导航:首页 > 耗材问题 > 江苏醛酮树脂

江苏醛酮树脂

发布时间:2022-02-18 01:02:13

『壹』 环保脲醛胶主要成分及比例是多少

胶得宝自问世三年以来,经过多次改进和提高,得到了不断完善,这离不开广大新老用户的认可和支持,在此表示衷心的感谢。2012年推出了最领先的胶得宝第三代,我们将致力于向用户提供更优质的产品和更贴心细致的服务。现将更新后的使用说明公布如下:

一、 胶得宝淀粉胶的制作:

1、 在反应釜加水1000公斤,开搅拌,加玉米淀粉60公斤,(用户可在50~70公斤之间调整,多加则稠度大,固体含量高;少加则反之,可根据下游用户对脲胶的稠度喜好,自主调节。)

2、 待淀粉搅拌均匀后,停止搅拌,加入2公斤胶得宝,重新启动搅拌,开始升温。(此步骤一定要确保胶得宝完全加入溶液中,注意不要粘到釜壁上,造成工艺比例的不准确。)

3、 在85℃左右停止加热,自升温到87℃~90℃(以此温度为准),保温反应15-20分钟。

4、 开始降温到50℃以下,胶得宝脲醛树脂添加剂完成。

二、 胶得宝淀粉胶的使用方法:

在制作脲醛树脂的过程中,胶得宝淀粉胶添加剂有三种加入方式:

①在投料初期与制作脲胶的各种原料同时加入,即在加完甲醛后就可加入。

②在脲胶反应中期加入,即在调酸以前20分钟加入。

③在脲胶反应期加,即在成胶后,降温到70℃以下时加入。

三、 三种加入方式的工艺特点以及如何选择:

1、 在投料初期,与各种原材料同时加入:淀粉胶与脲胶的各种原料共聚的时间长;它参与了脲醛的全部反应过程,所以形成的胶体均一度好、粘接力好、保存期长、共聚程度高;比调酸前20分钟加入添加剂,温度好控制,不含造成淀粉胶加完后,反应温度的下降,这种加入方式特别适合于冬天及秋末春初寒冷低温季节使用。个别用户反映对脲胶的防水性能还有所改善。

2、 在调酸前20分钟加入,这种加入方式的优点是,淀粉胶不会影响到脲素和甲醛的加成反应,尿脲和甲醛在无任何外干扰的前提下,会形成更好的一羟甲基脲、二羟甲基脲和三羟甲基脲,这些物质形成后再与淀粉胶共同参与缩聚反应,形成高度共聚体。产品均一度好、分子量大、粘接强度高、保存期好,适合各种工艺的脲醛树脂使用。它的缺点是,冬季加入常温的淀粉胶,会使脲胶的反应温度下降,如果下降太多,还须再次加温,给操作带来不便。但在其他季节,在此加入,正好为调酸降一点温,可有效缓冲缩聚反应放出的热,使整个制胶过程更加顺畅。

3、 在脲醛树脂成胶后加入,一般是降温到70℃以下加入,这种方式称之为共混,只是一种简单的物理混合,虽然胶得宝淀粉胶和脲胶匹配性很好,在此加入也不会产生分层、沉淀、凝胶以及影响保存期,在相对低比例加入时,使用效果也很好,但这两种胶毕竟没有经过共聚反应,粘接强度,初粘度等指标都较原胶有明显下降,更谈不上分子量的增加,这种方式是一种落后的方法,现在一般逐步淘汰不再采用。(市面上一些落后的所谓添加剂还在采用此法)

综上所述,我们推介采用第一和第二种方式,在冬季低温季节或者生产三胺改性的模板胶,首选第一种加入方式,次选第二种加入方式。 在其他季节和一般的脲醛树脂首选第二种加入方式次选第一种加入方式。用户可以根据自己的实际情况任选其一均可。

四、 制作和使用中的注意事项:

1、制作淀粉胶:加胶得宝时注意停搅拌均匀,以防粘壁造成工艺比例不准。反映温度最终控制在87℃~90℃尽量准确,还要定期检查温度计的准确度。

2、在脲醛胶中使用淀粉胶:因为在调酸过程中会出现泡沫,所以,调酸速度不易过快。注意需准备消泡剂,一般采用“杀泡大王第二代”或磷酸三丁酯等,也可用植物油代替。(用一吨甲醛制胶约20~50克,具体用量以去除泡沫为准)。

五、 在大比例加入时,如何通过微调取得更好的使用性:

通常我们会采取:提高火候;增加聚乙烯醇;减少成胶后的尿素来获得更好的使用性。

1、提高火候:在16℃~18℃水中点胶,可做到8个左右大碎片状(注此为较老的火候),如果因为火候提高而降低了保存期,可将调酸前尿素比例下降1%~1.5%一般控制在36%~37%为宜(占甲醛的比例) 。

2、增加聚乙烯醇:建议采用甲醛的千分之四以上的加入量,它作为内增塑剂会提高脲胶的初粘度,获得更好的使用性。常用比例是4‰~8‰,随淀粉胶的比例增加而增加。

3、适量减少成胶后的尿素:当大比例加入淀粉胶时,脲胶的气味会随之减小,可以适量减少酸后部分尿素。以获得更好的初粘度和热固性。(注:酸后尿素越多气味越小,但使用性越差)

4、如需要有针对性的调整方案,可咨询我们专业技术人员。

『贰』 正丙醛的用途

丙醛是一种重要的有机合成原料,主要用于生产丙酸\丙醇\三羟甲基乙烷以及丙酮肟等,用于农药、化工、医药工业,可用于制合成树脂、橡胶促进剂和防老剂等,也可用作抗冻剂、润滑剂、脱水剂等.
丙醛是一种重要的有机合成原料,外观为无
色透明液体,易燃,有窒息性气味,分子式c3H60,
相对分子质量58.08,熔点一8l℃,沸点49℃ ,相
对密度0.870 1(20/4℃),折光率1.36 36,闪点
一9~C,大鼠121服u 为1.4g/kg,溶于水,可与醇
和醚混溶。丙醛主要用于生产丙酸、丙醇、三羟
甲基乙烷以及丙酮肟等化工中间体,在橡胶、油
漆、塑料、医药、香料、农业、轻纺以及饲料等行业
具有广泛的用途。
1 丙醛的用途
丙醛是一种重要的化工产品和化工原料,在
橡胶、塑料、油漆、医药,特别是农药和饲料等方
面用途广泛。以环烷酸钴、环烷酸锰、醋酸铜、铬
酸铜等为催化剂,在温度6o℃左右,丙醛进行常
压氧化反应生产的丙酸是一种重要的精细化学
品,也是生产其它精细化学品的重要中间体,用
途十分广泛。丙酸及其盐类用于防止谷物结块、
粮食保鲜、饲料防腐等效果十分显著。用丙酸可
制取有机化工原料及中间体丙酸酐、丙酰氯、a一
氯丙酸、2,2一二氨基丙酸和a一溴丙酸等。丙酸
酐可制得抗癌药丙酸羟甲雄酮、抗生素丙酸角沙
霉素、无味红霉素、睾丸丙酸酯等,可用作香料酯
化剂、硫化反应和硝化反应的脱水剂,用于醇酸
树脂和染料;由丙酰氯可制得利胆醇、苯乙醇、甲妥因等;a一氯丙酸可用作合成除草剂的中间体,
也可用作有机合成原料。丙酸和乙苯基汞反应
生成的丙酸苯基汞是一种良好的涂料杀菌剂。
甘油三丙酸是香烟过滤嘴的增塑剂。丙酸铵能
降低粘度,可用作照相技术中卤化银胶乳的湿润
剂。丙酸锌和丙酸铬可用作生产对苯二甲酸酯
的聚酯类用催化剂。在香料工业上,丙酸可用于
制取香料丙酸异戊酯、芳樟酯、丙酸香叶酯、丙酸
乙酯、丙酸苄酯等;由丙酸、醋酸和纤维素反应可
生产用作薄膜、牙刷柄、毛刷柄和眼镜框的醋酸
丙酸纤维素;含丙酸钙15% 的散剂、含丙酸钙
12.3%的软膏或溶液,可治疗皮肤寄生性霉菌引
起的疾病,亦可用作医药中间体。此外,丙酸还
可用于制备维生素B6、用作电镀助剂、乳化剂、硝
酸纤维素溶剂等。
以丙醛和多聚甲醛为原料,在碱性条件下加
热制得的1,1,1,一三羟甲基乙烷,可用来制造清
漆、醇酸树脂、氨基醇酸烘漆以及聚酯树脂、合成
千性油等。
丙醛和甲醛反应得二羟甲基丙醛,再用双氧
水氧化可制得二羟甲基丙酸,它主要用作聚氨酯
乳液的优良稳定剂,加入后乳液贮存期可由不到
半年延长至1年以上。
由丙醛在骨架镍催化剂存在下发生加氢反
应制得的正丙醇,在医药工业中可用于生产丙磺
舒、丙戊酸钠、红霉素、癫健安、粘合止血剂BCA、
丙硫硫胺、2,5一吡啶二甲酸二丙酯等。由丙醇合
成的酯可用作食品添加剂、增塑剂、香料等。由
丙醇衍生的胺类化合物可用于生产农药安磺灵、菌达灭、异丙乐灵、灭草猛、磺乐灵、氟乐灵等。
丙醇还用于生产醋酸丙酯、乙二醇醚和直接作为
溶剂,用于生产正丙胺等。
在氢氧化钠作用下,丙醛经缩合得到的2一
甲基2一戊烯醛是一种重要的有机合成中间体,
在有机合成中用途广泛。此外,丙醛还广泛用于
生产脂肪烃的单体、多氧化物、胺类等,用作塑
料、橡胶加工助剂、染料添加剂、聚合物链传递剂
及乳液稳定剂等。

『叁』 江苏新城气体有限公司怎么样

简介:江苏新城气体有限公司是一家从事工业气体储存、分装、物流以及研发的专业气体公司
法定代表人:曹文林
成立时间:1999-04-22
注册资本:4500万人民币
工商注册号:321088000031124
企业类型:有限责任公司(自然人投资或控股)
公司地址:扬州市江都区经济开发区张纲配套区(张纲人民路)

『肆』 天然植物香料有哪些

天然香料总的来说分为三大类:植物类、动物类、矿物质类。

植物类香料最多,有500多种,可分为花香类(玫瑰、茉莉、桂花等)、香草类(香茅、零陵草、艾草等)、树脂类(苏合、没药、乳香、龙脑、琥珀等)、可食用类(花椒、桂皮、丁香、豆蔻等)、木质类(檀香、降真、柏木等);在花卉植物中有一类属于芳香植物,它们的花朵或叶、茎、果能散发出独特馥郁的芳香。这种芳香气味不仅能使人闻后神清气爽,消除疲劳,同时还具有杀菌作用。因此这些芳香花卉就是提取香精油或香精浸膏的天然植物原料。中国芳香植物资源十分丰富,可供提供芳香油的植物约有300余种。

常见的有茉莉、白兰、珠兰、桂花、兰花、荷花、梅花、腊梅、栀子、含笑、代代、墨红月季、玫瑰、橙花、香石竹、丁香、水仙、麝香百合、熏衣草、香水草、香叶天竺葵、晚香玉等。这些花卉都具有浓郁扑鼻的香气。其芳香气味是由于它们的花朵中含有能够挥发的芳香物质——工业上称之为芳香油或称香精油。

香花所以能挥发出香气,其原因有的是在其特殊的腺体细胞或上皮细胞或细胞间隙内积累形成的芳香族天然有机化合物——芳香油。随着花朵的逐渐开放,这些芳香油分子不断地挥发出来。如茉莉、兰花、玫瑰、梅花、腊梅等,这类香花称为“气质花”,其香气以刚刚开放时最浓,芳香油分子挥发得最多;而未成熟的花蕾,芳香油分子尚未完全形成;已开了一段时间的鲜花,芳香油分子随着花朵的开放而释放挥发掉,因而失去了芳香气味。还有一类芳香油是以游离状态存在于花瓣中,它们挥发的时间较长久,但随着花朵的逐渐凋萎,香气也会耗尽。如白兰、珠兰、米兰、代代等,这类香花称之为“体质花”。不论是哪种挥发型,这些芳香花卉都是提取天然香精油的很好天然原料。

香花中的芳香油,是由多种有机化合物组成的混合物。

据报道,茉莉花中含有48种有机化学成分。这些化学物质经加工蒸馏,其采油率仅为0.004%~0.006%;又如玫瑰香精中含有多种有机化学成分,其香精油含量仅占玫瑰花的0.07%~0.1%。

通过什么途径从含量甚微的香花中提取出天然芳香油呢?目前,工业提取香精油的主要加工途径有水蒸气蒸馏法、挥发性溶剂提取法和压榨法。由于提取香精油需要大量设备,加上操作工艺精细复杂,产出率很低,故产品价值非常昂贵。如从玫瑰花中提取的玫瑰香精,在国际市场上1千克香精油的价值相当于1.5~3千克黄金。

『伍』 什么是树脂

树脂通常是指受热后有软化或熔融范围,软化时在外力作用下有流动倾向,常温下是固态、半固态,有时也可以是液态的有机聚合物。广义地上定义,可以作为塑料制品加工原料的任何高分子化合物都称为树脂。

相对分子量不确定但通常较高,常温下呈固态、中固态、假固态,有时也可以是液态的有机物质。具有软化或熔融温度范围,在外力作用下有流动倾向,破裂时常呈贝壳状。广义上是指用作塑料基材的聚合物或预聚物。一般不溶于水,能溶于有机溶剂。

(5)江苏醛酮树脂扩展阅读:

树脂的分类

1、碳链聚合物是指主链全由碳原子构成的聚合物,如聚乙烯、聚苯乙烯等。

2、杂链聚合物是指主链由碳和氧、氮、硫等两种以上元素的原子所构成的聚合物,如聚甲醛、聚酰胺、聚砜、聚醚等。

3、元素有机聚合物是指主链上不一定含有碳原子,主要由硅、氧、铝、钛、硼、硫、磷等元素的原子构成,如有机硅。

『陆』 环氧树脂的优缺点是什么

环氧树脂可用于涂料、胶粘、电子电器

环氧树脂是指分子中含有两个以上环氧基团的回一类聚合物的答总称。它是环氧氯丙烷与双酚A或多元醇的缩聚产物。

由于环氧基的化学活性,可用多种含有活泼氢的化合物使其开环,固化交联生成网状结构,因此它是一种热固性树脂。

(6)江苏醛酮树脂扩展阅读:

环氧树脂的分类:

1、按其主要组成 分为纯环氧树脂胶黏剂和改性环氧树脂胶黏剂;

2、按其专业用途 分为机械用环氧树脂胶黏剂、建筑用环氧树脂胶黏剂、电子环氧树脂胶黏剂、修补用环氧树脂胶黏剂以及交通用胶、船舶用胶等;

3、按其施工条件 分为常温固化型胶、低温固化型胶和其他固化型胶;

4、按其包装形态 可分为单组分型胶、双组分胶和多组分型胶等;

还有其他的分法,如无溶剂型胶、有溶剂型胶及水基型胶等。但以组分分类应用较多。

『柒』 经常接触聚苯乙烯树脂,会对人体有害吗

有害 它是一种高分子聚合物,一般毒性极小。只有在高温时才会发生热分解生成对人体有害的气体氯化氢和烯烃类气体。不是剧毒化学品。 近两年来一直成为新闻媒体炒作的热点,自1999年10月17日《XX晚报》题为“发泡餐盒与您拜拜”一文称“……一次性饭盒在65℃以上的高温中就会产生这种(指二恶英)物质,吃一顿热饭,开水冲泡一碗方便面的同时,‘二恶英’也被吸收了,这实在令人不寒而栗……”,该信息传出后,国内许多报刊都以触目惊心的标题加以转载,使许多不明真相的普通消费者,由于过去长期使用过发泡塑料餐具以及吃过发泡塑料碗装方便面而惊恐万分,甚至有人质问政府有关部门,为什么对人民健康如此不负责任,听任这种“强致癌”餐具长期在市场流通,危害百姓?为了澄清真相,长期从事塑料加工科技管理、行业管理和信息研究方面的工作者们发表了“聚苯乙烯发泡餐具与二恶英无关”的文章。中国塑料加工工业协会于2000年9月7日邀请了部分国内知名专家和教授召开了新闻发布会,从二恶英的产生条件、来源以及发泡塑料餐具主要原料如聚苯乙烯及丁烷发泡剂等的结构组成、性能、聚合工艺、加工过程、使用环境以及废弃物处理等,进行了科学分析和论证,得出结论是:发泡塑料餐具不具备产生二恶英的条件,因此明确指出:聚苯乙烯发泡餐具不含二恶英致癌物质。会后,新华社、人民日报、中国轻工报、中国环境报等20多家新闻媒体进行了报导,此后发泡塑料餐具有毒的问题似乎平静了一些,但近月来,一些新闻媒体和某些人又无休止地发布聚苯乙烯发泡餐具有毒的新闻,现把近期报刊、电视台有关此问题的误导摘录如下:

⒈2000年11月北京XX报转登昆明X报一则消息:“…昆明XX医院X医生称发泡塑料餐具含有双酚,会导致男性变女性…”,该消息在广东、江苏也广为传播。

⒉2001年3月2日北京X报生活盲区XX记者,在一篇题为“您还敢吃桶装方便面吗”的文章中称:“…据专家介绍,食用一次性发泡塑料包装桶装方便面,其危害程度甚至比一次性发泡塑料餐具还严重。…只要温度超过65℃,它所含有的双酚类等有毒物质就会析出侵入食物。如果在生产发泡塑料餐具的原料中,有害物质浓度超标,毒害就更大,会导致生殖机能失常……。”

⒊今年3月15日北京市XX协会发布(权威发布)今年第一号消费警示:“温度一过65℃,发泡塑料餐具就有毒…有害物质将侵入食品中,会对人的肝脏、肾脏、生殖系统、中枢神经造成损害……。”

⒋今年3月15日一份XX通讯社撰写的文件中,北京市XX研究所教授级高工XXX介绍:“一次性发泡塑料餐具燃烧时会产生大量有毒气体,在使用中遇热,食用后会损害人体健康…。”

⒌北京市XX协会在今年3.15消费服务指南第七个问题“发泡塑料包装的危害有哪些?”中指出:“发泡塑料包装在使用时,对人体健康十分有害,在温度较高时,它的内部有害物质就析出来,凝结在食品里,特别是凝结在脂肪里,人们食用后,引起肝脏和肾脏的损害,也引起人们机能变异。这种现象是已被我们科学家证明的问题。尤其方便面被发泡塑料污染更为严重,所以发泡塑料已成为我们最严重的健康杀手……。”

⒍今年3月15日晚北京X电视台3.15节目中,XXX在接受记者采访时,仍继续宣称发泡塑料餐具会放出二恶英的怪论。

⒎今年3月23日上午北京X电视台“北京您早”节目中,又重提发泡塑料餐具会释放二恶英,北京XX大学教授XXX称:“发泡塑料餐具有毒,其低聚物会渗入食品,伤害人体……。”

⒏2000年9月18日XX日报经济版,一篇题为“白色不禁,绿色难兴”的报导中称“发泡餐盒有害物质会遇热释放,随着食物进入人体,长期使用会影响神经中枢并引起心律不齐,还会损害肝、肾等,所以1999年初,国家经贸委已将一次性不可降解发泡塑料餐具,列入2000年底前必须在全国范围内限期淘汰的产品目录。” ………………

上述这些“发泡塑料餐具有毒”的论调,口口声声说有科学根据,已被我们科学家证明…。如若有真实根据,那么我们希望把其根据和证明公布于众,让消费者分辨真假,真的与它“拜拜”。如若没有足够的试验检测数据,则应持求实的态度,不应人云亦云,更不应该无中生有,混淆视听;而且缺乏根据的不科学的宣传,会给政府宏观决策带来错误的影响,对广大群众的消费观念、消费意识造成思想混乱,给产品声誉带来十分不良的影响,并给企业造成巨大的经济损失。

目前聚苯乙烯发泡餐具对人体危害论,不外乎以下几种观点:①发泡塑料餐盒受热65℃时会产生二恶英;②聚苯乙烯中含有残存单体或在65℃以上使用会释放单体致毒的问题;③聚苯乙烯发泡餐具遇热会释放出二聚体、三聚体等危害人体物质的问题;④聚苯乙烯含双酚类,导致男性变女性的的问题。为了澄清上述所谓“毒性”问题,我们根据有关资料和数据,谈谈我们的看法:

⒈关于“二恶英”的问题

过去多篇文章及中国塑料加工工业协会的新闻发布会,已阐述比较清楚,但还有一小部分人仍无休止地宣称发泡餐盒会放出“二恶英”。现仅概括以下几点再次澄清:据国内外大量资料和数据介绍,“二恶英”的产生来源包括以下三个方面:①工业生产中的部分杂质,如生产含氯有机化学品(某些农药、防腐剂、除草剂和油漆添加剂)时,加热过程可以产生副产物二恶英杂质;②某些产品工业化过程的副产物,如二恶英往往作为副产品和杂质的形式存在于纸浆漂白和工业冶炼过程中;③城市垃圾由于在350℃左右不完全燃烧时可产生大量“二恶英”,这是其主要来源;在发达国家中,该来源约各占二恶英总生成量的90%以上。此外,使用含氯清除剂时,汽车尾气也可产生微量二恶英。由上述二恶英的生成条件和产生源可以得知,聚苯乙烯发泡餐具与二恶英无关,因其既不属含氯有机化合物,而在使用时,又仅在100℃以下,何以算得上高温。

⒉关于聚苯乙烯中含有残存单体或在65℃以上使用会释放单体致毒的问题

关于含残存单体的问题,据生产厂家提供数据,我国生产的聚苯乙烯是严格执行国家苯乙烯单体含量不得超过1000ppm的标准,美国食品及药物总局(FDA)认可标准为5000ppm,日本食品卫生法规定,用于制造食品包装用的塑料制品及容器用的聚苯乙烯,其挥发性物质(苯乙烯、甲苯、乙苯、异丙苯、正丁苯等)的总浓度必须在5000ppm以下,但作为用于热汤的发泡类聚苯乙烯容器,其总浓度必须在2000ppm以下,其中,苯乙烯及乙苯的浓度分别不得超过1000ppm。

而关于餐盒受热65℃以上使用会释放单体的问题,这是无科学根据的,因聚苯乙烯比较稳定,苯环不易打开,而解聚成单体的温度必须在250℃以上。即使原料中含有标准中允许的极微量单体,据台湾行政院环保署署长郝龙斌在“保丽龙餐具”一文中指出,这些单体会立刻汽化到空气中,残留在食物或器皿中的机会微乎其微,即使残留,由于其量甚微,正常人的肝脏足以通过新陈代谢排除出去,不会对人体造成伤害。另据英国《增强塑料》1992年第二期报导,美国环保局(EPA)已将被认为是致癌物的苯乙烯,从“致癌物”名单中沟消了,美国《材料工程》杂志中一篇报告指出:上述决定是基于一篇科学资料的扩大研究,以及美国环保局饮水司(ODW)认可后才发表的。在美国联邦(材料)注册中,苯乙烯最终被裁决为“不被视为具有足够致癌潜力的化合物”这一类物质。饮水司指出,在充分地进行饮用水研究中,未发现苯乙烯具有致癌反应,此决定已经纳入在EPA制定的关于饮用水杂质最大含量的38种化学物质的最终规则中,其中苯乙烯含量为0.1mg/l的饮用水,对人体健康无明显危害。

⒊关于聚苯乙烯发泡餐具遇热释放二聚体、三聚体等,会挠乱人体内分泌作用的问题

此问题出于日本国立医药品食品卫生研究所河村叶子等人,在1998年5月13日日本卫生协会上发表的一篇题为“食品用聚苯乙烯制品的苯乙烯聚物”的论文,后经一些新闻媒体炒作,在日本也曾一度引起思想混乱。日本政府对此非常重视,进行了大量调研和分析评价工作,关于苯乙烯二聚体、三聚体致毒的问题已基本澄清。首先,日本聚苯乙烯工业协会委托TNO(荷兰应用科学研究组织)以及食品药品安全中心等研究机构,进行安全性确认试验,并公开其结果,对二聚体、三聚体发表了“安全宣言”,宣告其搅乱人体内分泌作用问题的终结。日本环境厅于2000年7月召开第一届搅乱内分泌化学物质研讨会上获得的共识是:“因在技术上测定苯乙烯二聚体、三聚体的危险度是不现实的,没有必要考虑,从而,得出结论不再将它列入调查对象之中”。该厅于2000年10月31日召开的2000年度第二届“搅乱内分泌化学物质问题研讨会”上,宣布决定不再将苯乙烯二聚体、三聚体和正丁基苯等化学物质,列入该厅制作的“环境荷尔蒙(我国译为“激素”)名单”之中,该厅还决定改版“SPEED’98”,重编一本“2000年10版”正式公布:苯乙烯二聚体,三聚体将从环境荷尔蒙名单中删除。此外,对于苯乙烯二聚体、三聚体的问题,日本厚生省、通产省、农水省等也已明确表示,它不属所谓搅乱内分泌的化学物质。据此,日本政府已正式为过去几年中一直困挠着苯乙烯行业和聚苯乙烯制品行业以及社会上的“环境荷尔蒙骚动”,画上了句号。

⒋关于聚苯乙烯含双酚类的问题

图1 图2
不知提出此论点的专家有何科学根据?众所周知,目前市场上发泡塑料餐具是由通过国标检测的聚苯乙烯为原料制得,聚苯乙烯是由苯乙烯单体聚合而成,其分子结构见图1.。而双酚类是聚碳酸酯、环氧树脂、不饱和聚酯的单体,可分为双酚A(由苯酚和丙酮为原料)和双酚F(由苯酚和乙醛为原料)两种,其分子结构见图2.。由于上述两种分子结构可以得知,它们不是同一类型的物质,聚苯乙烯没含有双酚结构,也不可能含有双酚杂质,我们也没有从文献查到双酚会导致生殖机能失常的报导,因此关于聚苯乙烯发泡餐具含有双酚,将导致男性变女性的怪论简直是无稽之谈。 另外关于国家经贸委2000年发布的《6号令》是关于“禁毒”令的问题,我们曾走访国家经贸委有关领导,他们明确表示《6号令》中将一次性不可降解发泡塑料餐具列入2000年底前必须在全国范围内限期淘汰的产品目录,是出于从环保方面的考虑,没有涉及其是否有毒问题。因此,将国家《6号令》说成是禁毒令的报导是不真实的,其流毒甚广,必须澄清。 通过上述国内外资料及试验分析证明,聚苯乙烯发泡餐具是安全的。但同时也应深刻地认识到,聚苯乙烯发泡餐具废弃物对环境污染的治理的问题必须进一步加强。我们认为除了通过有关部门制订有关法规、妥善管理和提高人们的环保意识外,主要应通过科技进步的方法进行治理。如何从材料角度减轻或抑制其污染程度,这是时代赋予我们塑料行业工作者的历史重任。我们满怀信心与全国塑料行业工作者一起,以再资源化、减量化、无害化为目标,采用回收利用和降解相结合的方法,治理好发泡塑料餐具废弃物给环境问题带来的负面影响,期望其在不久的将来,在满足市场需求、方便人们生活中重放异彩。

最后衷心的希望各新闻媒体,应本着尊重科学、实事求是的原则,不应人云亦云,给广大的消费带来消费误导。科学是严谨的,来不得半点虚假。因此“聚苯乙烯发泡餐具有毒论”也可休矣! 现没有更好的预防措施!

『捌』 大孔吸附树脂使用周期对吸附量的有哪些影响

大孔吸附树脂是一种不溶于酸、碱及各种有机溶剂的有机高分子聚合物,应用大孔吸附树脂进行分离的技术是20世纪60年代末发展起来的继离子交换树脂后的分离新技术之一。

大孔树脂(macroporous
resin)又称全多孔树脂,大孔树脂是由聚合单体和交联剂、致孔剂、分散剂等添加剂经聚合反应制备而成。聚合物形成后,致孔剂被除去,在树脂中留下了大大小小、形状各异、互相贯通的孔穴。因此大孔树脂在干燥状态下其内部具有较高的孔隙率,且孔径较大,在100~1000nm之间。

大孔吸附树脂[1]是以苯乙烯和丙酸酯为单体,加入乙烯苯为交联剂,甲苯、二甲苯为致孔剂,它们相互交联聚合形成了多孔骨架结构。树脂一般为白色的球状颗粒,是一类含离子交换集团的交联聚合物,它的理化性质稳定,不溶于酸、碱及有机溶剂,不受无机盐类及强离子低分子化合物的影响。

陶氏大孔树脂吸附作用是依靠它和被吸附的分子(吸附质)
之间的范德华引力,通过它巨大的比表面进行物理吸附而工作,使有机化合物根据有吸附力及其分子量大小可以经一定溶剂洗脱分开而达到分离、纯化、除杂、浓缩等不同目的。

吸附条件和解吸附条件的选择直接影响着大孔吸附树脂吸附工艺的好坏,因而在整个工艺过程中应综合考虑各种因素,确定最佳吸附解吸条件。影响树脂吸附的因素很多,主要有被分离成分性质(极性和分子大小等)
、上样溶剂的性质(溶剂对成分的溶解性、盐浓度和PH 值) 、上样液浓度及吸附水流速等。

通常极性较大分子适用中极性树脂上分离,极性小的分子适用非极性树脂上分离;体积较大化合物选择较大孔径树脂;上样液中加入适量无机盐可以增大树脂吸附量;酸性化合物在酸性液中易于吸附,碱性化合物在碱性液中易于吸附,中性化合物在中性液中吸附;一般上样液浓度越低越利于吸附;对于滴速的选择,则应保证树脂可以与上样液充分接触吸附为佳。影响解吸条件的因素有洗脱剂的种类、浓度、pH值、流速等。洗脱剂可用甲醇、乙醇、丙酮、乙酸乙酯等,应根据不同物制裁在树脂上吸附力的强弱,选择不同的洗脱剂和不同的洗脱剂浓度进行洗脱;通过改变洗脱剂的pH
值可使吸附物改变分子形态,易于洗脱下来; 洗脱流速一般控制在0. 5 ~5mL/ min。

大孔吸附树脂是近代发展起来的一类有机高聚物吸附剂,70年代末开始将其应用于中草药成分的提取分离。中国医学科学院药物研究所植化室试用大孔吸附树脂对糖、生物碱、黄酮等进行吸附,并在此基础上用于天麻、赤勺、灵芝和照山白等中草药的提取分离,结果表明大孔吸附树脂是分离中草药水溶性成分的一种有效方法。用此法从甘草中可提取分离出甘草甜素结晶。以含生物碱、黄酮、水溶性酚性化合物和无机矿物质的4种中药有效部位的单味药材(黄连、葛根、丹参、石膏)水提液为样本,在LD605型树脂上进行动态吸附研究,比较其吸附特性参数。结果表明除无机矿物质外,其它中药有效部位均可不同程度的被树脂吸附纯化。不同结构的大孔吸附树脂对亲水性酚类衍生物的吸附作用研究表明不同类型大孔吸附树脂均能从极稀水溶液中富集微量亲水性酚类衍生物,且易洗脱,吸附作用随吸附物质的结构不同而有所不同,同类吸附物质在各种树脂上的吸附容量均与其极性水溶性有关。用D型非极性树脂提取了绞股蓝皂甙,总皂甙收率在2.15%左右。用D1300大孔树脂精制“右归煎液”,其干浸膏得率在4~5%之间,所得干浸膏不易吸潮,贮藏方便,其吸附回收率以5-羟甲基糖醛计,为83.3%。用D-101型非极性树脂提取了甜菊总甙,粗品收率8%左右,精品收率在3%左右。用大孔吸附树脂提取精制三七总皂甙,所得产品纯度高,质量稳定,成本低。将大孔吸附树脂用于银杏叶的提取,提取物中银杏黄酮含量稳定在26%以上。江苏色可赛思树脂有限公司整理用大孔吸附树脂分离出的川芎总提物中川芎嗪和阿魏酸的含量约为25%~29%,收率为0.6%。另外大孔吸附树脂还可用于含量测定前样品的预分离。

2优点

大孔吸附树脂的孔径与比表面积都比较大,在树脂内部具有三维空间立体孔结构,具有物理化学稳定性高、比表面积大、吸附容量大、选择性好、吸附速度快、解吸条件温和、再生处理方便、使用周期长、宜于构成闭路循环、节省费用等诸多优点。

3用途

大孔吸附树脂吸附技术最早用于废水处理、医药工业、化学工业、分析化学、临床检定和治疗等领域,近年来在我国已广泛用于中草药有效成分的提取、分离、纯化工作中。与中药制剂传统工艺比较,应用大孔吸附树脂技术所得提取物体积小、不吸潮、易制成外型美观的各种剂型,特别适用于颗粒剂、胶囊剂和片剂,改变了传统中药制剂的粗、黑、大现象,有利于中药制剂剂型的升级换代,促进了中药现代化研究的发展,国家中医药管理局等单位联合发布的2002~2010《医药科学技术政策》明确提出:研制开发中药动态逆流提取、超临界萃取、中药饮片浸润、大孔树脂分离等技术。
参考资料:http://ke..com/view/583275.htm

『玖』 江苏长春化工有限公司的历史沿革

2009 长春石化苗栗厂聚乙烯醇工厂扩建完成。长春石化及长春人造树脂所属各工厂获得经济部标准检验局TOSHMS∶2007及OHSAS18001∶2007认证。长春石化苗栗厂开始生产聚乙烯醇薄膜。长春人造树脂大发厂苯酚及丙二酚工厂扩建完成。长春化工(漳州)有限公司铜面积层板建厂完成,开始销售。
2008 长春人造树脂新竹厂酚醛环氧树脂工厂完工生产,年产量10,000吨。长春人造树脂新竹厂与日本松下电工技术合作生产透明环氧树脂成型材料,年产量240吨。长春人造树脂新竹厂自行研发液晶高分子树脂年产量860吨,液晶高分子成型材料年产量1400吨。长春人造高雄厂通过经济部标准检验局OHSAS18001∶1999认证。长春人造高雄厂聚酯可塑剂扩建完成,年产能增至15,000吨。长春人造高雄厂甲基化三聚氰胺树脂扩建完成,年产能增至5,500吨。
长春石油化学股份有限公司和长春人造树脂厂股份有限公司和大连化学工业股份有限公司合资成立长春大连英国公司。
2007 长春石化麦寮厂聚乙烯乙烯醇工厂完工生产,年产量20,000吨。长春化工(江苏)有限公司聚乙烯醇、醋酸酯及PBT树脂建厂完成,开始销售。长龙化工(深圳)有限公司成立苏州及青岛分公司。
2006 长春石油化学苗栗厂聚乙烯缩丁醛薄膜工厂完工生产,年产量2,000吨。长春人造树脂麦寮厂邻甲酚醛树脂工厂开始生产, 年产能3,600公吨。长春人造树脂大发厂低溴环氧树脂工厂运转生产,年产量16,800吨。长春化工(江苏)有限公司低溴环氧树脂建厂完成, 开始生产销售。大连化学麦寮厂丙烯醇第三套工厂完工生产, 年产能200,000吨。
2005 长春石化大发厂汽电共生完工运转,蒸汽330T/hr,发电量49,900KWh。 长春人造树脂新竹厂环氧树脂铜面积层板二线完成, 年产能4800万尺平方。日本住友化学环氧树脂工厂设备迁移至新竹厂兴建完工正式生产,年产能6,000吨。长春人造树脂大发厂苯酚工厂运转生产,年产量丙酮123,000吨,酚200,000吨,异丙苯280,000吨。
长春人造树脂大发厂丙二酚工厂运转生产,年产量135,000吨。长春人造树脂大发厂环氧基础树脂工厂运转生产,年产量30,000吨。长春人造树脂高雄厂通过经济部标准检验局ISO 14001:2004认证。长春化工(江苏)有限公司丁基化胺基树脂)、电子级双氧水开始生产销售。大连化工麦寮厂醋酸乙烯第三套工厂完工生产,年产能350,000吨。
2004 长春人造树脂高雄厂PBT复合材料D线扩建完成,年产能15,000吨。成立长龙化工(深圳)有限公司,公司位於中国深圳福田保税区,主要从事销售铜面积层板、胺基树脂、环氧树脂、铜箔、乾膜光阻、液态光阻、电木粉、PBT工程塑胶、聚乙烯缩丁醛、聚醋酸乙烯乳化浆等产品。成立长春ジャパン株式会社,从事各项产品进出口贸易行销业务,初期以环氧树脂为主要业务。常熟工厂聚醋酸乙烯乳化浆、工程塑料桶、胺基树脂、环氧树脂成型材料、洗模剂、抗氧化剂、乾膜光阻、环氧大豆油等产品开始生产销售。长春在南非向Sumitomo Chemical购得80%股权, 成立Chang Chun Merisol RSA(PTY) Ltd., 生产邻甲酚树脂。大连化工麦寮厂醋酸乙烯扩大产能至300,000吨。大连化工江苏仪征厂开始生产。
2003 成立长春化工(漳州)有限公司,厂址设於福建省漳州龙池开发区,从事工程塑料及塑料合金的生产加工和销售。
2002 长春人造树脂新竹厂BDP建厂完工正式生产,年产量4,200吨。五月长春人造高雄厂QS-9000认证取得。长春人造新竹厂、高雄厂及长春石油苗栗厂通过经济部标检局ISO-9001∶2000认证。长春人造高雄厂6万吨/年 PBT PLANT 完成建厂,开始投料生产。长春人造树脂大发厂200,000吨酚及130,000吨双酚厂著工建设。长春人造树脂大发厂玻纤厂完工生产。长春人造麦寮厂福马林工场开始生产,年产能九万公吨。长春人造麦寮厂三聚甲醛工场开始生产,年产能一万公吨。长春人造麦寮厂酚醛树脂工场开始生产,年产能一万五千公吨。长春石化苗栗厂第三套汽电共生设备完工运转。长春石化大发厂汽电共生设备著工建设。长春石油化学及长春人造树脂厂合资成立长春化工(江苏)有限公司,厂址设於中国江苏省常熟市,主要生产电子化学品及材料、工程塑料、树脂、特用化学品等。
2001 台湾工程塑胶股份有限公司更名为台湾宝理塑胶股份有限公司。长春石油化学苗栗厂开始生产尼古丁酸(动物饲料添加剂维生素B3)及盐基性硫酸酪。长春石油化学苗栗厂铜箔六场扩建完成。长春石油化学苗栗厂TMAH(氢氧化四甲铵)完工生产。长春人造树脂新竹厂乾膜光阻二线扩建完成,年产量由20,000,000平方公尺提升至50,000,000平方公尺。长春人造树脂大发厂通过经济部标检局ISO-9001∶2000认证。大连化工麦寮厂醋酸乙烯工厂完工生产,年产能240,000吨。
2000 长春人造树脂新竹厂磷酸三苯酯工厂完工生产。长春人造树脂新竹厂环氧树脂成型粉三线扩建完成。长春人造树脂新竹厂环氧树脂铜面积层板扩建提高产量至2,400,000平方公尺。长春人造树脂厂股份有限公司与美国Rogers公司合资成立长捷士科技股份有限公司,生产及贩卖软性铜面积层板。长春人造树脂高雄厂PBT复合材料扩建完成。大连化工於大发工业区完成聚四甲基醚二醇建设及开始生产。长春石油化学苗栗厂铜箔五场扩建完成。
1999 长春人造树脂新竹厂通过经济部标准检验局ISO-14001认证。新加坡CCPS Pte Ltd., 上海太平洋化工(集团)有限公司,华星工程投资有限公司及新加坡祥光有限公司共同合资成立广东申星化工有限公司,合作生产福美林。
长春石油化学苗栗厂三聚氰胺厂、比啶及甲比啶厂完工生产。长春石油化学苗栗厂铜箔四场扩建完成。长春石油化学与日本Tokyo Ohka Co.,Ltd. 合资成立TOK Taiwan Co.,Ltd., 合作生产半导体用稀释剂及剥离剂。长春人造树脂新竹厂完成年产量1,200,000平方公尺之环氧树脂铜面积层板兴建工程。长春人造树脂新竹厂自行研发成功电路板用液态光阻。
1998 长春人造树脂新竹厂乾膜光阻剂开车量产,年产量20,000,000平方公尺。 长春人造树脂新竹厂自行研发出环氧树脂耐燃剂,於四月份量产,月产量300公吨。长春人造树脂大发厂通过经济部标准检验局ISO-14001认证。
长春人造树脂高雄厂完成PBT树脂连续性生产。长春人造树脂与日本住友合资成立台湾住友培科股份有限公司,合作生产IC用环氧树脂成型材料。长春石油化学苗栗厂通过经济部标准检验局ISO-14001认证。春石油化学苗栗厂显影剂厂完工生产。大连化工於大发工业区完成1,4丁二醇工厂建设并从事生产。
1997 长春人造树脂新竹厂环氧树脂工厂第六及第七线完工生产。长春石油化学苗栗厂高纯度电子级双氧水二厂完工生产。长春人造树脂高雄厂PET树脂厂完工生产。长春石油化学苗栗厂醋酸丁酯三厂扩建完成。
1996 长春人造树脂高雄厂通过经济部标准检验局ISO-14001认证。长春人造树脂大发厂通过经济部标准检验局ISO-9002认证。长春人造树脂高雄厂PBT二线扩建完成 。长春人造树脂大发厂经环保局评定为防治污染绩优厂商。
长春石油苗栗厂环氧亚麻仁油工厂完工生产。
1995 长春人造树脂新竹厂铜面积层板五厂完工。 长春人造树脂新竹厂环氧树脂成型材料二线扩建完工。 长春人造树脂新竹厂电木粉自动化及自动仓储完工启用。 长春人造树脂新竹厂及大发厂汽电共生设备完工启用。 长春人造树脂高雄厂环氧树脂完工生产。 长春石油苗栗厂铜箔三厂扩建完工启用。
1994 长春石化苗栗厂氧化剂工厂及高纯度电子级双氧水工厂完工生产。长春人造树脂大发厂之绝缘纸工厂完工生产。 长春人造树脂高雄厂、新竹厂及长春石化苗栗厂,先後通过经济部商检局ISO-9002认证。印尼PT. CHANG CHUN DPN CHEMICAL INDUSTRY建厂完成,开始营运。
1993 长春石化苗栗厂开始兴建抗氧化剂工厂。长春石化苗栗厂铜箔二厂扩建工程完成。长春石化苗栗厂汽电共生厂脱硫设备及复水透平发电机,相继完工运转,并开始外售电力予台电公司。长春石化苗栗厂引进化工所USAB废水处理法,并著手兴建。长春人造树脂新竹厂印刷电路基板三厂於6月完成。长春人造树脂高雄厂聚酯可塑剂扩建完工生产。 投资印尼PT. CHANG CHUN DPN CHEMICAL INSUSTRY成型材料及纸力增强剂建厂。长春人造树脂大发厂年产360吨瞬间接著剂扩建完工及开始兴建绝缘纸工厂。
1992 长春石化苗栗厂双氧水三厂完工生产。长春石化苗栗环氧大豆油工厂及聚乙烯孔化浆工厂,相继扩建完成。 长春人造树脂新竹厂环氧树脂成型粉工厂去瓶颈,提高产能。长春人造树脂高雄厂开始生产粉体涂料用聚酯树脂。
1991 长春石化苗栗厂压克力乳化浆扩建完工。长春人造树脂高雄厂尿素成型材料新制程试验工厂开始建厂。 台湾工程塑胶大发厂之聚缩醛厂完工生产。
1990 长春石化苗栗厂聚乙烯醇六厂扩建完成。长春石化苗栗厂第二套汽电共生厂扩建完成,发电24,000KWh,蒸汽210T/hr。 长春人造树脂新竹厂印刷电路基板二厂於3月完成。长春石化与义芳化学工业公司合资成立三义化学股份有限公司,合作生产由日本昭和电工提供技术之环氧氯丙烷。
1989 长春人造树脂高雄厂与日本ADEKA ARGUS工业株式会社技术合作,生产PVC用无毒安定剂。长春人造树脂高雄厂开始生产环氧树脂稀释剂。长春人造树脂与日本旭电化合资成立长江化学公司。台丰印刷电路新竹厂建厂完成,开始生产多层印刷电路板。
1988 长春石化苗栗厂铜箔厂兴建完成并投入生产。长春石化苗栗厂开发成功三甲醇丙烷(TMP)制程,并设厂完工生产。 长春石化苗栗厂环氧大豆油工厂,二厂扩建完成。 长春人造树脂与日本住友株式会社合资成立住工公司。 长春人造树脂新竹厂环氧树脂工厂四线完成。长春人造树脂新竹厂环氧树脂成型粉建厂完成。长春人造树脂高雄厂聚苯二甲酸丁酯(PBT)厂完工生产。长春人造树脂高雄厂开始生产乳化型高分子凝集剂。与德国赫司特、美国塞那尼斯、日本泛塑料合资成立台湾工程塑胶,生产年产20,000吨聚缩醛工程塑胶。
1987 长春人造树脂高雄厂与日本ADEKA ARGUS公司技术合作,生产聚酯可塑剂。长春石油开始兴建铜箔工厂。 台丰印刷电路第三线单面板自动生产设备完工生产。长春人造新竹厂之环氧树脂与酚树脂均再次扩建完工。 聚丁烯对苯二甲酸酯树脂与环氧树脂成型粉建厂中。
1986 长春人造新竹厂完成月产180,000平方公尺之印刷电路基板兴建工程。
1985 大连化学之乙烯一醋酸乙烯共聚合乳化浆厂完工生产。 长春石化气电共生厂与长春人造丙烯醯胺厂分别於苗栗、高雄完工生产。
1984 与日本SUMITOMO BAKELITE技术合作筹建印刷电路基板工厂。
1983 台丰印刷电路之双面板厂完工生产。长春石化开始生产醋酸丁酯。长春人造新竹厂自瑞典PERSTORP引进制造甲醛之技术,以提高甲醛生产效率及品质。 与日本三井东压技术合作三聚甲醛生产过程。 大连化学年产30,000吨之醋酸乙酯厂完工生产。
1982 双氧水二厂完工生产。 与日本旭电化(ASAHI DENKA)技术合作,於苗栗兴建之环氧大豆油厂完工生产。 甲醇厂与过硼酸钠厂均停产。 新竹环氧树脂一厂完工生产。 长春石化引进日本三井东压之技术,制造压克力树脂,同时与日本协和发酵株式会社技术合作,制造醋酸丁酯。大连化学高雄大社之醋酸乙烯单体厂完工生产。
1981 长春人造高雄厂瞬间接著剂厂完工生产。
1980 新竹厂兴建完工,并将原石牌厂之尿素粉与电木粉生产设备移至新厂。
1979 长春与南宝树脂化学股份有限公司合资成立大连化学工业股份有限公司,合作生产由德国拜耳公司提供技术之年产85,000吨醋酸乙烯单体。 台丰印刷电路第二线单面板自动生产设备完工生产。
1978 与美国杜邦公司技术合作兴建之年产3,600吨,100%之双氧水苗栗厂完工生产。台丰印刷电路第一线单面板自动生产设备完工生产。 压克力乳化浆厂与过硼酸钠厂均於苗栗完工生产。长春人造於新竹设立新厂。
1976 连续式制程之日产20吨聚乙烯醇厂完工生产。
1973 长春石化研究开发成功六甲基四胺与聚乙烯醇制程。苗栗六甲基四胺厂与日产10吨之聚乙烯醇一厂,完工生产。
1971 长春人造高雄厂兴建完工,并开始生产甲醛、尿素胶与尿素粉供应南台湾之市场需求。
1970 引进英国卜内门(ICI)之低压法兴建日产150吨之甲醇二厂,完工生产。
1968 台丰印刷电路公司,由日本三菱瓦斯与日本印刷电路及长春并同投资成立,设厂於桃园,制造销售印刷电路板。
1966 苗栗与日本三井东压技术合作,日产50吨之甲醇一厂完工生产。
1964 鉴於甲醛大幅成长,乃决定自行生产甲醇,於是设立长春石油化学股份有限公司,工厂设於苗栗福星里,利用当地所产之天然气作原料生产甲醇。
1961 兴建第一座日产25吨之甲醛厂。 扩充尿素粉、尿素胶之生产设备。为开发热硬塑胶及配合合板工业之需要与快速成长,随後又再扩充甲醛生产设备,增加产能。
1957 设立长春人造树脂股份有限公司,工厂设於北投石牌∶生产电木粉、尿素粉与尿素胶。
1956 尿素胶研究开发成功并开始生产,使得台湾合板工业有史以来首次能打国际市场。
1949 长春人造树脂厂由廖铭昆先生、林书鸿先生与郑信义先生合夥投资设立,开发生产电木粉。

阅读全文

与江苏醛酮树脂相关的资料

热点内容
高压液压滤芯差点会怎么样 浏览:652
治舒宁壳聚糖痔疮凝胶一回用多少 浏览:257
废水排放量排放浓度怎么计算 浏览:77
用sqlyog删除的数据怎么回滚 浏览:112
换个汽油滤芯得多少钱 浏览:864
喷漆废水回用机 浏览:895
纯水里面有什么区别 浏览:720
欧宝空调内滤芯在哪里 浏览:278
大车换滤芯多少钱 浏览:687
霍尼韦尔ro膜滤芯管子 浏览:162
渗析是半透膜吗 浏览:402
UPLC化药进样过滤 浏览:827
车载空气净化器怎么复位 浏览:76
奔泰净水机哪个是进水管 浏览:84
大话2回鬼用什么修正 浏览:956
污水管道支管安装比主管高多少 浏览:652
空气滤芯总成怎么加油 浏览:684
怎么正确测试液体滤芯 浏览:31
卧室净化器什么牌子好 浏览:844
克塑净水器多少钱一个 浏览:257