导航:首页 > 耗材问题 > F120树脂

F120树脂

发布时间:2021-03-28 00:59:03

A. 请问F-119和F-120两种发动机,哪一种更为先进并说出各自的优点

F120并不是落选,而是备份,最后还是出钱把F120完成了因为F-22停产外加不出口没有用上而已。

F119是普•惠公司为美国第四代战斗机研制的先进双转子加力式涡轮风扇发动机,其设计目标是:不加力超音速巡航能力、非常规机动和短距起落能力、隐身能力(即低的红外和雷达信号特征)、寿命期费用降低至少25%、零件数量减少40~60%、推重比提高20%、耐久性提高两倍、零件寿命延长50%。在80 年代初确定的循环参数范围是:涵道比0.2~0.3;总增压比23~27;涡轮进口温度1649~1760℃;节流比1.10~1.15。
1983年9月,美国空军同时授予普•惠公司和通用电气公司金额各为2亿美元,为期50个月的验证机合同。普•惠公司的PW5000是一种强调应用成熟技术的常规设计;而通用电气公司的GE37则是一种新颖的变循环发动机,其涵道比可在 0~0.25之间变化。后来,这两种验证机分别编号为YF119和YF120,并于1986年10月和1987年5月开始地面试验。经过广泛的地面试验和安装在YF-22和YF-23上的初步飞行试验后,1991年4月,F-22/F119组合被选中。据美军方有关人士谈到选择F119的原因时说,F120技术复杂,尚未经实际验证,因而研制风险较大,而且变循环设计也增加了结构和控制系统的复杂性和重量,因而维修比较困难,寿命期费用较高。在选择时,风险和费用是主要考虑,技术先进性没有起到关键作用。在此之前,F119已积累3000多地面试验小时,其中1500h带二元矢量喷管试验。
在F119上采用的新技术主要有:三维粘性叶轮机设计方法、整体叶盘结构、高紊流度强旋流主燃烧室头部、浮壁燃烧室结构、高低压涡轮转向相反、整体式加力燃烧室设计、二元矢量喷管和第三代双余度FADEC。此外,还采用了耐温1070~1100℃ 的第三代单晶涡轮叶片材料、双性能热处理涡轮盘、阻燃钛合金Alloy C、高温树脂基材料外涵机匣以及用陶瓷基复合材料或碳-碳材料的一些静止结构。在研制中,注意了性能与可靠性、耐久性和维修性之间的恰当平衡。与 F100-PW-220相比,F119的外场可更换件拆卸率、返修率、提前换发率、维修工时、平均维修间隔时间和空中停车率分别改进50%、74%、 33%、63%、62%和29%。新的四阶段研制程序和综合产品研制方法保证发动机研制结束时即具有良好的可靠性、耐久性和维修性并能顺利转入批量生产。在研制中,为满足提高推力的要求而增大风扇直径,还遇到了风扇效率低、耗油率高和低压涡轮应力大的问题。预计,1994年中开始初步飞行试验,此时 F119将再积累3000地面试验小时。1997年交付第1台生产型发动机,装F119的F-22战斗机将于2002年具备初步作战能力。

F120是用于美国空军先进战术战斗机(ATF, 后正式编号为F-22)的候选发动机,通用电气公司编号为GE33。它是美国空军和海军在1983~1990年主持的SCR、ATEGG、JTDE和 ManTech等一系列计划的产物。这些计划致力于发展最终构成F120--第三代VCE的先进发动机部件。

F120是一种满足先进战术战斗机(ATF)的大功率状态高单位推力和部分功率状态低耗油率相互矛盾要求的双涵VCE。这些要求由综合涡喷发动机和涡扇发动机最有吸引力的特点得到满足。与GE21一样,它能够以单涵和双涵模式工作。其变循环特征基本与GE21相同,但后来将可调模式选择活门改为比较简单的被动作动旁路活门。

F120基本结构是一台带对转涡轮的双转子涡扇发动机。低压涡轮驱动两级风扇,高压涡轮驱动5级压气机(含CDFS)。两个涡轮对转,都是单级设计。F120的CDFS与压气机连在一起,然而其功能恰似一个风扇的后面级。控制系统为三余度多变量FADEC。

在亚声速巡航的低功率状态,发动机以双涵(涡扇)模式工作。被动作动旁路系统由第二级风扇和CDFS涵道之间的压差打开,使更多的空气进入外涵道,同时使风扇具有大的喘振裕度。此时,后VABI也打开,更多的外涵空气引射进入主排气流,使推力增大。

在超声速巡航的高功率状态,发动机以单涵(涡喷)模式工作。在此模式下,后VABI关小到使涡轮框架、加力燃烧室内衬和尾喷管内衬前后保持正的风扇冷却气流压差。当后VABI关小时,外涵中的压力增加,直到超过第二级风扇排气压力为止。在反压作用下,旁路系统模式选择活门关闭,迫使空气进入核心机。有少量空气从CDFS后引出,供加力燃烧室和喷管冷却以及飞机引气用。发动机顺利进入涡喷模式。

F120的最终结构经过三个阶段的发展。第一阶段用XF120进行地面验证。第二阶段用YF120进行飞行试验。第三阶段的F120吸取了XF120和YF120计划的所有经验教训。

XF120的试验证实了基本循环的灵活性、性能特性、涡轮温度能力和失速裕度。它还验证了FADEC和二元矢量喷管的工作。

在XF120的试验过程中,这种DBE的性能极佳。随着经验的取得和工作能力的评估,对发动机的结构作了一些细小的修改。

YF120的流量比XF120的大,以满足不断改变的机体需求和喷管冷却要求。重量和复杂性被减到最小,而保障性始终作为一个关键设计目标。在 ATF的原型机试验计划中,YF120成功地在YF-22和YF-23上飞行。它达到了重量、寿命、适用性和性能目标。它还达到或超过不加力超声速巡航推力目标。

F120是从XF120地面试验和YF120飞行试验成功的基础上发展起来的。在F120上,用一个被动旁路系统代替了可调模式选择活门。对叶轮机作了改进,以改善匹配特性和效率。控制系统简化到了常规涡扇发动机的水平。因此,F120在比目前战斗机发动机更低的复杂性的条件下具有固有的灵活性和优良的保障性。它为飞机提供了优良的速度、加速性、机动性和航程能力。

B. 陶瓷刀具怎么刃磨

陶瓷刀具的刃磨应在工具磨床上用夹具刃磨,以保证刃磨质量。刃磨陶瓷刀具目前大多采用树脂结合剂的金刚石砂轮,其磨削质量对刀具切削性能有很大影响。对于可转位陶瓷刀片,原则上是不重磨的,因为重磨后其刀片的装夹尺寸及定位尺寸都会发生变化,在CNC机床加工中就要重新调整进刀尺寸,以保证工件尺寸的一致性。但一些工厂为了降低消耗,物尽其用,也可在工具磨床或刀具刃磨机上用金刚石砂轮进行刃磨,粗磨选用F80-F120粒度号,精磨、细磨用F180-F400粒度号,浓度为50%-100%,硬度为K-P级。刃磨时的切削用量可取:磨削速度20-30m/s,磨削深度f=0.005-0.02mm/双行程(粗磨时取大值,精磨、细磨时取小值),工作台速度为V=10-15m/min。

C. 美国UE温度开关 120系列机械式温度开关有哪些特点功能

美国UE温度开关 120系列机械式温度开关
产品介绍
美国UE温度开关120系列机械式温度开关是危险区域安装的机械式温度开关,是单刀双掷和双刀双掷及全密封型温度开关、可调节死区、外部手动复位,适用于腐蚀性介质的Hastelloy., Monel.及传感器材料,UE温度开关120系列可根据客户要求选择毛细管长度及铠装不锈钢或Teflon 涂层,以保护毛细管及温包。美国UE温度开关是应用于下列领域的实施报警、启动和关断的危险装置的机械式温度开关:化工厂、输油管道、炼油厂、煤粉和谷物尘埃处理、纯净气体管道、气体缓冲系统、储罐及压力泵、压缩机和汽轮机。
技术参数
储存温度:-54 to 71℃ 
环境温度:-50 to 71 ℃ ;E121 和E122 型,漂移值小于2%
设定点重复性:温度开关型号B、C 和F:为可调范围的±1%
型号E:为可调范围的±2%
抗冲击 :经10 毫秒、15G 冲击实验后,可重现设定点
抗振动 :经2.5G、5—500Hz 振动实验后,可重现设定点
外壳 :铝合金压铸壳体(Max.0.4% 铜);环氧树脂涂层;
垫圈密封;铝合金铭牌
外壳等级:为4X。 Class I, Division 1 的开关外壳等级为7;
ClassII, Division 1 开关外壳等级为9。IP66。
开关输出:一个或两个单刀双掷(SPDT)输出;只有822E 这个型
号它的2 号开关只可以设定在1 号开关下25% 范围内,
其他型号的双开关可在调整范围内进行100% 分别设定。
开关可接成“常开型”或“常闭型”。
触点电气额定值:15A 125/250/480 VAC(标准),
电器开关不用于直流电源形式。
参考刻度:B,E型:外部参考刻度;刻度会随范围大小而改变
电气接口:B,E 型有一个3/4"NPT;
C,F,820E,822E型有两个3/4"NPT E/C;标准接线端子
压力接口:1/4"NPTF
温度组件:温包及毛细管:标准6 英尺,304 不锈钢材质;
插入杆,镀镍黄铜(标准);可选316L 不锈钢材质。
填充,1BS 型:充填溶剂;2BS-8BS:充填无毒油
温度死区:F120,820E,822E 型:典型值为1%;
B/C/E-121 和122 型:在实验室条件下,典型值为设定
点范围的2%
温度指示:820E 型,822E 型,指示精度为全量程的1%
重量:3—8 磅;(因型号而异)。

D. 飞机的发动机是用什么材料做成的

这个我只能大概的回答一下,发动机可以分为:冷端和热端。即冷端——燃烧室之前,热端——燃烧室之后(包括燃烧室)。
冷端这要是一些铝合金,有些先进发动机的高压压气机叶片和风扇是钛合金的;热端都是一些高温合金,阻燃合金等,比如镍基高温合金、陶瓷基高温合金等。
另外,发动机的附件齿轮箱好多是用钛合金铸造的。

E. F119涡轮风扇发动机的研制情况

1983年9月,美国空军同时授予普·惠公司和通用电气公司金额各为2亿美元,为期50个月的验证机合同。普·惠公司的PW5000是一种强调应用成熟技术的常规设计;而通用电气公司的GE37则是一种新颖的变循环发动机,其涵道比可在0~0.25之间变化。后来,这两种验证机分别编号为YF119和YF120,并于1986年10月和1987年5月开始地面试验。经过广泛的地面试验和安装在YF-22和YF-23上的初步飞行试验后,1991年4月,F-22/F119组合被选中。据美军方有关人士谈到选择F119的原因时说,F120技术复杂,尚未经实际验证,因而研制风险较大,而且变循环设计也增加了结构和控制系统的复杂性和重量,因而维修比较困难,寿命期费用较高。在选择时,风险和费用是主要考虑,技术先进性没有起到关键作用。在此之前,F119已积累3000多地面试验小时,其中1500h带二元矢量喷管试验。
在F119上采用的新技术主要有:三维粘性叶轮机设计方法、整体叶盘结构、高紊流度强旋流主燃烧室头部、浮壁燃烧室结构、高低压涡轮转向相反、整体式加力燃烧室设计、二元矢量喷管和第三代双余度FADEC。此外,还采用了耐温1070~1100℃的第三代单晶涡轮叶片材料、双性能热处理涡轮盘、阻燃钛合金Alloy C、高温树脂基材料外涵机匣以及用陶瓷基复合材料或碳-碳材料的一些静止结构。在研制中,注意了性能与可靠性、耐久性和维修性之间的恰当平衡。与F100-PW-220相比,F119的外场可更换件拆卸率、返修率、提前换发率、维修工时、平均维修间隔时间和空中停车率分别改进50%、74%、33%、63%、62%和29%。新的四阶段研制程序和综合产品研制方法保证发动机研制结束时即具有良好的可靠性、耐久性和维修性并能顺利转入批量生产。在研制中,为满足提高推力的要求而增大风扇直径,还遇到了风扇效率低、耗油率高和低压涡轮应力大的问题。预计,1994年中开始初步飞行试验,此时F119将再积累3000地面试验小时。1997年交付第1台生产型发动机,装F119的F-22战斗机将于2002年具备初步作战能力。

F. F-119-PW-100的F119简介

F119是普·惠公司为美国第四代战斗机研制的先进双转子加力式涡轮风扇发动机。其设计目标是:不加力超音速巡航能力、非常规机动和短距起落能力、隐身能力(即低的红外和雷达信号特征)、寿命期费用降低至少25%、零件数量减少40~60%、推重比提高20%、耐久性提高两倍、零件寿命延长50%。在80年代初确定的循环参数范围是:涵道比0.2~0.3;总增压比23~27;涡轮进口温度1649~1760℃;节流比1.10~1.15。
1983年9月,美国空军同时授予普·惠公司和通用电气公司金额各为2亿美元,为期50个月的验证机合同。普·惠公司的PW5000是一种强调应用成熟技术的常规设计;而通用电气公司的GE37则是一种新颖的变循环发动机,其涵道比可在0~0.25之间变化。后来,这两种验证机分别编号为YF119和YF120,并于1986年10月和1987年5月开始地面试验。经过广泛的地面试验和安装在YF-22和YF-23上的初步飞行试验后,1991年4月,F-22/F119组合被选中。据美军方有关人士谈到选择F119的原因时说,F120技术复杂,尚未经实际验证,因而研制风险较大,而且变循环设计也增加了结构和控制系统的复杂性和重量,因而维修比较困难,寿命期费用较高。在选择时,风险和费用是主要考虑,技术先进性没有起到关键作用。在此之前,F119已积累3000多地面试验小时,其中1500h带二元矢量喷管试验。
在F119上采用的新技术主要有:三维粘性叶轮机设计方法、整体叶盘结构、高紊流度强旋流主燃烧室头部、浮壁燃烧室结构、高低压涡轮转向相反、整体式加力燃烧室设计、二元矢量喷管和第三代双余度FADEC。此外,还采用了耐温1070~1100℃的第三代单晶涡轮叶片材料、双性能热处理涡轮盘、阻燃钛合金Alloy C、高温树脂基材料外涵机匣以及用陶瓷基复合材料或碳-碳材料的一些静止结构。在研制中,注意了性能与可靠性、耐久性和维修性之间的恰当平衡。与F100-PW-220相比,F119的外场可更换件拆卸率、返修率、提前换发率、维修工时、平均维修间隔时间和空中停车率分别改进50%、74%、33%、63%、62%和29%。新的四阶段研制程序和综合产品研制方法保证发动机研制结束时即具有良好的可靠性、耐久性和维修性并能顺利转入批量生产。在研制中,为满足提高推力的要求而增大风扇直径,还遇到了风扇效率低、耗油率高和低压涡轮应力大的问题。预计,1994年中开始初步飞行试验,此时F119将再积累3000地面试验小时。1997年交付第1台生产型发动机,装F119的F-22战斗机将于2002年具备初步作战能力。

G. 如何正确选用陶瓷刀具材料

陶瓷刀具材料是一种先进的切削刀具材料,因其优良的切削性能和高性价比而备受青睐。本文介绍了近十几年来发展迅速的陶瓷刀具材料的性能及品种,并针对不同类型陶瓷刀具材料的性能优劣,给出选用建议。
潜质巨大的新型刀具材料
随着现代科学技术和生产的发展,各种新型的难加工材料在产品中大量应用,传统的硬质合金刀具已难以满足生产需要,而陶瓷刀具则以其优异的耐热性、耐磨性、良好的化学稳定性和高性价比而受到了人们的青睐。尤其是在高速切削领域和难加工材料方面,显示出了传统刀具无法比拟的优势。
利用陶瓷刀具加工普通钢、铸铁、淬硬钢、高锰钢、镍基高温合金、粉末冶金烧结件、玻璃钢和各种工程塑料等难加工材料时,刀具寿命可比硬质合金刀具高几倍甚至十几倍。在生产中它不但能用于一般的车、镗和铣削加工,而且已成功地用于孔加工刀具上;除可在普通机床上使用外,也能有效地用于数控机床和加工中心等高效设备上,被国际上公认为是当代提高生产效率最有潜质的一种刀具。此外,与金刚石和立方氮化硼等超硬刀具相比,陶瓷刀具的价格相对较低(陶瓷刀具的主要原料氧化铝、氧化硅等是地壳中最丰富的成份,取之不尽,用之不竭),因此,有人认为:“随着现代陶瓷刀具材料性能的不断改进,今后它将与涂层硬质合金刀具、金刚石和立方氮化硼等超硬刀具一起成为高速切削、干切削和硬切削的三种主要刀具。”图1所示为用陶瓷刀具以硬车削出的而不是磨削出的渗碳淬硬传动齿轮(57 HRC-59 HRC)的同步圆锥部分、内孔和背面的应用实例。
陶瓷刀具材料的性能优劣
与硬质合金刀具相比,陶瓷刀具硬度高达92-95 HRA,耐磨性好,在相同条件下加工钢料时,它的磨损仅为P10(YT15) 硬质合金刀具的1/15,刀具寿命长。同时,陶瓷刀具与钢铁等金属材料的亲和力小,摩擦系数低,抗黏结和抗扩散能力强,切削时不易黏刀及产生积屑瘤,加工表面质量好。陶瓷刀具的耐热性也很好,在1,200℃时仍能保持80HRA左右的高硬度,所以适合在高温下进行高速切削和干切削,而价格又远低于切削性能与之相近的金刚石和立方氮化硼刀具。表1中列出了陶瓷与常用硬质合金两种材料性能的对比。
从表1中可以看出,陶瓷刀具的主要缺点是抗弯强度、断裂韧度和弹性模量低,脆性大。长期以来主要作为精加工刀具,占各类刀具材料中的比重很小。但近十几年来,由于材料科学和制造技术的进步,通过控制原料纯度和晶粒尺寸,采用了热压和热等静压烧结工艺等方法(用热压烧结制成的陶瓷,其强度和硬度都比过去冷压法好;而用热等静压法制成的陶瓷,其组织致密,强度更高﹐抗崩刃性能好),添加各种碳化物、氮化物、硼化物和氧化物等可改善陶瓷的性能,并通过颗粒、晶修、相变、微裂纹和几种增韧机制的协同作用提高其断裂韧度和强度,不仅使陶瓷的抗弯强度提高到0.9-1.0 GPa(最高可达1.3-1.5 GPa,已与硬质合金相当),而且使其抗冲击性能也有很大提高,应用范围日益扩大,除可用于一般精加工与半精加工外,还可用于冲击负荷下的粗加工。
陶瓷刀具材料的品种分类
现代陶瓷刀具材料大多数为复合陶瓷,其种类及可能的组合如图2所示。目前国内外广泛使用的陶瓷刀具材料以及正在开发的陶瓷刀具材料,基本上都是根据图2所示方法组合,采取不同的增韧补强机制来进行显微结构设计的,其中以氧化铝(Al2O3)基和氮化硅(Si3N4 )基陶瓷刀具材料的应用最广泛。
氧化铝(Al2O3)基陶瓷刀具材料
纯氧化铝陶瓷
纯氧化铝陶瓷中的Al2O3成份占99.9%以上,多呈白色,俗称白陶瓷。这是早期使用的陶瓷,由于其强度低,抗热振性及断裂韧性较差,切削时易崩刃,只适用于300HBW以下的铸铁和钢的连续表面粗加工和半精加工,使用范围非常有限,故目前已被其它各种Al2O3基复合陶瓷所取代。
氧化铝-碳化物系复合陶瓷
它是在Al2O3基体中加入TiC或SiC等成份经热压烧结而成的陶瓷,是目前国内外使用最多的陶瓷刀具材料之一。氧化铝-碳化物系复合陶瓷适于加工各种钢材(碳素结构钢、合金结构钢、高强度钢、高锰钢、轴承钢、不锈钢、淬硬钢等)和各种铸铁(包括冷硬铸铁、高铬铸铁等),也可加工铜合金、石墨、工程塑料和复合材料;加工钢优于Si3N4 基陶瓷刀具;但它不宜用来加工铝合金、钛合金和钽合金,否则容易产生化学磨损。
纳米金属陶瓷刀具
它是在传统的Al2O3 / TiC金属陶瓷中通过加入纳米材料TiN(氮化钛)和AlN(氮化铝),经改性而成的一种新型Al2O3基陶瓷刀具,可细化晶粒和优化材料力学性能。使用表明,这是高技术含量及高附加值的新型刀具,可部分取代K20(YG8)、P10(YT15)等面广量大的硬质合金刀具,刀具寿命可提高2倍以上,生产成本则与K20(YG8)刀具相当或稍低。目前,纳米陶瓷及纳米复合陶瓷刀具已成为高技术陶瓷材料研究开发的一个前沿领域。
Al2O3 / SiCw晶须增韧陶瓷
在Al2O3陶瓷基体中添加20%-30% SiCw晶须(是直径小于0.6μm,长度为10?80μm的单晶,具有一定的纤维结构,抗拉强度为7 GPa,抗拉弹性模量超过700 GPa)而成的Al2O3 / SiCw晶须增韧陶瓷,可有效地用于断续切削及粗车、铣削和扩孔等工序,适于加工镍基合金、高硬度铸铁和淬硬钢等材料。SiCw晶须作用类似钢筋混凝土中的钢筋,能成为阻挡或改变裂纹发展的障碍,使其韧性大幅度提高。
Al2O3 /(W,Ti)C梯度功能陶瓷
它是通过控制陶瓷材料的组成分布以形成合理的梯度,从而使刀具内部产生有利的残余应力分布来抵消切削中的外载应力。具有表层热导率高、有利于切削热的传出、热膨胀系数小、结构完整性好、不易破损等特点。用其加工钢铁材料时的刀具寿命可比同类Al2O3/(W, Ti)C复合陶瓷SG-4高1-1.5倍,并且刀具有很好的自砺性,崩刃后仍能进行正常切削。
Al2O3 / TiB2 和Al2O3 / ZrO2 等复合陶瓷
在Al2O3中添加TiB2、Ti(C,N) 、ZrO2等成份的陶瓷可进一步提高材料的物理机械性能和切削加工性能,其中以Al2O3 / TiB2和Al2O3 / ZrO2使用较多。如用Al2O3/ TiB2陶瓷刀具加工40CrNiMoA钢时,刀具寿命为Al2O3/ TiC刀具的3倍,加工4Cr5MoVSi钢时,刀具抗边界磨损能力为Al2O3 / TiC刀具的2倍。而Al2O3 / ZrO2陶瓷刀具材料的断裂韧度、强度和耐磨性高,抗崩刃性能好。如用CC620刀片粗车和半精车铸铁和球墨铸铁等材料,切削速度可达900 m/min;用于加工合金钢时,粗车切削速度可达200 m/min,精车切削速度可达800 m/min。
氮化硅(Si3 N4)基陶瓷刀具材料
Si3N4陶瓷是一种非氧化物工程陶瓷,其硬度可达1,800-2,000 HV,热硬性好,能承受1,300-1,400℃的高温,与碳和金属元素化学反应较小,摩擦系数也较低。这类刀具适于切削铸铁、高温合金和镍基合金等材料,尤其适用于大进给量或断续切削。由于纯Si3N4 陶瓷刀具在切削长切屑(如软钢)时极易产生月牙洼磨损,所以新一代Si3N4 陶瓷均为Si3N4 复合陶瓷刀具。最新的Si3N4 复合陶瓷不仅可用于粗加工,而且可用于断续切削和有冷却液的切削。目前Si3N4基陶瓷刀具的崩刃率为2%-3%,与硬质合金相当,可以大量应用于生产线。该类陶瓷刀具的缺点是加工性比普通Al2O3陶瓷差。
Si3 N4 / TiC复合陶瓷
其韧性和抗弯强度高于Al2O3基陶瓷,而硬度却不降低;热导率亦高于Al2O3基陶瓷,故在生产中应用比较广泛。
Si3 N4 / SiCw晶须增韧陶瓷
它是在Si3N4基体中加入一定量的碳化物晶须而成,从而可提高陶瓷刀具的断裂韧度。中国生产的牌号有SW21(Si3N4/ SiCw)与FD03(Si3N4/TiCw)等。一些国外切削专家认为,用Si3N4基陶瓷切削钢材的效果不如Al2O3 基复合陶瓷,故不推荐用其加工钢材。但用FD03刀片切削淬硬钢(60-68HRC)、高锰钢、高铬钢和轴承钢时也有较好的效果。
赛阿龙(Sialon)陶瓷
它是以Si3N4为硬质相,Al2O3 为耐磨相,并添加少量助烧结剂Y2O3,经热压烧结而成,常称赛阿龙(Sialon)。Sialon实际上是Si3N4中Si、N原子被Al和O原子置换所形成的一大类固溶体的总称,主要有β-Sialon、α-Sialon、O-Sialon 3种,尤以前两种最为常见。这种陶瓷的抗弯强度和断裂韧度较高,抗氧化能力和高温抗蠕变能力好,热导率高,热膨胀系数小,抗热振性好,适于粗车及铣削铸铁和镍基高温合金等难加工材料。除能采用较大的进给量及切削速度高速加工铸铁和高温合金外,并可在面铣刀上采用双正前角(侧前角和背前角均为正值)。
涂层Si3N4陶瓷刀具
Si3N4基陶瓷的韧性优于Al2O3基陶瓷,但其耐磨性稍差。切削铸铁时,Si3N4陶瓷刀具的后刀面磨损大于Al2O3陶瓷刀具;切削钢料时,Si3N4陶瓷刀具的月牙洼磨损较大。为此,国外在Si3N4基陶瓷表面上施以TiN、TiC、Ti(C﹐N)和Al2O3等涂层,可单涂层,也可用多涂层。经涂层后的Si3N4陶瓷刀具磨损量为未涂层的1/3,使加工普通铸铁的切削速度达到200?1,000 m/min,并且刀具寿命更长。比如Sandvik公司的GC1690涂层氮化硅陶瓷刀具,在加工高强度灰铸铁时的进给量达0.4 mm/r,切削速度为500 m/min。山高(Seco)刀具公司的涂层氮化硅陶瓷刀具,切钢时抗月牙洼磨损的能力强,其切削速度可达Al2O3基陶瓷刀具的切削速度,但进给量却大于后者而接近涂层硬质合金刀具,使材料切除率大大提高。
如何选用陶瓷刀具材料
目前,Al2O3基陶瓷和Si3N4基陶瓷均已成功地用于制作车刀、镗刀和铣刀等的切削部分材料。陶瓷刀具的结构目前大多采用机夹可转位刀片的结构形式。刀片的形状有三角形、正方形、长方形、棱形和圆形等。
陶瓷刀片材料的品种多达几十种,不同种类的陶瓷刀片有着不同的应用范围,故须正确选择刀具陶瓷的种类与牌号,使其与被加工材料相“匹配”。除需要满足技术要求外,还应满足经济和环保性能的要求。
氧化铝(Al2O3)基陶瓷具有良好的耐磨性、耐热性,且其高温化学稳定性好,不易与铁元素之间发生相互扩散或化学反应,其耐磨性和耐热性均高于氮化硅(Si3N4)基陶瓷刀具,所以Al2O3基陶瓷刀具的应用范围最广,适于对钢材、铸铁及其合金的高速切削加工;加工钢优于Si3N4 基陶瓷刀具;但它不宜用来加工铝合金、钛合金和钽合金,否则容易产生化学磨损。
氮化硅(Si3N4)基陶瓷刀具的断裂韧性和抗热振性高Al2O3基陶瓷刀具,最适于断续加工铸铁和高温合金等材料,一般不宜用来加工产生长切屑的钢材(如正火和热轧状态),用Si3N4基陶瓷刀具切削45号钢时的刀具磨损比切削灰铸铁时高得多。
赛阿龙(Sialon)陶瓷最适于加工各种铸铁(如灰铸铁、球墨铸铁、冷硬铸铁、高合金耐磨铸铁等)和耐热合金,通常不推荐用其加工钢材。
Inconel 718(GH169)镍基合金是典型的难加工材料,具有较高的高温强度、动态剪切强度,热扩散系数较小,切削时易产生加工硬化,导致刀具切削温度高、磨损速度加快。Al2O3 / SiCw晶须增韧陶瓷适合于加工硬度低的镍基合金,当切削速度为100?300 m/min时可获得较长的刀具寿命;ISCAR公司生产的一款IW7晶须增韧陶瓷(Al2O3 / SiCw)新牌号,来自加工Inconel 718、镍基耐热合金等高温合金材质涡轮盘的报告显示,相比于其它陶瓷刀片,切削性能和刀具寿命均有明显提高。Si3N4基陶瓷也可用于Inconel 718合金的加工。而Sialon陶瓷的韧性高,适合于切削经过固溶处理的Inconel 718(45HRC)合金。
此外,航空航天用的Kevlar和石墨类复合材料,用陶瓷刀具可实现切削速度300 m/min左右的高速切削加工。
必须指出,陶瓷刀片不像硬质合金那样在国际上有统一的分类,各生产厂都有各自的品种与牌号,不同厂生产的同类刀片性能上也有一定的差异,使用时须参照厂家产品样本来选择。为此,刀片牌号选定后必须在机床上先进行试切削,合格后方可以正式应用。
陶瓷刀具的应用建议
陶瓷刀具改变了传统的机械加工工艺,解决了生产中以前很多难以解决的加工问题。目前广泛应用于机械、治金、矿山、高速列车、风电、汽车、拖拉机、轴承、水泵、交通、能源、精密仪器、航空航天等行业并取得了显着的经济效益。
中国在陶瓷刀具的研究与开发方面具有优势,早在20世纪50年代就已在生产中使用。例如,中国开发的陶瓷与硬质合金复合刀片(FH系列),工件表面既有陶瓷材料高的硬度与耐磨性,而基体又有硬质合金较好的抗弯强度,其等效抗弯强度比同类陶瓷刀片平均提高20%,断裂韧度平均提高8.5%,而其抗破损能力提高更大,故能承受冲击负荷,并解决了陶瓷刀片镶焊困难等问题。此外,近几年国内外开发的刀具陶瓷新品种,比如适于加工各种铝合金(包括硅含量高的铝合金)的ZrO2基陶瓷、TiB2基陶瓷(硬度是氮化硅的2倍,其性能介于硬质合金和超硬材料CBN之间,用其加工淬硬钢和高温合金等材料时的刀具寿命可比硬质合金刀具长5-6倍),尽管它们的生产至今还未形成规模,但因性能优异﹐有广泛的用途,今后必将迅速发展。
使用陶瓷刀具的机床必须具有高刚度、大功率、高转速和高精度特点,这样才能充分发挥陶瓷刀具材料的性能,取得好的经济效益。此外,装夹工件的夹具和夹紧装置,必须可靠性强,以免加工时产生振动,使刀具破损。必须指出的是,目前生产中不少机床设备还不能满足陶瓷刀具的加工要求,所以它们的潜力未能得到充分发挥,今后随着数控机床和加工中心等高效设备应用的增多,必将进一步推动陶瓷刀具的使用。
由于陶瓷刀具材料的脆性较大,强度较低,故刀具前角通常取0°-10°,后角5°-12°。为了提高切削刃强度,刃口上须磨出负倒棱,倒棱宽度可取b =0.1-0.8 mm,倒棱前角 -10°- -20°;刀尖需适当修圆,修圆半径r =0.2-1.0mm。但刀尖修圆半径和负倒棱越大,会使切削力增大,发生颤振的机会也增多。因此当机床—夹具—刀具—工件的系统刚性不足时,尤其是在加工细长工件时,不宜采用过大的刀尖半径和负倒棱。
由于陶瓷刀具有良好的耐热性和耐磨性,故切削用量对刀具磨损影响比硬质合金刀具小。因此,切削时应根据被加工工件材料性质,在机床功率、工艺系统刚性和刀片强度允许前提下,尽量选用较大的背吃刀量(吃深)和切削速度进行切削,以充分发挥陶瓷刀具材料高温性能好的特点。而部分企业在使用陶瓷刀具时,认为采用较低切削速度可延长刀具的使用寿命。切削速度﹐车削普通钢和铸铁,一般Vc=200-600 m/min;加工硬度小65HRC的高硬度钢Vc=60-200 m/min;铣削钢和铸铁Vc=200-500 m/min;铣削耐热合金Vc=100-250 m/min,进给量0.05-0.08 mm/z 。
陶瓷刀具的刃磨应在工具磨床上用夹具刃磨,以保证刃磨质量。刃磨陶瓷刀具目前大多采用树脂结合剂的金刚石砂轮,其磨削质量对刀具切削性能有很大影响。对于可转位陶瓷刀片,原则上是不重磨的,因为重磨后其刀片的装夹尺寸及定位尺寸都会发生变化,在CNC机床加工中就要重新调整进刀尺寸,以保证工件尺寸的一致性。但一些工厂为了降低消耗,物尽其用,也可在工具磨床或刀具刃磨机上用金刚石砂轮进行刃磨,粗磨选用F80-F120粒度号,精磨、细磨用F180?F400粒度号,浓度为50%-100%,硬度为K-P级。刃磨时的切削用量可取:磨削速度20-30m/s,磨削深度f =0.005-0.02 mm/双行程(粗磨时取大值,精磨、细磨时取小值),工作台速度为V =10-15 m/min。

H. 常用数控铣床

目前应用比较多的数控铣床主要有四种,具体如下:

一、数控车床(斜床身)

本机床采用刀架后置450斜床身布局,具有精度高、刚性强、寿命长等优良性能,操作简便、精度稳定,而且经济适用,可以完成各种零件的复杂车削加工,因此被广泛运用在许多地方。

二、数控车床(平床身)

本机床采用传统的卧式车床布局整体设计,密封性好,具有较高精度,运作噪音低,稳定可靠,操作也没有难度,主要用于对零件的内、外圆柱表面、端面、切槽、倒角、任意圆锥面、球面、曲面、各种螺纹圆柱、圆锥螺纹和钻、铰、镗孔等车削加工。除此之外,本机床还拥有高速度、高刚性等优点,用途广泛,属于经济适用型的数控车床。

三、数控铣床(线轨)

本机床三轴采用线性导轨,具有高刚性、低噪音、低摩檫等特性,操作简单、维修方便,适合于快速移动和高速切削。工件一次装夹可以完成平面、槽、斜面及各种复杂三维曲面的铣削、钻孔、扩孔、铰孔和镗孔等,总的来说,本机床是复杂型腔、模具、箱体类零件加工的理想设备。

四、数控铣床(硬轨)

本机床三轴导轨采用全封闭防护罩,防护性能好。Y轴大跨距,配合鞍座封闭箱形铸件设计,再加上超宽导轨,底座箱形设计,达成了较好的稳定性、吸震性。整机刚性优良,配重导向设计合理,能够很好的避免配重块晃动,从而保证快速移动或啄钻提升精度。

上述内容就是四种常用数控铣床的简单介绍。

I. 电机温度一般在多少范围

关键是你的电机绝缘等级是什么,如果是A级,环境温度40℃,那么电机的外壳温度应该小于60℃。
电机各部位的温度限度
(1) 与绕组接触的铁心温升(温度计法)应不超过所接触的绕组绝缘的温升限度(电阻法),即A级为60℃,E级为75℃,B级为80℃,F级为100℃,H级为125℃。
(2) 滚动轴承温度应不超过95℃,滑动轴承的温度应不超过80℃。因温度太高会使油质发生变化和破坏油膜。
(3) 机壳温度实践中往往以不烫手为准。
(4) 鼠笼转子表面杂散损耗很大,温度较高,一般以不危及邻近绝缘为限。可预先刷上不可逆变色漆来估计。

电机的温度与温升
衡量电机发热程度是用“温升”而不是用“温度”,当“温升”突然增大或超过最高工作温度时,说明电机已发生故障。下面就一些基本概念进行讨论。
1 绝缘材料的绝缘等级
绝缘材料按耐热能力分为Y、A、E、B、F、H、C7个等级,其极限工作温度分别为90、105、120、130、155、180℃、及180℃以上。性能参考温度(℃)A80 E95 B100 F120
H145
绝缘材料根据热稳定性可分为如下7个等级:
1,Y级,90度 ,棉花
2,A级,105度,
3,E级,120度
4,B级,130度,云母
5,F级,155度,环氧树脂
6,H级,180度,硅橡胶
7,C级,180度以上
常用的B级电机,其内部的绝缘材料往往是F级的,而铜线可能使用H级甚至更高的,来提高其质量。
一般为提高使用寿命,往往规定高级绝缘要求,低一级来考核。比如,常见的F级绝缘的电机,做B级来考核,即其温升不能超过120度(留10度作为余量,以避免工艺不稳定造成个别电机温升超差)。
所谓绝缘材料的极限工作温度,系指电机在设计预期寿命内,运行时绕组绝缘中最热点的温度。根据经验,A级材料在105℃、B级材料在130℃的情况下寿命可达10年,但在实际情况下环境温度和温升均不会长期达设计值,因此一般寿命在15~20年。如果运行温度长期超过材料的极限工作温度,则绝缘的老化加剧,寿命大大缩短。所以电机在运行中,温度是寿命的主要因素之一。

电动机的绝缘等级是指其所用绝缘材料的耐热等级,分A、E、B、F、H级。允许温升是指电动机的温度与周围环境温度相比升高的限度。在发电机等电气设备中,绝缘材料是最为薄弱的环节。绝缘材料尤其容易受到高温的影响而加速老化并损坏。不同的绝缘材料耐热性能有区别,采用不同绝缘材料的电气设备其耐受高温的能力就有不同。因此一般的电气设备都规定其工作的最高温度。
绝缘的温度等级 A E B F H
最高允许温度(℃)105 120 130 155 180
绕组温升限值(K) 60 75 80 100 125
性能参考温度(℃)80 95 100 120 145

J. 爱牢达胶水是哪国,在北京哪里能买到

美国亨斯迈Huntsman公司的爱牢达Araldite品牌,该品牌是全球的第一个环氧树脂品牌,来源于瑞士的汽巴CIBA公司,主要包括工业环氧结构胶,环氧树脂,灌封胶,及民用胶黏剂等系列高性能胶黏剂产品。主要型号包括:Araldite2011、Araldite2012、Araldite2013、Araldite2014、Araldite2015、Araldite2018、Araldite2020、Araldite2021、Araldite2022、Araldite2024、Araldite2026、Araldite2027、Araldite2040、Araldite2041、Araldite2047等爱牢达Araldite2000系列产品和爱牢达AralditeAV119、爱牢达AralditeAV118等单组份环氧胶以及爱牢达AralditeAV138M/HV998震头胶、爱牢达AralditeAW106/HV953U、爱牢达Araldite AW2104/HW2934、爱牢达AralditeAY103-1/HY991、爱牢达Araldite AW136H/HY991等工业环氧胶,Agomet F300、Agomet F305、Agomet F307、Agomet F310、Agomet F315、Agomet F330、Agomet F347、Agomet F120、Agomet F121等快固胶黏剂

北京有一个叫万禾润达的公司是爱牢达工业组胶水的代理商.价格不错!!

阅读全文

与F120树脂相关的资料

热点内容
海水提升泵维修内容 浏览:20
碧云泉饮水机故障是什么问题 浏览:995
高硫酸盐废水 浏览:787
树脂胶固定花 浏览:113
厦门树脂 浏览:573
如何减少废水中的硫酸根离子 浏览:63
蒸馏时有很多泡沫在叶面上 浏览:931
包细胞过滤器 浏览:214
树脂颗粒为什么要换包装 浏览:528
荆州教室空气净化器多少钱一台 浏览:360
康倍涞RO反渗透净水器多少钱 浏览:774
油烟净化器怎么配比 浏览:63
edi的基本特征在于 浏览:622
反渗透膜适配器什么作用 浏览:333
新颐空气净化器除甲醛怎么样 浏览:446
康亦健健康坊水机滤芯怎么换 浏览:91
脏水和干净水哪个更容易结冰 浏览:255
焦化废水菜用什么泵好用 浏览:43
下乡换净水器滤芯多少钱 浏览:259
安专尔饮水机的热水是多少度 浏览:48