

环氧树脂是指分子中含有两个以上环氧基团的一类聚合物的总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。双酚A 型环氧树脂不仅产量最大,品种最全,而且新的改性品种仍在不断增加,质量正在不断提高。
环氧树脂优良的物理机械和电绝缘性能、与各种材料的粘接性能、以及其使用工艺的灵活性是其他热固性塑料所不具备的。因此它能制成涂料、复合材料、浇铸料、胶粘剂、模压材料和注射成型材料,在国民经济的各个领域中得到广泛的应用。
环氧树脂在涂料中的应用占较大的比例,它能制成各具特色、用途各异的品种。其共性:
1.耐化学品性优良,尤其是耐碱性。 2.漆膜附着力强,特别是对金属。
3.具有较好的耐热性和电绝缘性。
4.漆膜保色性较好。
但是双酚A型环氧树脂涂料的耐候性差,漆膜在户外易粉化失光又欠丰满,不宜作户外用涂料及高装饰性涂料之用。因此环氧树脂涂料主要用作防腐蚀漆、金属底漆、绝缘漆,但杂环及脂环族环氧树脂制成的涂料可以用于户外。

Ⅹ 臭氧与酚醛环氧树脂漆反应吗

论环氧树脂产品结构调整的必要改革开放以来,我国社会主义建设取得长足的进步。环氧树脂作为一种重要的基本材料,在国民经济各部门中得到越来越多的应用,特别是电子、电器、交通运输、建筑等工业领域大量采用高科技手段,应用新型材料,促使环氧树脂的用量成倍的增长。1980年全国环氧树脂用量仅为6千吨/年,而今它的用量已超过14万吨/年,可见其用量增长之快,发展势头之猛,不得不引起众人的关注。

众所周知,近年来国外环氧树脂大量涌入中国市场,众多乡镇企业纷纷进军环氧行业,使环氧树脂市场竞争十分激烈。面对这样的形势一些厂迎难而上,发展了本厂特色的产品,如迪爱生环氧有限公司的高纯度环氧树脂几乎供不应求;安徽省黄山市环氧硬树脂在市场中所占的份额越来越大,这些厂目前正在蒸蒸日上。而有些厂商命运就没有这么好了,倒闭的有之,退出的有之,更多数的还在拼命挣扎,他们目前的日子是可想而知的了。

前几年大家都知道去发展“适销对路”、“市场需要”的产品,一听到环氧树脂紧缺,就纷纷上马环氧树脂,殊不知环氧树脂中品种也很多。结果双酚A型的6101或E-44环氧树脂铺天盖地地出现,价格一降再降,搞得大家日子都不好过。如果将这种责任都叫企业家去承担,我觉得他们很冤枉。其实工程技术人员应负主要责任,我看到一些用户的图纸就存在这样的问题:例如变压器制备图上技术要求只指明用环氧树脂浇注,用一般的环氧树脂浇行吗?又如建筑图上只指明地坪采用环氧树脂,而不同功能的地坪应采用不同的环氧树脂设计人员知道吗?为什么不在图上注明?有些在室外使用的设置也只指明用环氧树脂灌封,其实这些环氧树脂都有特殊的要求。在这里应该指出的是,一些工程技术人员也并不错。他们的设计图是参考国外的形式而出的,只是他们不明白国内外环氧行业的差别。这就是“环氧树脂”与“环氧系统”的不同。国外通用型的环氧树脂一般是指828、331、850等基础树脂,而国内则以6101、E-44为主。国外已将专门用途的环氧树脂与固化剂、活性稀释剂、助剂、填料等配套成专用的“环氧系统”,统称为:“Epoxy system”。而国内“环氧系统”尚未形成气候,仍处在“Epoxy resin”阶段,这是两个不同的概念。为此我认为环氧树脂必需进行产品结构调整以适应与国际接轨的形势需要。

从环氧树脂的应用行业发展来看,如汽车制造工业、建筑业、化学工业以及家用电器制品的迅速发展,对涂料 、层压料、粘接剂、浇注料的用量越来越大。其中使用环氧树脂较多的行业是覆铜板生产行业。无论是汽车、家电、计算机的线路板都要用覆铜板,而全国引进覆铜板生产线之多,再加上国内原有的生产线之广,在该方面环氧树脂近两年的年用量在4万吨左右,主要使用的环氧树脂牌号为EX-23-A80、EX-48-T60、DER521-A80、DER512-A80、EPN1138A-85、EPN8011A-75等。其次是粉末涂料行业使用环氧树脂量也很大,全国有大大小小制粉厂近600多家,引进生产线超过60条,每年用在这方面的环氧树脂达2万吨以上,主要使用的树脂牌号为EPO1004、DER663U、YD-014、E-12T、0194等。另外无溶剂、少溶剂、水基涂料近年来发展也较快,特别是汽车用的电泳涂料、集装箱用的重防腐涂料、输油气管道的防腐涂料等使用的EPO828、DER331、E-51、850S等牌号的树脂几乎超过了原来用的固体环氧树脂的量,在这方面近年来使用环氧树脂近2万吨/年。最近两年干式变压器、互感器、绝缘子、高压开关使用环氧树脂的量以60%以上的速度在增长,全国共计有该类生产厂500多家,主要使用E-42、E-39D、CT-200、CY-225、EPO-834、YD-134、F、B、EPO828、DER-331、0164等牌号环氧树脂,去年的年用量达2万吨上下。再加上近期发展很快的粘接剂、电阻涂料、装饰涂料、地坪涂料,汽车点火器、摩托车点火器、蓄电池、发光二极管及信号灯、电器线路密封料等近年的用量也有大幅度提高。这些行业的发展,所使用的环氧树脂再也不是以6101或E-44环氧树脂为主体了。而我国现有140多家环氧树脂生产厂,大多以生产6101、E-44产品为主,这怎么跟得上形势发展呢?从这个角度说环氧树脂也必需进行产品结构调整。

我国环氧树脂生产厂之多,可谓世界第一!这不是个好现象。且不说其量小面广造成污染源多,资源浪费大,生产效率低,成本高等缺点。主要的是这不符合可持续发展的战略方针,长此下去必是死路一条,许多小化工厂关闭的事实也已证明了这点。那何不在现有的产品基础上进行结构调整呢?以求在激烈的市场竞争中立于不败之地。相信很多精明的企业家都想到了这一点,也想在实际中做到这一点,只不过受到某些条件的限制而没来得及做。我不是企业家,但是我明白一条道理:“事在人为”。要有人去做工作,要讲清利弊关系,要争取各方面的理解。只要有利于国家、有利于人民,各级政府是会支持的,人民是会拥护的,最大的困难也是能克服的。

阅读全文

与环氧树脂014u相关的资料

热点内容
上海20寸滤芯多少钱一个 浏览:287
edi系统国际保理 浏览:702
超纯水电导率不等低于多少 浏览:429
昌平区正规污水治理多少钱 浏览:400
超滤净水器市场单价 浏览:93
传祺cn95空调滤芯怎么样 浏览:218
污水处理厂深度处理项目 浏览:811
怎么样拆开空气净化器 浏览:829
强压提升器的工作原理 浏览:977
饮水机怎么不制冷了灯还亮 浏览:767
净水器除水垢是什么原因 浏览:537
反渗透压差含义 浏览:42
污水带锁的井盖怎么打开 浏览:507
污水用途地埋防腐管道厂家多少钱 浏览:726
戴勒森空气滤芯怎么样 浏览:497
矿井涌水水处理工艺 浏览:741
鞍山蒸馏水厂家 浏览:482
草酸除垢剂哪里有卖 浏览:719
空压过滤器350AA表示 浏览:55
洗衣机废水怎么自动排出来 浏览:708