导航:首页 > 耗材问题 > 乙酰肼树脂

乙酰肼树脂

发布时间:2021-12-17 17:37:04

Ⅰ 如何鉴定甘油,酒精,乙醛,乙酸,丙酮,苯酚,

先闻,有刺鼻氨味是尿素,有刺激性气味的是乙醛或丙酮,将这二者分别做银镜反应,有银镜出现的是乙醛。粉红色晶体是苯酚,再剩下的固体是果糖(常温下)。

搅动盛有这几种物质的烧杯,看哪个黏稠,黏稠的为果糖和甘油,果糖具有一定的蜂蜜的香味,甘油则无气味,应该好分辨。

苯酚长时间放置会变成淡粉色,再者苯酚一般为固体如与尿素区分则须闻气味即刻,有消毒水气味的为苯酚,尿素无气味。

余下丙酮、乙醛、异丙醇、乙酰乙酸乙酯,其中具有强烈刺激性臭味的为乙醛,乙酰乙酸乙酯具有果子气味,相对好闻一些,鉴别丙酮和异丙醇,使用碘仿反应即可鉴别出丙酮,生成黄色沉淀的既为丙酮。

(1)乙酰肼树脂扩展阅读:

2mol丙酮在各种酸性催化剂(盐酸,氯化锌或硫酸)存在下生成亚异丙基丙酮,再与1mol丙酮加成,生成佛尔酮(二亚异丙基丙酮)。3mol丙酮在浓硫酸作用下,脱3mol水生成1,3,5-三甲苯。在石灰。醇钠或氨基钠存在下,缩合生成异佛尔酮(3,5,5-三甲基-2-环己烯-1-酮)。

在酸或碱存在下,与醛或酮发生缩合反应,生成酮醇、不饱和酮及树脂状物质。与苯酚在酸性条件下,缩合成双酚-A。丙酮的α-氢原子容易被卤素取代,生成α-卤代丙酮。与次卤酸钠或卤素的碱溶液作用生成卤仿。丙酮与Grignard试剂发生加成作用,加成产物水解得到叔醇。丙酮与氨及其衍生物如羟氨、肼、苯肼等也能发生缩合反应。

Ⅱ 环氧树脂固化促进剂有哪些

环氧树脂固化促进剂有很多种,分为胺类、酚类、取代脲、咪唑及其盐、三氟化硼络合物、金属有机盐、膦类化合物,分别适用于不同的固化体系。
1、胺类促进剂
胺类促进剂属亲核型促进剂,对于胺类固化的环氧树脂只对固化剂起催化作用,通过体系中的羟基进行阴离子醚化反应。对酸酐类固化的环氧树脂则起双重催化作用,既对酸酐也对环氧树脂起催化作用,含活泼氢的化合物如酚、酸、醇、水能加速作用,最后形成聚醚和聚酯型两种交联网络。
胺类促进剂对环氧树脂具有较强的催化活性,碱性越强,取代基越小,对话活性越大。
常用的胺类促进剂: DMP-30、HDG-A/B环氧树脂固化促进剂、叔胺类促进剂(三乙胺、三乙醇胺、BMDA、DBU、DMP-10、吡啶)、季铵盐类促进剂、脂肪胺类促进剂(仅对低分子聚酰胺有促进作用)。
2、取代脲促进剂
具体品种有N-对氯苯基-N,N'-二甲基脲,N-(3,4-二氯苯基)-N,N'-二甲基脲,N-(3-苯基)--N,N'-二甲基脲,N-(4-苯基)--N,N'-二甲基脲,2-甲基咪唑脲等等。此外硫脲也是有效的促进剂。
3、咪唑及其盐促进剂
2-乙基-4-甲基咪唑可大幅降低DICY、有机酰肼、酸酐、DDS的固化温度。
咪唑与氯化镍、氯化铜、溴化铜等无机盐反应制得的咪唑盐络合物是潜伏性促进剂。
4、三氟化硼胺络合物
三氟化硼胺络合物属亲电型促进剂,主要用于环氧树脂与胺类固化体系的固化促进剂。也可以促进环氧树脂与酸酐的固化反应,对环氧基与羟基的醚化反应有利,但适用期较短。
5、酚类促进剂
主要有苯酚、间苯二酚、间甲酚、双酚A等等,用作胺类固化剂的促进剂。
6、金属有机盐
金属羧酸盐如环烷酸锌、辛酸锌等对环氧树脂与酸酐的固化反应能起催化作用。过度元素的乙酰丙酮络合物是酸酐、DICY、有机酰肼与环氧树脂固化体系非常有效的潜伏性促进剂。
7、膦类化合物
膦类化合物促进剂有三氟化硼三乙基膦、三氟化硼三异丙基膦、三甲基膦、三苯基膦及其衍生物、环三磷和磷胺化合物等。
参考资料:《现代胶粘技术手册》, 李子东 李广宇 于敏,新时代出版社,2002年1月第1版,P88-90。

Ⅲ 乙酰丙酮和丙酮一样吗

不一样
丙酮(acetone,CH3COCH3),又名二甲基酮,为最简单的饱和酮。是一种无色透明液体,有特殊的辛辣气味。易溶于水和甲醇、乙醇、乙醚、氯仿、吡啶等有机溶剂。易燃、易挥发,化学性质较活泼。目前世界上丙酮的工业生产以异丙苯法为主。丙酮在工业上主要作为溶剂用于炸药、塑料、橡胶、纤维、制革、油脂、喷漆等行业中,也可作为合成烯酮、醋酐、碘仿、聚异戊二烯橡胶、甲基丙烯酸、甲酯、氯仿、环氧树脂等物质的重要原料。
乙酰丙酮(分子式: C5H8O2 ;CH3COCH2COCH3)
无色或微黄易流动的透明液体,有酯的气味,冷却时凝成有光泽的晶体。受光作用时,转化成褐色液体,并且生成树脂。熔点-23℃,沸点140.5℃,139℃(94.5kPa),相对密度0.9753,折射率1.4494,闪点40.56℃,溶于水,乙醇、乙醚、氯仿、丙酮、苯、冰醋酸。工业品具有不愉快臭味,易被水分解为乙酸和丙酮

Ⅳ 橡胶海绵使用哪种成核剂好

(1)二氧化碳发泡剂

一种是异氰酸酯和水反应生成二氧化碳(水发泡)作为发泡剂,另一种是液体二氧化碳。
目前主要用于对绝热性要求不高的供热管道保温、包装泡沫塑料和农用泡沫塑料等领域;液体二氧化碳发泡优缺点与水发泡相同,目前主要用于聚氨酯软泡。
(2)氢化氟氯烃(HCFC)发泡剂
分子中含有氢,化学特性不稳定,比较容易分解。
目前商业上可以替代CFC-11最成熟的产品为HCFC-14LB,它与多元醇和异氰酸酯的相溶性好,在不增加设备的条件下可以直接用HCFC-14LB代替CFC-11,在达到同样密度和相近的物理特性泡沫体时用量要少于CFC-11。HCFC-141B的缺陷在于原料价格较高,对某些ABS和高抗冲击性聚苯乙烯具有溶解性,且其导热系数比CFC-11高,因此需要得到的泡沫体密度较高,才可以达到隔热效果。
(3)烃类发泡剂
用于聚氨酯发泡剂的烃类化合物主要是环戊烷,特别是环戊烷的硬泡体系具有导热系数较低和抗老化性能,ODP值为零等优点,常被用于冰箱、冷库和建筑的隔热保温等领域,已经成为我国硬泡CFC-11替代品的首选。
(4)氢化氟烷烃(HFC)发泡剂
HFC类化合物ODP值为零,在软质PU泡沫生产中是CFC-11理想的替代产品,早期的HFC类发泡剂主要是HFC-134A和HFC-152A,这两种发泡剂具有低分子量和低沸点,达到相同密度和相近物理特性泡沫体时,用量比CFC-11用量少,并且性能比较稳定,但是它们的缺陷在于导热系数比较高,且在一般多元醇中的溶解度较低,加工含有HFC-134A和HFC-152A的组合聚醚相对比较困难,另外需要发泡设备以满足加工要求。
化学发泡剂
化学发泡剂又称分解性发泡剂。它们能均匀地分散于树脂中,受热分解,可产生至少一种气体。可分为无机发泡剂和有机发泡剂两类。有机发泡剂是塑料中使用的主要发泡剂,主要是偶氮类、亚硝基类和磺酰肼类。另外还有一些发泡剂组成物,其发泡气体是通过两个组分间的吸热反应而释放出来的。
1
偶氮类
桔黄色结晶粉末,相对分子质量116.1,相对密度1.65,细度(200 目通过)≥99.5%,水分≤0.1%,灰分≤0.1%。溶于碱,不溶于醇、汽油、苯、吡啶等一般有机溶剂,难溶于水。分解温度190~205℃,不易燃。发气量为200~300ml/g,主要是氮气、一氧化碳和少量二氧化碳。室温贮存稳定,有自熄性,但在120℃以上时因分解产生大量气体,在密闭容器中易发生爆炸。
用途:适用于PE、PVC、PS、PP、ABS 等。其分解产物无毒、无臭、不污染,可以制得纯白的泡沫体。本品分解温度高,产生的气泡均匀、致密。适用于闭孔泡沫体、常压或加压发泡体,厚的或薄的发泡体等各种发泡制品。如PVC和增塑糊发泡体,聚烯烃的压延和模塑发泡体,发泡人造革等。
2
2,2'-偶氮二异丁腈
白色结晶粉末,相对密度1.1,挥发分1%,甲醇不溶物0.1%,熔点>99℃。溶于甲醇、乙醇、丙醇、乙醚、石油醚等有机溶剂,不溶于水。分解温度98~110℃,放出氮气,发气量130~155ml/g。室温下缓慢分解,30℃下贮存数月后显著变质,故本品应在10℃以下存放。
用途:特别适用于PVC,还可用于环氧树脂、PS、酚醛树脂及橡胶等。分解发热量低,约125.6~167.5J/mol,故使用量高达40%也不致使制品烧焦,可制得洁白制品。本品分解温度低,可用于普通的PVC 糊。毒性较大,这大大限制了其应用。近年来,其作为发泡剂应用已日渐缩小,主要用作聚合引发剂。
3
偶氮二甲酸二异丙酯
橙色油状液体,相对分子质量202,凝固点2.4℃,沸点75.5℃(33.31Pa),单独加热时,240℃下仍然稳定。使用铅盐、有机锡化合物、镉皂和锌皂等热稳定剂可以使其活化,降低分解温度。在100~200℃内的发气量为200~350ml/g。溶于常见的增塑剂。
用途:液体发泡剂,适用于PE、PP、PVC 等。在塑料中易分散,泡孔结构均匀致密,分解产物无臭、无毒、无色、不污染,可以制造色泽极浅的泡沫塑料。调整配方和加工条件,可制得闭孔或开孔泡沫体。
4
偶氮二甲酸钡
亮黄色粉末,相对分子质量253.37,相对密度1.67,分解温度240~250℃。发气量170~175ml/g,分解产生氮气、一氧化碳、二氧化碳、碳酸钡等。在普通溶剂中不溶。
用途:高温发泡剂。分解温度高,加工安全性好。适用于软化点高的聚合物,特别是PP。作为尼龙树脂的注塑成型和挤塑成型用发泡剂也有良好的效果。还可用于硬质和半硬质PVC、ABS 等。
5
偶氮二甲酸二乙酯
红色无气味的油状液体。相对分子质量174.16。分解温度110~120℃。发气量190ml/g。溶于增塑剂。贮存稳定。对硫化促进剂无反应。对水分和pH 变化敏感。金属盐(Cu、Fe、Co、Pb、Al、Sn 等金属)可促进分解。
用途:PVC及其共聚物、PE、聚酯、环氧树脂、PS、橡胶的发泡剂。用量为0.5~10%。
6
偶氮胺基苯
黄棕色结晶,有特殊气味。相对分子质量197.24。熔点96~98℃,分解温度150℃。发气量113ml/g。贮存稳定。易从制品表面析出结晶,在酸性介质中会在较低温度下分解,属于污染性发泡剂。
用途:可作为PVC 及其共聚物、PS、PE、酚醛树脂、环氧树脂、生胶和橡胶、硅酮聚合物的发泡剂。用量0.1~5%。
7
亚硝基化合物类
淡黄色结晶粉末,本身无臭,在潮湿状态下有甲醛味。相对分子质量186.18。相对密度:1.45。溶解度(室温,g/100g 溶剂):甲乙酮1.6、吡啶1.8、乙酰乙酸乙酯2.6、乙腈5.6、吗啉2.0、1-硝基丙烷1.4、二甲基甲酰胺14.7。在水、乙醇、苯、乙醚、丙酮中的溶解度约为1。分解温度190~205℃(空气中)、130~190℃(树脂中或使用分解助剂)。发气量260~270ml/g。分解气体主要是氮气,有少量一氧化碳和二氧化碳等。本品易燃,与酸或酸雾接触会迅速起火燃烧,故不能与这些物质共同存放,并应严禁明火。
用途:作为发泡剂多用于PVC。发气量大,发泡效率高。使用水杨酸、己二酸、邻苯二甲酸等有机酸或尿素为发泡助剂,可以降低分解温度(通常调节在90~130℃)。分解时发热量大,易造成厚制品的“芯烧”,且分解产物有恶臭。并用尿素后可消除臭味。本品在PVC中的用量约为7~15%。
8
N,N'-二甲基-N,N'-二亚硝基对苯二甲酰胺
商品化产品中有效成分为70%。黄色粉末,相对分子质量250.21,相对密度1.2。空气中分解温度为105℃,树脂中为90~105℃,发气量为126ml/g,分解气体主要是氮气。纯品为爆炸物,对冲击和摩擦敏感,故商品中充入惰性填料以增加安全性。
用途:可用作PVC 发泡剂,特别适用于PVC 糊,不使用发泡助剂即可制得开孔和闭孔的泡沫体。分解生热小,可用于厚制品,分解残余物无污染,但在塑料中会喷霜。
9
磺酰肼类——苯磺酰肼
淡黄色或白色细微粉末,相对分子质量172.20。相对密度1.43~1.48,熔点99℃。空气中分解温度>95℃,塑料中分解温度为95~100℃。发气量为130ml/g,分解气体中主要是氮气,有少量水蒸气。
用途:可用于PVC、酚醛树脂、聚酯发泡剂。分解过程伴有发热,使制品内部温度升高,故最好与碳酸氢钠混合使用。本品分解后产生的含硫化合物具有臭味。
10
对甲苯磺酰肼
白色结晶细微粉末。相对分子质量186。相对密度1.40~1.42。熔点100~110℃。易溶于碱,溶于甲醇、乙醇、甲乙酮,微溶于水、醛类,不溶于苯和甲苯。分解温度100~110℃,放出氮气和少量水,发气量为110~125ml/g。在热水中水解产生磺酸,并放出氮气。常温下无吸湿潮解现象,化学性质稳定。本品为可燃性物质,但遇酸不着火。
用途:本品为低温发泡剂,适用于PVC 等多种塑料和橡胶。发生的气体和分解残渣无毒、无臭、不污染。本品产生的泡孔结构细密均匀,制品收缩率小,撕裂强度大,特别适合于制造闭孔泡沫塑料和海绵胶。本品用于PVC 可制得白色泡沫体,但在此场合模具表面必须镀铬。由于本品分解温度较低,捏炼加工时应避免温度过高(一般低于80℃),以防提前发泡。使用本品时可不用发泡助剂。本品不能与发泡剂H 并用,因这两种发泡剂反应产生大量热量,可导致制品内部烧焦。本品也不宜与铅盐并用,以免产生黑色硫化铅沉淀。
11
4,4’-氧化双苯磺酰肼
白色或淡黄色结晶粉末。相对分子质量358.39。相对密度1.52。分解温度140~160℃,放出氮气和水蒸气,发气量约为120ml/g。溶于环己酮、乙二醇、乙醚,微溶于乙醇和温水,不溶于苯和汽油。
用途:本品为适应性极广的发泡剂,有万能发泡剂之称。可用于PVC、PE、PP、ABS 树脂等,也可作为塑料与橡胶的共混物及各种合成橡胶的发泡剂。其结构中虽然含有醚键,但非常稳定。在树脂中的分解温度为120~140℃。使用碳酸氢钠可使其活化,降低分解温度。泡孔结构细微均匀,分解气体和残余物无毒、无臭、不污染制品。适用于制造PE发泡电线电缆绝缘材料,微孔PVC 糊泡沫体等各种泡沫塑料。本品加工安全性高,在100℃以内无提前发泡之虞。但本品在分解发泡时放出水,故对于忌水场合不适用。
12
3,3’-二磺酰肼二苯砜
灰白色粉末。相对分子质量406.45。相对密度1.60。在空气中的分解温度为148℃,在乙烯基塑料中的分解温度为135~145℃。发气量110ml/g。无毒。
用途:本品主要作为软质PVC 发泡剂,也可用于硬质PVC 和PE。发泡时分解生成的气体无恶臭,无毒,但残余物有污染性,可使制品带色。
13
1,3-苯二磺酰肼
商品形式为50%本品与50%氯化石蜡的混合物,是含有灰白色细微粒子的膏状物,相对分子质量266.29,相对密度1.5。在空气中的分解温度约为150℃,在塑料中的分解温度为115~130℃,发气量300ml/g。
用途:本品可作为橡胶和塑料用发泡剂,主要用于橡胶。加工安全性高,提前发泡的危险性小。碱性物质可降低其分解温度。分解产生的气体主要是氮气。
14
对甲苯磺酰氨基脲
白色细微粉末。相对分子质量229.25。溶于二甲基亚砜、二甲基甲酰胺、二甲基乙酰胺、浓氢氧化铵和碱水,不溶于乙酸、丙酮、四氯化碳、乙二醇、异丙醇、石油醚、甲苯和水。在空气中的分解温度为230℃,在塑料中的分解温度为213~225℃。放出的气体主要是氮气和二氧化碳(约2:1)。分解后的固体残余物主要是对二甲苯二硫化物和对甲苯磺酸铵,前者可溶于苯,后者可溶于水。本品在室温下有良好的贮存稳定性,但应避免靠近蒸汽管道、火源和阳光直晒。
用途:本品为高温氮气发泡剂,特别适用于高温加工的塑料,如ABS 树脂、尼龙、硬质PVC、HDPE、PP、PC 等。加工安全性好,无提前发泡的危险。本品也可用于天然橡胶和合成橡胶的发泡。
15
4,4’-氧代双(苯磺酰氨基脲)
本品为高温发泡剂,分解温度为210~220℃,发气量约为145ml/g。放出的气体主要是氮气和二氧化碳。
用途:适用于硬质PVC、HDPE、高软化点PP、PC、ABS 树脂等加工温度高的塑料。
16
三肼基三嗪
白色或灰白色粉末。相对分子质量171.61。分解温度235~275℃。发气量约为247ml/g。放出的气体主要是氮气和二氧化碳。
用途:本品为高温发泡剂,适用于硬质和半硬质PVC、PP、PC、ABS 树脂、聚酰胺等加工温度高的塑料。加工安全性好。
17
5-苯基四唑
液体状物。相对密度1.105(50℃)。
用途:本品为高温发泡剂,适用于PC、聚酰胺等熔融温度高的聚合物。
18
聚硅氧烷-聚烷氧基醚共聚物(发泡灵)
黄色或棕黄色油状粘稠透明液体。酸值<0.2mgKOH/g。相对密度1.04~1.08。粘度0.15~0.5Pa· s(50℃)。
用途:本品是聚醚型聚氨酯泡沫塑料一步法生产中用的泡沫稳定剂。也可作为聚氨酯类、丙烯酸酯类涂料的流平剂。在彩色胶片防光晕层的涂布方面也有应用。

Ⅳ 检测甲醛最准确的方法是什么

检测甲醛没有最准确的方法,因为室内甲醛浓度容易随着温度、湿度、光照度、甚至房间空间密度变化,准确测量有一定难度。

在所有常见的甲醛检测中,原理并不复杂:以某一物质为媒介,当空气中甲醛与媒介发生反应时,通过观测手段查看媒介的性质是否发生变化、变化多少,再与既有结果进行比对,甲醛浓度一目了然。而大多数测试方法以及仪器的不同即在“接触媒介”的选择上。

以传统传统的实验室测试为代表的光化学法,是将空气与试剂混合,通过颜色变化、光波变化来判断甲醛量;以便携设备为代表的电化学法,则是通过电流通过空气时的变化,来判断空气中的甲醛含量。

二者都有其优劣:光化学法更加稳定、不易受其他因素干扰,但是耗时更长;电化学法虽然能够实时产出结果,但极易受到干扰,对器材灵敏度也就较高要求。

(5)乙酰肼树脂扩展阅读:

帮助减少室内甲醛污染风险:

1、除甲醛最好的方法是通风,每天开窗不少于两次,每次不少于30分钟。

2、尽量减少家具数量,降低甲醛释放量。

3、装修尽量选择有环保标志的产品,甲醛含量越低越好,最好不含甲醛。

4、新买的家具放一段时间再用。家具或各类家装材料在打开包装3~5个月内,甲醛释放量会达到最高峰,半年后就会进入缓慢、少量的释放状态。

但是,人们不用过于担忧室内甲醛的问题。国家逐渐对甲醛的检验和含量限制越发严格,保证大多数产品中甲醛含量较低。只要空气中的甲醛在一定浓度以下,对人体的危害是可以忽略不计的。

Ⅵ 谁能告诉我环氧树脂固化剂的成分啊急~~~

环氧树脂是一类具有良好的粘接性、电绝缘性、化学稳定性的热固性高分子材料,作为胶粘剂、涂料和复合材料等的树脂基体,广泛应用于建筑、机械、电子电气、航空航天等领域。环氧树脂使用时必须加入固化剂,并在一定条件下进行固化反应,生成立体网状结构的产物,才会显现出各种优良的性能,成为具有真正使用价值的环氧材料。因此固化剂在环氧树脂的应用中具有不可缺少的,甚至在某种程度上起着决定性的作用。环氧树脂潜伏性固化剂是近年来国内外环氧树脂固化剂研究的热点。所谓潜伏性固化剂,是指加入到环氧树脂中与其组成的单组分体系在室温下具有一定的贮存稳定性,而在加热、光照、湿气、加压等条件下能迅速进行固化反应的固化剂,与目前普遍采用的双组分环氧树脂体系相比,由潜伏性固化剂与环氧树脂混合配制而成的单组分环氧树脂体系具有简化生产操作工艺,防止环境污染,提高产品质量,适应现代大规模工业化生产等优点。

环氧树脂潜伏性固化剂的研究一般通过物理和化学的手段,对普通使用低温和高温固化剂的固化活性加以改进,主要采取以下两种改进方法:一是将一些反应活性高而贮存稳定性差的固化剂的反应活性进行封闭、钝化;二是将一些贮存稳定性好而反应活性低的固化剂的反应活性提高、激发。最终达到使固化剂在室温下加入到环氧树脂中时具有一定的贮存稳定性,而在使用时通过光、热等外界条件将固化剂的反应活性释放出来,从而达到使环氧树脂迅速固化的目的。本文就国内外环氧树脂潜伏性固化剂的研究进展作一基本概述。

1 环氧树脂潜伏性固化剂

1.1 改性脂肪族胺类

脂肪族胺类固化剂如乙二胺、己二胺、二乙烯三胺、三乙烯四胺等是常用的双组分环氧树脂室温固化剂,通过化学改性的方法,将其与有机酮类化合物进行亲核加成反应,脱水生成亚胺是一种封闭、降低其固化活性,提高其贮存稳定性的有效途径。

这种酮亚胺型固化剂与环氧树脂组成的单组分体系通过湿气和水分的作用而使酮亚胺分解成胺因此在常温下即可使环氧树脂固化。但一般固化速度不快,使用期也较短,原因是亚胺氮原子上的孤对电子仍具有一定的开环活性。为解决这一问题,武田敏之用羰基两端具有立体阻碍基团的酮3-甲基-2 -丁酮与高活性的二胺1,3 二氨甲基环己烷反应得到的酮亚胺不仅具有较高的固化反应活性,而且贮存稳定性明显改善。另外日本专利报道采用聚醚改性的脂肪族胺类化合物与甲基异丁基酮反应得到的酮亚胺也是一种性能良好的环氧树脂潜伏性固化剂。脂肪族胺类固化剂通过与丙烯腈、有机膦化合物,过渡金属络合物的反应,也可使其固化反应活性降低,从而具有一定的潜伏性。

1.2 芳香族二胺类

芳香胺由于具有较高的Tg而受到重视,但由于其的剧毒性而限制了应用。经改性制得的芳香族二胺类固化剂则具有Tg高、毒性低、吸水率低、综合性能好的优点。近年来研究较多的芳香族二胺类固化剂有二胺基二苯砜(DDS)、二胺基二苯甲烷(DDM)、间苯二胺(m PDA)等,其中以DDS研究得最多最成熟,成为高性能环氧树脂中常用的固化剂。DDS用作环氧树脂潜伏性固化剂时,与MP DA、DDM等芳香二胺相比,由于其分子中有强吸电子的砜基,反应活性大大降低,其适用期也增长。在无促进剂时,100克环氧树脂配合物的适用期可达1年,固化温度一般要达到200℃。为了降低其固化温度,常加入促进剂以实现中温固化。近年来为了改善体系的湿热性能和韧性,对DDS进行了改性,开发出多种聚醚二胺型固化剂,使得它们在干燥时耐热性有所降低,这些二胺因两端胺基间的距离较长,造成吸水点氨基减少,并且具有优良的耐冲击性。

1.3 双氰胺类

双氰胺又称二氰二胺,很早就被用作潜伏性固化剂应用于粉末涂料、胶粘剂等领域。双氰胺与环氧树脂混合后室温下贮存期可达半年之久。双氰胺的固化机理较复杂,除双氰胺上的4个氢可参加反应外,氰基也具有一定的反应活性。双氰胺单独用作环氧树脂固化剂时固化温度很高,一般在150~170℃之间,在此温度下许多器件及材料由于不能承受这样的温度而不能使用,或因为生产工艺的要求而必须降低单组分环氧树脂的固化温度。解决这个问题的方法有两种,一种是加入促进剂,在不过分损害双氰胺的贮存期和使用性能的前提下,降低其固化温度。这类促进剂很多,主要有咪唑类化合物及其衍生物和盐、脲类衍生物、有机胍类衍生物、含磷化合物,过渡金属配合物及复合促进剂等,这些促进剂都可以使双氰胺的固化温度明显降低,理想的固化温度可降至120℃左右,但同时会使贮存期缩短,而且耐水性能也会受到一定的影响。

另一种降低单组分环氧树脂固化温度的有效方法是通过分子设计的方法对双氰胺进行化学改性。在双氰胺分子中引入胺类,特别是芳香族胺类结构,以制备双氰胺衍生物,如瑞士Ciba Geigy公司开发的HT 2833,HT 2844是一种用3,5 二取代苯胺改性的双氰胺衍生物,其化学结构式如下:

据报道,此类固化剂与环氧树脂相溶性较好,贮存期长,固化速度快,在100℃下固化1h,剪切强度可达25MPa,150℃固化30min,剪切强度可达27MPa。日本旭化成工业公司研制的粉末涂料专用固化剂AEHD-610,AEHD-210也是一种改性双氰胺衍生物。另外,日本有采用芳香族二胺如4,4’ 二氨基二苯甲烷(DDM),4,4’ 二氨基二苯醚(DDE),4,4’ 二氨基二苯砜(DDS),对二甲苯胺(DMB)分别与双氰胺反应制得其衍生物的报道。上述引入苯环后的双氰胺衍生物与双酚A型环氧树脂的相溶性与双氰胺相比明显增加,与E 44环氧树脂组成的单组分体系在室温贮存期长达半年之久,固化温度均低于双氰胺。

国内有关对双氰胺进行化学改性得到双氰胺衍生物的报道较少,温州清明化工采用环氧丙烷与双氰胺反应制得了双氰胺MD 02,其熔点154~162℃,比双氰胺的熔点(207~210℃)低了45℃左右,采用100份E 44环氧树脂,15份MD 02和0 5份2 甲基咪唑组成的配方,150℃下凝胶的时间为4min。用苯胺 甲醛改性双氰胺所得的衍生物与双酚A型环氧树脂混溶性增加,在丙酮和酒精的混合溶液中有良好的溶解性,且反应活性增加,贮存性也较长。

1.4 咪唑类

咪唑、2-甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑等咪唑类固化剂是一类高活性固化剂,在中温下短时间即可使环氧树脂固化,因此其与环氧树脂组成的单组分体系贮存期较短,必须对其进行化学改性,在其分子中引入较大的取代基形成具有空间位阻的咪唑类衍生物,或与过渡金属Cu、Ni、Co、Zn等的无机盐反应生成相应的咪唑盐络合物,才能成为在室温下具有一定贮存期的潜伏性固化剂。对咪唑类固化剂进行化学改性的方法很多,从反应机理上来看,主要有两种:一种是利用咪唑环上1位仲胺基氮原子上的活泼氢对其进行改性,这类改性剂有异氰酸酯、氰酸酯、内酯等,改性后所得的咪唑类衍生物具有较长的贮存期和良好的机械性能。另一种方法是利用咪唑环上3位N原子的碱性对其改性,使它与具有空轨道的化合物复合,这类物质包括有机酸、金属无机盐类、酸酐、TCNQ、硼酸等。其中金属无机盐类一般是含具有空轨道的过渡金属离子,如Cu2+、Ni2+、Zn2+、Cd2+、Co2+等,它们与咪唑形成配位络合物,具有很好的贮存性,而在150~170℃迅速固化,但无机盐类、有机酸及其盐类等的引入,将会破坏原咪唑固化产物的耐水解性和耐湿热性。

国内对咪唑类潜伏性固化剂的研究较少,国外市场则相对较多。日本第一工业制药株式会社将各种咪唑与甲苯二异氰酸酯(TDI)、异佛尔酮二异氰酸酯(IPDI)、六次甲基二异氰酸酯(HDI)反应制成封闭产物,减弱了咪唑环上胺基的活性,有较长使用期,当温度上升到100℃以上,封闭作用解除,咪唑恢复活性,环氧树脂固化。

1.5 有机酸酐类

有机酸酐类固化剂与双氰胺相似,具有较好的贮存稳定性,尽管固化温度较高,可是固化产物的力学性能、介电性能和耐热性能均较好。不过这类固化剂由于酸酐键容易水解的缘故而耐湿性较差,并且不容易进行化学改性,因此一般采用添加促进剂的方法降低有机酸酐类固化剂的固化温度。有机酸酐类固化剂常用的固化促进剂包括叔胺和叔胺盐,季膦盐,路易斯酸-胺络合物,乙酰丙酮过渡金属络合物等。

1.6 有机酰肼类与双氰胺一样,有机酰肼也是一种高熔点固体,但其固化温度比双氰胺低。有机酰肼与环氧树脂组成的单组分环氧树脂胶体系的贮存期可达4个月以上,常用的有机酰肼化合物有:琥珀酸酰肼、己二酸二酰肼、癸二酸酰肼、间苯二甲酸酰肼和对羟基安息香酸酰肼(POBH)等。不同种类的有机酰肼固化温度不尽相同,由于其固化温度较高,故常加入促进剂来降低固化温度,所用的促进剂与双氰胺基本相同。

1.7 路易斯酸

胺络合物类路易斯酸 胺络合物是一类有效的环氧树脂潜伏性固化剂,由BF3、AlCl3、ZnCl2、PF5等路易斯酸与伯胺或仲胺形成络合物而成。作为环氧树脂的固化剂,这类络合物常温下相当稳定,而在120℃时则快速固化环氧树脂,其中研究最多的是三氟化硼-胺络合物。据报道,一种合成的新型三氟化硼-胺络合物BPEA-2具有良好的潜伏性、粘接性能和韧性。路易斯酸 胺络合物也是酸酐类和芳香胺类潜伏性固化剂常用的促进剂。

1.8 微胶囊类

微胶囊类环氧树脂潜伏性固化剂实际上是利用物理方法,将室温双组分固化剂采用微细的油滴膜包裹,形成微胶囊,加入到环氧树脂中后将固化剂的固化反应活性暂时封闭起来,而通过加热、加压等条件使胶囊破裂,释放出固化剂,从而使环氧树脂固化。微胶囊类环氧树脂潜伏性固化剂的成膜剂包括纤维素、明胶、聚乙烯醇、聚酯、聚砜等,由于制备工艺要求严格,胶囊膜的厚度对贮存、运输和使用会带来不同程度影响。

2 结语

虽然环氧树脂潜伏性固化剂的种类很多,但是每种类型的固化剂都有一定的优点和缺点,到目前为止,仍然没有发现一种性能特别优良,十分理想的潜伏性固化剂。目前环氧树脂潜伏性固化剂的研究主要集中在双氰胺类,咪唑类和芳香族二胺类固化剂。同时在达到潜伏性固化剂使用中降低固化温度、缩短固化时间、延长适用期的要求的基础上,进一步解决环氧树脂固化产物耐水、耐热,以及提高韧性等问题,也是今后环氧树脂潜伏性固化剂研究的重点。不仅如此,随着人们对环境保护意识的提高,低毒和无毒的环保型环氧树脂潜伏固化剂的研究也是必然的趋势。

参考资料:http://www.cnepoxy-cure.com/isoc-zl/shownews.asp?id=266

Ⅶ 在环氧树脂胶中,固化剂是什么,加的比例是多少

1、固化剂又名硬化剂、熟化剂或变定剂,是一类增进或控制固化反应的物质或混合物。

树脂固化是经过缩合、闭环、加成或催化等化学反应,使热固性树脂发生不可逆的变化过程,固化是通过添加固化(交联)剂来完成的。固化剂是必不可少的添加物,无论是作粘接剂、涂料、浇注料都需添加固化剂,否则环氧树脂不能固化。 固化剂的品种对固化物的力学性能、耐热性、耐水性、耐腐蚀性等都有很大影响。

2、固化剂加的比例需通过计算确定

固化剂用量计算方法:

(1)胺类作交联剂时按下式计算:

胺类用量=MG/Hn

式中:M=胺分子量;Hn=含活泼氢数目;;G=环氧值(每100克环氧树脂中所含的环氧当量数)

(2)用酸酐类作交联剂时按下式计算:

酸酐用量=MG(0.6~1)/100

式中:M=酸酐分子量;G=环氧值(0.6~1)为实验系数

(7)乙酰肼树脂扩展阅读:

固化剂分类

固化剂按用途可分为常温固化剂和加热固化剂。环氧树脂高温固化时一般性能优良,但是在土木建筑中使用的涂料和粘接剂等由于加热困难,需要常温固化,所以大都使用脂肪胺、脂环映以及聚酰胺等,尤其是冬季使用的涂料和粘接剂不得不与多异氰酸酯并用,或使用具有恶臭气味的聚琉醇类。

至于中温固化剂和高温固化剂,则要以被着体的耐热性以及固化物的耐热性、粘接性和耐药品性等为基准来选择。选择重点为多胺和酸酐。由于酸酐固化物具有优良的电性能,所以广泛用于电子、电器等领域。

脂肪族多胺固化物粘接性以及耐碱、耐水性比较好。芳香族多胺在耐药品性方面也是优良的。由于氨基的氮元素与金属形成氢键,因而具有优良的防锈效果。胺质量浓度愈高,防锈效果愈好。酸酐固化剂和环氧树脂形成酯键,对有机酸和无机酸显示了高的抵抗力,电性能一般也超过了多胺。

网络-固化剂

网络-环氧树脂

Ⅷ 花枝莲的主要功效是什么是否是清热解毒的如果少了这一味药会有什么影响

1.对心血管系统:根中提出的结晶性物质,作用类似足叶草素,对离体蛙心有兴奋作用,能使其停于收缩状态。对兔耳血管有扩张作用;对蛙后肢血管、家兔小肠及肾血管则有轻度的收缩作用。
2.对平滑肌:对平滑肌有直接作用,抑制离体兔肠、兴奋兔及豚鼠的离体子宫。
3.抗癌:其提取物鬼臼毒素、脱氧鬼臼毒素、鬼臼酸一2乙酰肼有抗癌作用。
①鬼臼毒素,能抑制细胞中期的有丝分裂,对多种动物肿瘤、瓦克氏癌256肉瘤~180有明显的抑制作用,但毒性较强。
②本品同属植物盾叶鬼臼提取的树脂,再与鬼臼毒素发生反应的人工合成物,作用类似于秋水仙碱。其抗癌机理是使细胞分裂停止于中期,对急性单核细胞性白血病和急性粒细胞性白血病、何杰金氏病、恶性淋巴瘤、乳腺癌、小细胞支气管肺癌、睾丸癌均有抑制作用。
4.全草中含树脂,能引起猫的吐、泻、死亡。

阅读全文

与乙酰肼树脂相关的资料

热点内容
污水处理设备官网海普欧污水处理 浏览:571
饮水机桶装水平面图怎么画 浏览:311
乙烯基树脂胶管 浏览:712
养猪废水回用研究 浏览:962
多联空调风管机带提升泵吗 浏览:479
水培法对照组用蒸馏水 浏览:546
污水管道井底标高什么意思 浏览:772
空调滤芯买小了有什么缺点 浏览:220
净水机需要什么证书 浏览:849
涂装纯水制备率大概多少 浏览:782
雨污水技术标都需要改什么 浏览:236
去除电水壶水垢有哪些 浏览:632
净水机ct滤芯是什么意思 浏览:871
树脂是易碎品嘛 浏览:911
空气净化器出风口为什么一股腥味 浏览:634
生命吸管为什么无法过滤肝炎 浏览:629
用什么烧开纯净水 浏览:177
树脂和瓷佛像有什么区别 浏览:967
空滤器滤芯堵塞会出现什么情况 浏览:749
污水处理轮岗 浏览:873