导航:首页 > 耗材问题 > 树脂基复合材料热膨胀试样

树脂基复合材料热膨胀试样

发布时间:2021-03-24 17:44:52

树脂基复合材料知识

纤维增强树脂基复合材料常用的树脂为环氧树脂和不饱和聚酯树脂。目前常用的有:热固性树脂、热塑性树脂,以及各种各样改性或共混基体。热塑性树脂可以溶解在溶剂中,也可以在加热时软化和熔融变成粘性液体,冷却后又变硬。热固性树脂只能一次加热和成型,在加工过程中发生固化,形成不熔和不溶解的网状交联型高分子化合物,因此不能再生。复合材料的树脂基体,以热固性树脂为主。早在40年代,在战斗机、轰炸机上就开始采用玻璃纤维增强塑料作雷达罩。60年代美国在F—4、F—111等军用飞机上采用了硼纤维增强环氧树脂作方向舵、水平安定面、机翼后缘、舵门等。在导弹制造方面,50年代后期美国中程潜地导弹“北极星A—2”第二级固体火箭发动机壳体上就采用了玻璃纤维增强环氧树脂的缠绕制件,较钢质壳体轻27%;后来采用高性能的玻璃纤维代替普通玻璃纤维造“北极星A—3”,使壳体重量较钢制壳体轻50%,从而使“北极星A—3”导弹的射程由2700千米增加到4500千米。70年代后采用芳香聚酰胺纤维代替玻璃纤维增强环氧树脂,强度又大幅度提高,而重量减轻。碳纤维增强环氧树脂复合材料在飞机、导弹、卫星等结构上得到越来越广泛的应用。

在化学工业上的应用
编辑
环氧乙烯基酯树脂在氯碱工业中,有着良好的应用。
氯碱工业是玻璃钢作耐腐材料最早应用领域之一,目玻璃钢已成为氯碱工业的主要材料。玻璃钢已用于各种管道系统、气体鼓风机、热交换器外壳、盐水箱以至于泵、池、地坪、墙板、格栅、把手、栏杆等建筑结构上。同时,玻璃钢也开始进入化工行业的各个领域。在造纸工业中的应用也在发展,造纸工业以木材为原料,造纸过程中需要酸、盐、漂白剂等,对金属有极强的腐蚀作用,唯有玻璃钢材料能抵抗这类恶劣环境,玻璃钢材料已、在一些国家的纸浆生产中显现其优异的耐蚀性。
在金属表面处理工业中的应用,则成为环氧乙烯基酯树脂重要应用,金属表面处理厂所使用的酸,大多为盐酸、基本上用玻璃钢是没有问题的。环氧树脂作为纤维增强复合材料进入化工防腐领域,是以环氧乙烯基酯树脂形态出现的。它是双酚A环氧树脂与甲基丙烯酸通过开环加成化学反应而制成,每吨需用环氧树脂比例达50%,这类树脂既保留了环氧树脂基本性能,又有不饱和聚酯树脂良好的工艺性能,所以大量运用在化工防腐领域。
其在化工领域的防腐主要包括:化工管道、贮罐内衬层;电解槽;地坪;电除雾器及废气脱硫装置;海上平台井架;防腐模塑格栅;阀门、三通连接件等。为了提高环氧乙烯基酯树脂优越的耐热性、防腐蚀性和结构强度,树脂还不断进行改性,如酚醛、溴化、增韧等环氧乙烯基酯树脂等品种,大量运用于大直径风叶、磁悬浮轨道增强网、赛车头盔、光缆纤维牵引杆等。
树脂基复合材料作为一种复合材料,是由两个或两个以上的独立物理相,包含基体材料(树脂)和增强材料所组成的一种固体产物。树脂基复合材料具有如下的特点:
(1)各向异性(短切纤维复合材料等显各向同性);
(2)不均质(或结构组织质地的不连续性);
(3)呈粘弹性行为;
(4)纤维(或树脂)体积含量不同,材料的物理性能差异;
(5)影响质量因素多,材料性能多呈分散性。
树脂基复合材料的整体性能并不是其组分材料性能的简单叠加或者平均,这其中涉及到一个复合效应问题。复合效应实质上是原相材料及其所形成的界面相互作用、相互依存、相互补充的结果。它表现为树脂基复合材料的性能在其组分材料基础上的线性和非线性的综合。复合效应有正有负,性能的提高总是人们所期望的,但有进材料在复合之后某些方面的性能出现抵消甚至降低的现象是不可避免的。
复合效应的表现形式多样,大致上可分为两种类型:混合效应和协同效应。
混合效应也称作平均效应,是组分材料性能取长补短共同作用的结果,它是组分材料性能比较稳定的总体反映,对局部的扰动反应并敏感。协同效应与混合效应相比,则是普遍存在的且形式多样,反映的是组分材料的各种原位特性。所谓原位特性意味着各相组分材料在复合材料中表现出来的性能并不只是其单独存在时的性能,单独存在时的性能不能表征其复合后材料的性能。
树脂基复合材料的力学性能
力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。
1、树脂基复合材料的刚度
树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。
由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。
对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。
2、树脂基复合材料的强度
材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。
树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。
单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。
单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表明,横向压缩强度是横向拉伸强度的4~7倍。横向拉伸的破坏模式是基体和界面破坏,也可能伴随有纤维横向拉裂;横向压缩的破坏是因基体破坏所致,大体沿45°斜面剪坏,有时伴随界面破坏和纤维压碎。单向树脂基复合材料的面内剪切破坏是由基体和界面剪切所致,这些强度数值的估算都需依靠实验。
杂乱短纤维增强树脂基复合材料尽管不具备单向树脂基复合材料轴向上的高强度,但在横向拉、压性能方面要比单向树脂基复合材料好得多,在破坏机理方面具有自己的特点:编织纤维增强树脂基复合材料在力学处理上可近似看作两层的层合材料,但在疲劳、损伤、破坏的微观机理上要更加复杂。
树脂基复合材料强度性质的协同效应还表现在层合材料的层合效应及混杂复合材料的混杂效应上。在层合结构中,单层表现出来的潜在强度与单独受力的强度不同,如0/90/0层合拉伸所得90°层的横向强度是其单层单独实验所得横向拉伸强度的2~3倍;面内剪切强度也是如此,这一现象称为层合效应。
树脂基复合材料强度问题的复杂性来自可能的各向异性和不规则的分布,诸如通常的环境效应,也来自上面提及的不同的破坏模式,而且同一材料在不同的条件和不同的环境下,断裂有可能按不同的方式进行。这些包括基体和纤维(粒子)的结构的变化,例如由于局部的薄弱点、空穴、应力集中引起的效应。除此之外,界面粘结的性质和强弱、堆积的密集性、纤维的搭接、纤维末端的应力集中、裂缝增长的干扰以及塑性与弹性响应的差别等都有一定的影响。
树脂基复合材料的物理性能
树脂基复合材料的物理性能主要有热学性质、电学性质、磁学性质、光学性质、摩擦性质等(见表)。对于一般的主要利用力学性质的非功能复合材料,要考虑在特定的使用条件下材料对环境的各种物理因素的响应,以及这种响应对复合材料的力学性能和综合使用性能的影响;而对于功能性复合材料,所注重的则是通过多种材料的复合而满足某些物理性能的要求。
树脂基复合材料的物理性能由组分材料的性能及其复合效应所决定。要改善树脂基复合材料的物理性能或对某些功能进行设计时,往往更倾向于应用一种或多种填料。相对而言,可作为填料的物质种类很多,可用来调节树脂基复合材料的各种物理性能。值得注意的是,为了某种理由而在复合体系中引入某一物质时,可能会对其它的性质产生劣化作用,需要针对实际情况对引入物质的性质、含量及其与基体的相互作用进行综合考虑。
树脂基复合材料的化学性能
大多数的树脂基复合材料处在大气环境中、浸在水或海水中或埋在地下使用,有的作为各种溶剂的贮槽,在空气、水及化学介质、光线、射线及微生物的作用下,其化学组成和结构及各种性能会发生各种变化。在许多情况下,温度、应力状态对这些化学反应有着重要的影响。特别是航空航天飞行器及其发动机构件在更为恶劣的环境下工作,要经受高温的作用和高热气流的冲刷,其化学稳定性是至关重要的。
作为树脂基复合材料的基体的聚合物,其化学分解可以按不同的方式进行,它既可通过与腐蚀性化学物质的作用而发生,又可间接通过产生应力作用而进行,这包括热降解、辐射降解、力学降解和生物降解。聚合物基体本身是有机物质,可能被有机溶剂侵蚀、溶胀、溶解或者引起体系的应力腐蚀。所谓的应力腐蚀,是掼材料与某些有机溶剂作用在承受应力时产生过早的破坏,这样的应力可能是在使用过程中施加上去的,也可能是鉴于制造技术的某些局限性带来的。根据基体种类的不同,材料对各种化学物质的敏感程度不同,常见的玻璃纤维增强塑料耐强酸、盐、酯,但不耐碱。一般情况下,人们更注重的是水对材料性能的影响。水一般可导致树脂基复合材料的介电强度下降,水的作用使得材料的化学键断裂时产生光散射和不透明性,对力学性能也有重要影响。不上胶的或仅只热处理过的玻璃纤维与环氧树脂或聚酯树脂组成的复合材料,其拉伸强度、剪切强度和弯曲强度都很明显地受沸水影响,使用偶联剂可明显地降低这种损失。水及各种化学物质的影响与温度、接触时间有关,也与应力的大小、基体的性质及增强材料的几何组织、性质和预处理有关,此外还与复合材料的表面的状态有关,纤维末端暴露的材料更易受到损害。
聚合物的热降解有多种模式和途径,其中可能几种模式同时进行。如可通过"拉链"式的解聚机理导致完全的聚合物链的断裂,同时产生挥发性的低分子物质。其它的方式包括聚合物链的不规则断裂产生较高分子量的产物或支链脱落,还有可能形成环状的分子链结构。填料的存在对聚合物的降解有影响,某些金属填料可通过催化作用加速降解,特别是在有氧存在的地方。树脂基复合材料的着火与降解产生的挥发性物质有关,通常加入阻燃剂减少着火的危险。某些聚合物在高温条件下可产生一层耐热焦炭,这些聚合物与尼龙、聚酯纤维等复合后,因这些增强物本身的分解导致挥发性物质产生可带走热量而冷却烧焦的聚合物,进一步提高耐热性,同时赋予复合材料以优良的力学性能,如良好的坑震性。
许多聚合物因受紫外线辐射或其它高能辐射的作用而受到破坏,其机理是当光和射线的能量大于原子间的共价键能时,分子链发生断裂。铅填充的聚合物可用来防止高能辐射。紫外线辐射则一般受到更多的关注,经常使用的添加剂包括炭黑、氧化锌和二氧化钛,它们的作用是吸收或者反射紫外线辐射,有些无面填料可以和可见光一样传输紫外线,产生荧光。
力学降解是另一种降解机理,当应力的增加频率超过一个键通过平移所产生的响应能力时,就发生键的断裂,由此形成的自由基还可能对下一阶段的降解模式产生影响。硬质和脆性聚合物基体应变小,可进行有或者没有链断裂的脆性断裂,而较软但粘性高的聚合物基体大多是力学降解的。
树脂基复合材料的工艺特点
树脂基复合材料的成型工艺灵活,其结构和性能具有很强的可设计性。树脂基复合材料可用模具一次成型法来制造各种构件,从而减少了零部件的数量及接头等紧固件,并可节省原材料和工时;更为突出的是树脂基复合材料可以通过纤维种类和不同排布的设计,把潜在的性能集中到必要的方向上,使增强材料更为有效地发挥作用。通过调节复合材料各组分的成分、结构及排列方式,既可使构件在不同方向承受不同的作用力,还可以制成兼有刚性、韧性和塑性等矛盾性能的树脂基复合材料和多功能制品,这些是传统材料所不具备的优点。树脂基复合材料在工艺方面也存在缺点,比如,相对而言,大部分树脂基复合材料制造工序较多,生产能力较低,有些工艺(如制造大中型制品的手糊工艺和喷射工艺)还存在劳动强度大、产品性能不稳定等缺点。
树脂基复合材料的工艺直接关系到材料的质量,是复合效应、"复合思想"能否体现出来的关键。原材料质量的控制、增强物质的表面处理和铺设的均匀性、成型的温度和压力、后处理及模具设计的合理性都影响最终产品的性能。在成型过程中,存在着一系列物理、化学和力学的问题,需要综合考虑。固化时在基体内部和界面上都可能产生空隙、裂纹、缺胶区和富胶区;热应力可使基体产生或多或少的微裂纹,在许多工艺环节中也都可造成纤维和纤维束的弯曲、扭曲和折断;有些体系若工艺条件选择不当可使基体与增强材料之间发生不良的化学反应;在固化后的加工过程中,还可进一步引起新的纤维断裂、界面脱粘和基体开裂等损伤。如何防止和减少缺陷和损伤,保证纤维、基体和界面发挥正常的功能是一个非常重要的问题。
树脂基复合材料的成型有许多不同工艺方法,连续纤维增强树脂基复合材料的材料成型一般与制品的成型同时完成,再辅以少量的切削加工和连接即成成品;随机分布短纤维和颗粒增强塑料可先制成各种形式的预混料,然后进行挤压、模塑成型。
组合复合效应
复合体系具有两种或两种以上的优越性能,称为组合复合效应贫下中农站这样的情况很多,许多的力学性能优异的树脂基复合材料同时具有其它的功能性,下面列举几个典型的例子。
1、光学性能与力学性能的组合复合
纤维增强塑料,如玻璃纤维增强聚酯复合材料,同时具有充分的透光性和足够的比强度,对于需要透光的建筑结构制品是很有用的。
2、电性能与力学性能的组合复合
玻璃纤维增强树脂基复合材料具有良好的力学性能,同时又是一种优良的电绝缘材料,用于制造各种仪表、电机与电器的绝缘零件,在高频作用下仍能保持良好的介电性能,又具有电磁波穿透性,适制作雷达天线罩。聚合物基体中引入炭黑、石墨、酞花菁络合物或金属粉等导电填料制成的复合材料具有导电性能,同时具有高分子材料的力学性能和其它特性。
3、热性能与力学性能的组合复合
①耐热性能
树脂基复合材料在某些场合的使用除力学性能外,往往需要同时具有好的耐热性能。
②耐烧蚀性能
航空航天飞行器的工作处于严酷的环境中,必须有防护材料进行保护;耐烧蚀材料靠材料本身的烧蚀带走热量而起到防护作用。玻璃纤维、石英纤维及碳纤维增强的酚醛树脂是成功的烧蚀材料。酚醛树脂遇到高温立即碳化形成耐热性高的碳原子骨架;玻璃纤维还可部分气化,在表面残留下几乎是纯的二氧化硅,它具有相当高的粘结性能。两方面的作用,使酚醛玻璃钢具有极高的耐烧蚀性能。

㈡ 树脂基复合材料、聚合物基复合材料、高分子基复合材料区别

你指的是碳纤维复合材料吧,增强材料是碳纤维,主要取决于基体材料。比如炭专/炭复合材料,是碳纤属维增强炭(石墨)基体的复合材料,属于无机材料,主要应用于高温、摩擦方面;碳纤维增强树脂基复合材料,是有机材料,属于聚合物基复合材料,在建筑加固与体育休闲,及航空航天领域。

㈢ 树脂基复合材料的耐热性由哪些组分决定

看树脂的骨架是什么,酚醛>间苯>邻苯 耐热性能

㈣ 求关于Ti基复合材料的性能、制备及应用相关的论文我的邮箱[email protected]

金属基复合材料的制备技术班级: 班级:材料 085 学号: 学号:09024431 姓名: 姓名:李培 前言: 前言:金属基复合材料是以金属或合金为基体,并以纤维、晶须、颗粒等为增强 体的复合材料。其特点在力学方面为横向及剪切强度较高,韧性及疲劳等综合力 学性能较好,同时还具有导热、导电、耐磨、热膨胀系数小、阻尼性好、不吸湿、 不老化和无污染等优点。金属基复合材料除了和树脂基复合材料同样具有高强 度、高弹性率外,它能耐高温,同时不易燃、不吸潮、导热导电性好、抗辐射, 是令人注目的复合材料。 关键字:金属基复合材料 1. 金属基复合材料的分类 金属基复合材料按组织形态可分为宏观组合型和微观强化型两类;根据复合 材料基体不同可分为钢基、 铁基、 铝基、 镁基复合材料等; 按增强相形态的 不同可分为颗粒增强复合材料、 晶须或短纤维增强金属复合材料及连续纤维增强 金属基复合材料。 2.金属基复合材料的特点 (1)优点:高比强度和高比模量,耐高温性好,导电导热,热膨胀系数小,尺 寸稳定性好,耐磨性与阻尼性好,不吸湿、不老化、无放气污染 。 (2)缺点:制造困难,难于形成理想的界面,加工困难,价格昂贵。 3.金属基复合材料的制备技术 由于金属材料熔点较高,同时不少金属对增强体表面润湿性很差加上金属原 子在高温状态下很活泼,易与多种增强体发生反应,所以金属基复合材料的复合 工艺比较复杂和困难,这也是金属基复合材料的发展受到制约的主要原因。 3.1 喷射成形法 喷射成形又称喷射沉积 ( Spray Forming) , 是用惰性气体将金属雾化成 微小的液滴, 并使之向一定方向喷射, 在喷射途中与另一路由惰性气体送出的 分类 特点 制备技术 增强微细颗粒会合, 共同喷射沉积在有水冷衬底的平台上, 凝固成复合材料。 凝固的过程比较复杂, 与金属的雾化情况、 沉积凝固条件或增强体的送入角有 关, 过早凝固不能复合, 过迟的凝固则使增强体发生上浮下沉而分布不匀,这 种方法的优点是工艺快速,金属大范围偏析和晶粒粗化可以得到抑制, 避免复 合材料发生界面反应, 增强体分布均匀。缺点是出现原材料被气流带走和沉积 在效应器壁上等现象而损失较大, 还有复合材料气孔率以及容易出现的疏松。 利用喷 射成 形原 理制 备工艺 有添 加法 ( inert spray form-ing) 和反 应 法 ( reactive spray forming) 两种。Osprey Metals 研究的 Osprey 工艺是喷射成形 法的代表, 其强化颗粒与熔融金属接触时间短, 界面反应得以有效抑制。反应 喷射沉积法是使强化陶瓷颗粒在金属雾或基体中自动生成的方法。Lawly 等人[9] 采用含氧 5%~ 12%的氮气, 将 Fe- Al 〔 ω ( Al) =2%〕 熔雾合金雾化, 使其生成 Al2O3 获得非常细小的 Al2O3 弥散强化铁基复合材料的预成型体。 3.2 铸造凝固成型法 铸造凝固成型法是在基体金属处于熔融状态下进行复合。 主要方法有搅拌铸 造法、 液相渗和法和共喷射沉积法等。铸造凝固成型铸造复合材料具有工艺简 单化、 制品质量好等特点, 工业应用较广泛。 3.2.1 原生铸造复合法 原生铸造复合法 ( 也称液相接触反应合成技术 Liquid Contact Reaction: LCR)是将生产强化颗粒的原料加到熔融基体金属中, 利用高温下的化学反应 强化相, 然后通过浇铸成形。如 TiB 强化铝基复合材料原生复合法的化学反应 式 2B+Ti+Al→TiB2+Al。这种工艺的特点是颗粒与基体材料之间的结合状态良 好,颗粒细小 ( 0.25~1.5?m) 均匀弥散, 含量可高达 40%, 故能获得高 性能复合材料。常用的元素粉末有钛、碳、硼等,化合物粉末有 Al2O3、 TiO2、 B2O3 等。该方法可用于制备 A1 基、 Mg 基、 Cu 基、 Ti 基、 Fe 基、 Ni 基 复合材料。强化相可以是硼化物、 碳化物、 氮化物等。 近年来,哈尔滨工业大学从事接触反应法制备复合材料的研究工作[4], 已成 功制备了 Al- Si /TiC、 Al- Cu /TiC 和 Al/TiB2 复合材料, 其机械性能优异。 3.2.2 搅拌铸造法 搅拌铸造法也称掺和铸造法等。是在熔化金属中加入陶瓷颗粒,经均匀搅拌 后浇入铸模中获得制品或二次加工坯料, 此法易于实现能大批量生成, 成本较 低。该方法在铝基复合材料的制备方面应用较广,但其主要缺点是基体金属与强 化颗粒的组合受限制。 3.2.3 半固态复合铸造法 半固态复合铸造法是从半固态铸造法发展而来的。通常金属凝固时,初生晶 以枝晶方式长大,固相率达 0.2%左右时枝晶就形成连续网络骨架, 失去宏观流 动性。 如果在液态金属从液相到固相冷却过程中进行强烈搅拌则使树枝晶网络骨 架被打碎而保留分散的颗粒状组织形态, 悬浮于剩余液相中, 这种颗粒状非枝 晶的微组织在固相率达 0.5%~ 0.6%仍具有一定的流变性。液固相共存的半固 态合金因具有流变性, 可以进行流变铸造; 半固态浆液同时具有触变性, 可 将流变铸锭重新加热到固、 液相变点软化, 由于压铸时浇口处及型壁的剪切作 用, 可恢复流变性而充满铸型。强化颗粒或短纤维强化材料加入到受强烈搅拌 的半固态合金中,由于半固态浆液球状碎晶粒对添加颗粒的分散和捕捉作用,既 防止颗粒的凝聚和偏析, 又使颗粒在浆液中均匀分布, 改善了润湿性并促进界 面的结合。[8] 3.2.4 含浸凝固法 ( M I 技术) 含浸凝固法是一种将预先制备的含有较高孔隙率的强化相成形体含浸于熔融 基体金属之中,让基体金属浸透预成型体后, 使其凝固以制备复合材料的方法。 有加压含浸和非加压含浸两种方法。 含浸法适合于强化相与熔融基体金属之间润 湿性很差的复合材料的制备。强化相含量可高达 30%~ 80%; 强化相与熔融 金属之间的反应得到抑止, 不易产生偏折。但用颗粒作强化相时, 预成形体的 制备较困难, 通常采用晶须、 短纤维制备预成形体。熔体金属不易浸透至预成 形体的内部,大尺寸复合材料的制备较困难。 近几年来,含浸凝固技术有了新的发展,美国 Lanxide 公司利用高温下金属 Zr 熔体与 BC4 预成型体之间的定向反应制备出了 Zr-ZrC-Zr 复合材料,并已 在工程上得到应用[7],Breslin 等人采用 Al 浸渍 SiO2 的预成型体, 制备出了 Al2O3-A1 ( Si) 复合材料, 这种材料中的两相互相穿插、 连续, 并具有某 些特殊的性能被称为 C4 材料。该技术可以制备各种大小部件,强化相的体积比 可达 60%, 工艺较简单, 原料成本低。 3.3 粉末冶金复合法 粉末冶金复合法基本原理与常规的粉末冶金法相同, 包括烧结成形法、 烧 结制坯加塑法加工成形法等。适合于分散强化型复合材料 ( 颗粒强化或纤维强 化型复合材料) 的制备与成型。 该方法在铝基复合材料的制备方面应用较广, 但其主要缺点是基体金属与强化颗粒的组合受限制。 粉末冶金复合法的工艺主要 优点是:基体金属或合金的成分可自由选择,基体金属与强化颗粒之间不易发生 反应; 可自由选择强化颗粒的种类、 尺寸, 还可多种颗粒强化; 强化颗粒添 加量的范围大; 较容易实现颗粒均匀化。但缺点是: 工艺复杂, 成本高; 制 品形状、 尺寸受限制;微细强化颗粒的均匀分散困难;颗粒与基体的界面不如 铸造复合材料等。 3.4 原位生成复合法 原位生成复合法也称反应合成技术[1], 最早出现于 1967 年前用 SHS 法合成 TiB2 /Cu 功能梯度材料的研究中[2]。 金属基复合材料的反应合成法是指借助化 学反应, 在一定条件下在基体金属内原位生成一种或几种热力学稳定的增强相的 一种复合方法。 这种增强相一般为具有高硬度、高弹性模量和高温强度的陶瓷 颗粒, 即氧化物、 碳化物、氯化物、 硼化物、 甚至硅化物, 它们往往与传 统的金属材料, 如 Al、 Mg、 Ti、 Fe、 Cu 等金属及其合金, 或 ( NiTi) 、 ( AlTi) 等金属间化合物复合,从而得到具有优良性能的结构材料或功能材料 [3] 。 3.4.1 直接氧化 ( DIMON) 法 直接氧化法是由氧化性气体在一定工艺条件下使金属合金液直接氧化形成复 合材料。通常直接氧化法的温度比较高, 添加适量的合金元素如 Mg、 Si 等, 可使反应速度加快。 这类复合材料的强度、 韧性取决于形成粒子的状态和最终 显微组织形态。 由于形成的增强体可以通过合金化及其反应热力学进行判断, 因 此可以通过合金化、 炉内气氛的控制来制得不同类型增强体的复合材料。 3.4.2 放热弥散 ( XD) 法 放热弥散复合技术 ( Exothermic Dispersion) 的基本原理是将增强相反应 物料与金属基粉末按一定的比例均匀混合, 冷压或热压成型, 制成坯块, 以 一定的加热速率加热, 在一定的温度下 ( 通常是高于基体的熔点而低于增强 相的熔点)保温,使增强相各组分之间进行放热化学反应, 生成增强相。增强 相尺寸细小, 呈弥散分布。 3.4.3 SHS-铸渗法 SHS-铸渗法[3] 是将金属基复合材料的自蔓延高温合成技术 ( Self- Propagating High Temperature Synthesis) 和液态铸造法结合起来的一种新技术,包括增强颗 粒的原位合成和铸造成型二个过程。当前, SHS-铸渗法是有竞争力的反应合成 工艺之一, 但过程控制非常困难。 其典型工艺为:利用合金熔体的高温引燃铸型中的固体 SHS 系, 通过控制 反应物和生成物的位置, 在铸件表面形成复合涂层, 它可使 SHS 材料合成与 致密化、 铸件的成形与表面涂层的制备同时完成。潘复生[6]等人将 SHS 技术和 铸渗工艺相结合,制备了颗粒增强的铁基复合材料涂层。在这种工艺中, SHS 过程使基体产生一定数量的增强颗粒, 而随后的熔铸过程则利用高温金属液的 流动,对 SHS 过程中易产生的孔隙进行充填,因此两个过程的综合作用下获得 较为致密的复合材料。 3.4.4 反应喷射沉积技术 ( RSD) 反应喷射沉积工艺 ( Reactive Spray Deposition) 生成陶瓷颗粒的反应有气 -液反应、 液-液反应、 固-液反应和加盐反应等多种类型。它综合了快速凝固 及粉末冶金的优点, 并克服了喷射共沉积工艺中存在的如颗粒与基体接近机械结 合、 增强相体积分数不能太高等缺点, 成为目前金属基复合材料研究的重要方 向之一。 反应喷射沉积工艺过程为:金属液被雾化前喷入高活性的固体颗粒发生液固 反应, 导致喷入的颗粒在雾化过程中溶解并与基体中的一种或多种元素反应形成 稳定的弥散相, 控制喷雾的冷却速率以及随后坯件的冷却速率可以控制弥散相的 尺寸。杨滨等人[5]采用液相接触反应合成技术进行反应合成,然后再进行后续的 雾化喷射沉积成形步骤, 成功地开发出了一种熔铸-原位反应喷射沉积成形颗粒 增强金属基复合材料制备新技术。制备出 TiC/Al- 20Si- 5Fe 复合材料。 3.5 叠层复合法 叠层复合法是先将不同金属板用扩散结合方法复合,然后采用离子溅射或分 子束外延方法交替地将不同金属或金属与陶瓷薄层叠合在一起构成金属基复合 材料。这种复合材料性能很好, 但工艺复杂难以实用化。目前这种材料的应用 尚不广泛,过去主要少量应用或试用于航空、 航天及其它军用设备上, 现在正 努力向民用方向转移, 特别是在汽车工业上有很好的发展前景。 4.结束语 [3] 目前, 我国金属基复合材料的研究、 制备技术与国外先进水平仍有较大 的差距, 许多问题还有待进一步解决,如基础性研究落后、制备技术及工艺的 工业化应用能力差、 制品质量不稳定、 价格高等。 随着现代高科技的迅猛发展, 金属基复合材料已经并将继续大量取代传统材料, 在各个领域发挥更重要的积 极作用。 为此, 我们应大力加强复合材料理论、 制备技术和应用的研究, 加 快科研成果转化生产应用的进程。 参考文献〕 〔 参考文献〕 1995, 〔 1〕 程秀兰, 潘复生.金属复合材料的反应合成技术 〔 J〕 .材料导报, (5):61- 66. 〔 2 〕 吴人洁.金属基复合材料的现状与展望 〔 J〕 .金属学报, 1997, 33(1):78- 82. 〔 3〕 汤爱涛, 汪凌云, 潘复生.金属基复合材料固/液反应制备技术的研究 进展 〔 J〕 .重庆大学学报, 2004, 27 ( 11) : 151- 156. 〔 4〕 陈子勇, 陈玉勇, 安阁英.金属基复合材料的熔体直接反应合成工艺 〔 J〕 .材料导报, 1997, 11(2):62- 63. 〔 5〕 杨滨, 王锋, 黄赞军, 等.喷射沉积成形颗粒增强金属基复合材料制 备技术的发展 〔 J〕 .材料导报, 2001, 15(3):4- 6. 〔 6〕 潘复生, 张静, 陈万志, 丁培道.SHS-铸渗法制备铁基复合材料涂层 〔 J〕 .材料研究学报, 1997, (11):165- 166. 〔 7 〕 BRESLIN M C,RINCNALDA J. A1umina/aluminum co- coHtinu-ous ceramic composite (c4) materials Prouced by solid/1iquid disPlacement reactions:Processing kinetics and cicrostructures 〔 J〕 .Ceram.Eng.Sci.Proc., 1994, 15(7- 8):104. 〔 8〕 于春田.纤维增强金属的制法及特征 〔 J〕 .铸造, 1995, (7):36- 39. 〔 9〕 鲁云, 马鸣图, 潘复生.先进复合材料 〔 M〕 .北京:机械工业出版 社, 2003. ( 编辑 黄 荻)

㈤ 热膨胀仪的测试试样如何加工

武汉华能阳光电气是专业从事电力设备、仪器仪表生产的企业。
供应的设备有:
开关仪

耐电压测试仪

变比仪

电压互感器作用

氧化锌避雷器在线测试仪

摇表测量接地电阻

继电保护测试仪

电压互感器作用

直高发

铁磁谐振

防雷元器件

智能型静电发生器
等仪器仪表的企业、具体的你可以进入武汉华能阳光电气公司官网进行了解。

㈥ 水泥基复合材料力学性能测试标准试样尺寸!!拉伸试验和冲击试验

150*150*300

㈦ 树脂基复合材料 与 聚合物基复合材料 的区别 是不是就是一个东西的两种说法

聚合物(高聚物)基复合材料是比较科学的说法, 聚合物俗称: 树脂.

㈧ 树脂基复合材料是由什么构成的,其最主要的是什么原材料

1、树脂和各类助剂
①热固性树脂主要有:酚醛(热固性)、不饱和聚酯、聚氨酯版、环氧、聚酰亚胺权、聚砜等
②热塑性树脂主要有:聚丙烯、聚乙烯、聚氯乙烯、酚醛(热塑性)等
③助剂包括:颜料、促进剂、固化剂(引发剂)、交联剂/稀释剂(可以一种物质充当两个角色,树脂中就有如苯乙烯)、阻聚剂、光敏剂、脱模剂、低收缩剂等。
2、增强材料
玻璃纤维、玻璃纤维布、玻璃纤维毡、碳纤维、芳纶纤维、聚酯纤维、金属纤维等
3、填料
填料作用主要为改善制品性能(如刚性、收缩性、耐腐性、韧性、电磁热等)、降低加工成本而加入的,具体是否需要加入和加入量试产品要求和工艺情况而定
4、加工工艺
手糊、拉挤、模压、缠绕、喷射、注射等

复合材料的优点就是材料和结构的可设计性,材料的选用要根据产品的性能要求来选用~~

㈨ 碳纤维复合材料热膨胀系数多少

碳纤维不同分布的CF/Cu复合材料的热膨胀系数是不同的啊。

㈩ 你好,请问给我分析下聚四氟乙烯塑料王PTFE基复合材料的热膨胀特性 ,谢谢

镇江润方密封分析了聚四氟乙烯塑料王PTFE基复合材料的热膨胀特性,
结果表明, PTFE基复合材料在结晶转变区内的线膨胀系数可达到平均值的3~5倍。
添加芳纶纤维后PTFE材料平均线膨胀系数减小,但结晶转变区内线膨胀系数却略有增大。

阅读全文

与树脂基复合材料热膨胀试样相关的资料

热点内容
污水厂污泥密度大概是多少 浏览:727
鱼缸过滤箱里放什么好 浏览:373
蒸馏什么时候用圆底烧瓶 浏览:351
康尼蒂克怎么换滤芯 浏览:530
10荣威550空调滤芯在什么位置 浏览:250
播放器有一耳朵提升价钱差多少钱 浏览:531
水处理的使命感 浏览:919
污水管怎么收方 浏览:798
含铬废水处理后盐分 浏览:675
途观的空气滤芯在什么位置 浏览:110
树脂过滤软水制备 浏览:565
市政供水水处理技术 浏览:677
锅炉除垢柠檬酸浓度 浏览:554
净水机lc什么意思 浏览:752
第二代颐芯净水器价格是多少钱 浏览:571
污水主管道漏水怎么办 浏览:839
污水处理厂出水颜色偏黄 浏览:58
建筑给排水回用 浏览:162
磁化水和纯净水哪个水好 浏览:587
生化离子交换层析题目 浏览:139