① 工业废水如何有效去除氨氮超标
1 高浓度氨氮废水处理技术
高浓度氨氮废水是指氨氮质量浓度大于500mg/L
的废水。伴随石油、化工、冶金、食品和制药等工业的发展,以及人民生活水平的不断提高,工业废水和城市生活污水中氨氮的含量急剧上升,呈现氨氮污染源多、排放量大,并且排放的浓度增大的特点〔2〕。目前针对高氨氮废水的处理技术主要使用吹脱法、化学沉淀法等。
1.1 吹脱法
将空气通入废水中,使废水中溶解性气体和易挥发性溶质由液相转入气相,使废水得到处理的过程称为吹脱,常见的工艺流程见图 1。
图 2 生物脱氮的途径
用生物法处理含氨氮废水时,有机碳的相对浓度是考虑的主要因素,维持最佳碳氮比也是生物法成功的关键之一。
生物法具有操作简单、效果稳定、不产生二次污染且经济的优点,其缺点为占地面积大,处理效率易受温度和有毒物质等的影响且对运行管理要求较高。同时,在工业运用中应考虑某些物质对微生物活动和繁殖的抑制作用。此外,高浓度的氨氮对生物法硝化过程具有抑制作用,因此当处理氨氮废水的初始质量浓度<300
mg/L 时,采用生物法效果较好。
J. Kim 等〔24〕采用小球藻处理美国俄亥俄州辛辛那提磨溪污水处理厂废水中的氨氮,实验结果表明,小球藻在经历24 h 的迟缓期后,在48 h 内氨氮去除率可达50%。
2.3.1 传统生物硝化反硝化技术
传统生物硝化反硝化脱氮处理过程包括硝化和反硝化两个阶段。硝化过程是指在好氧条件下,在硝酸盐和亚硝酸盐菌的作用下,氨氮可被氧化成硝酸盐氮和亚硝酸盐氮;再通过缺氧条件,反硝化菌将硝酸盐氮和亚硝酸盐氮还原成氮气,从而达到脱氮的目的。
传统生物硝化反硝化法中,较成熟的方法有A/O 法、A2/O 法、SBR
序批式处理法、接触氧化法等。它们具有效果稳定、操作简单、不产生二次污染、成本较低等优点。但该法也存在一些弊端,如必须补充相应的碳源来配合实现氨氮的脱除,使运行费用增加;碳氮比较小时,需要进行消化液回流,增加了反应池容积和动力消耗;硝化细菌浓度低,系统投碱量大等。
杨小俊等〔25〕通过A/O 膜生物反应器处理某炼油厂气浮池出水中的氨氮,实验结果表明,当氨氮和COD 容积负荷分别在0.04~0.08、0.30~0.84 kg/(m3·d)时,处理后水中氨氮质量浓度小于5 mg/L。
2.3.2 新型生物脱氮技术
(1)短程硝化反硝化技术。短程硝化反硝化是在同一个反应器中,先在有氧的条件下,利用氨氧化细菌将氨氧化成亚硝酸盐,阻止亚硝酸盐进一步氧化,然后直接在缺氧的条件下,以有机物或外加碳源作为电子供体,将亚硝酸盐进行反硝化生成氮气。
短程硝化反硝化与传统生物脱氮相比具有以下优点:对于活性污泥法,可节省25%的供氧量,降低能耗;节省碳源,一定情况下可提高总氮的去除率;提高了反应速率,缩短了反应时间,减少反应器容积。但由于亚硝化细菌和硝化细菌之间关系紧密,每个影响因素的变化都同时影响到两类细菌,而且各个因素之间也存在着相互影响的关系,这使得短程硝化反硝化的条件难以控制。目前短程硝化反硝化技术仍处在人工配水实验阶段,对此现象的理论解释还不充分。
(2)同时硝化反硝化技术。当硝化与反硝化在同一个反应器中同时进行时,即为同时硝化反硝化(SND)。废水中溶解氧受扩散速度限制,在微生物絮体或者生物膜的表面,溶解氧浓度较高,利于好氧硝化菌和氨化菌的生长繁殖,越深入絮体或膜内部,溶解氧浓度越低,形成缺氧区,反硝化细菌占优势,从而形成同时硝化反硝化过程。
邹联沛等〔26〕对膜生物反应器系统中的同时硝化反硝化现象进行了研究,实验结果表明,当DO 为1mg/L,C/N=30,pH=7.2
时,COD、NH4+-N、TN 去除率分别为96%、95%、92%,并发现在一定的范围内,升高或降低反应器内DO 浓度后,TN 去除率都会下降。
同时硝化反硝化法节省反应器,缩短了反应时间,且能耗低、投资省。但目前对于同步硝化反硝化的研究尚处于实验室阶段,其作用机理及动力学模型需做进一步的研究,其工业化运用尚难实现。
(3)厌氧氨氧化技术。厌氧氨氧化是指在缺氧或厌氧条件下,微生物以NH4+ 为电子受体,以NO2- 或NO3- 为电子供体进行的NH4+、NO2- 或NO3- 转化成N2的过程〔27〕。
何岩等〔28〕研究了SHARON
工艺与厌氧氨氧化工艺联用技术处理“中老龄”垃圾渗滤液的效果,实验结果表明,厌氧氨氧化反应器可在具有硝化活性的污泥中实现启动;
在进水氨氮和亚硝酸氮质量浓度不超过250 mg/L 的条件下,氨氮和亚硝酸氮的去除率分别可达到80%和90%。目前,SHARON
与厌氧氨氧化联合工艺的研究仍处于实验室阶段,还需要进一步调整和优化工艺条件,以提高联合工艺去除实际高氨氮废水中的总氮的效能。
厌氧氨氧化技术可以大幅度地降低硝化反应的充氧能耗,免去反硝化反应的外源电子供体,可节省传统硝化反硝化过程中所需的中和试剂,产生的污泥量少。但目前为止,其反应机理、参与菌种和各项操作参数均不明确。
2.4 膜技术
2.4.1 反渗透技术
反渗透技术是在高于溶液渗透压的压力作用下,借助于半透膜对溶质的选择截留作用,将溶质与溶剂分离的技术,具有能耗低、无污染、工艺先进、操作维护简便等优点。
利用反渗透技术处理氨氮废水的过程中,设备给予足够的压力,水通过选择性膜析出,可用作工业纯水,而膜另一侧氨氮溶液的浓度则相应增高,成为可以被再次处理和利用的浓缩液。在实际操作中,施加的反渗透压力与溶液的浓度成正比,随着氨氮浓度的升高,反渗透装置所需的能耗就越高,而效率却是在下降〔29〕。
徐永平等〔30〕以兖矿鲁南化肥厂碳酸钾生产车间含NH4Cl 的废水为研究对象,利用反渗透法对NH4Cl
废水的处理过程进行了研究,实验装置采用反渗透膜(NTR-70SWCS4)过滤机。结果表明,在用反渗透膜技术处理氨氮废水的过程中,氯化铵质量浓度适宜在60
g/L 以下,在该浓度条件下,设备脱氨氮效率较高,一般大于97%,各项技术指标合格,可以用于实际生产操作。
2.4.2 电渗析法
电渗析是在外加直流电场的作用下,利用离子交换膜的选择透过性,使离子从电解质溶液中分离出来的过程。电渗析法可高效地分离废水中的氨氮,并且该方法前期投入小,能量和药剂消耗低,操作简单,水的利用率高,无二次污染副产物。
唐艳等〔31〕采用自制电渗析设备对进水电导率为2 920 μS/cm,氨氮质量浓度为534.59 mg/L
的氨氮废水进行处理,通过实验得到在电渗析电压为55 V,进水流量为24 L/h
这一最佳工艺参数条件下,可对实验用水有效脱氮的结论,出水氨氮质量浓度为13 mg/L。
3 不同浓度工业含氨氮废水的处理方法比较
不同氨氮废水处理方法优缺点比较见表 4。
通过对以上几种不同方法的论述,可以看出目前针对工业废水中高浓度氨氮的处理方法主要使用物理化学方法做预处理,再选择其他方法进行后续处理,虽能取得较好的处理效果,但仍存在结垢、二次污染的问题。对低浓度的氨氮废水较常用的方法为化学法和传统生物法,其中化学法的一些处理技术还不成熟,未在实际生产中应用,因此还无法满足工业对低浓度氨氮废水深度处理的要求;
生物法能较好地解决二次污染问题,且能达到工业对低浓度氨氮废水深度处理的要求,但目前对微生物的选种和驯化还不完全成熟。
② 大量氯化铵如何销毁
向氯化铵中添加石灰与氯化铵,对氯化铵进行苛化反应,得到苛化液,保证苛化液的PH值为11.5-12.0
③ 污水处理厂氨氮废水去除方法是怎样的呢
氨氮废水特点:
氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。氨氮废水主要来自化工、冶金、化肥、煤气、炼焦、鞣革、味精、肉类加工和养殖等行业。排放的废水以及垃圾渗滤液等。
氨氮废水危害:
氨氮废水对鱼类及某些生物也有毒害作用。另外,当含少量氨氮的废水回用于工业中时,对某些金属,特别是铜具有腐蚀作用,还可以促进输水管道和用水设备中微生物的繁殖,形成生物垢,堵塞管道和设备。
氨氮废水处理方法:
处理氨氮废水的方法有很多,目前常见的有化学沉淀法、吹脱法、化学氧化法、生物法、膜分离法、离子交换法以及土壤灌溉等。
氨氮废水处理方法以及各种方法的优缺点:
1、化学沉淀法。又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4﹢与Mg²﹢、PO4³﹣在水溶液中反应生成磷酸按镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。
影响化学沉淀法处理效果的因素主要有pH值、温度、氨氮浓度以及摩尔比(n(Mg²﹢):n(NH4﹢):n(P04³-))等。
化学沉淀法的缺点:由于受磷酸铁镁溶度积的限制,废水中的氨氮达到一定浓度后,再投人药剂量,则去除效果不明显,且使投入成本大大增加,因此化学沉淀法需与其它适合深度处理的方法配合使用;药剂使用量大,产生的污泥较多,处理成本偏高;投加药剂时引人的氯离子和余磷易造成二次污染。
2、吹脱法。去除氨氮是通过调整pH值至碱性,使废水中的氨离子向氨转化,使其主要以游离氨形态存在,再通过载气将游离氨从废水中带出,从而达到去除氨氮的目的。
影响吹脱效率的因素主要有pH值、温度、气液比、气体流速、初始浓度等。
吹脱法去除氨氮效果较好,操作简便,易于控制。对于吹脱的氨氮可以用硫酸做吸收剂,生成的硫酸钱制成化肥使用。吹脱法是目前常用的物化脱氮技术。但吹脱法存在一些缺点,如吹脱塔内经常结垢,低温时氨氮去除效率低,吹脱的气体形成二次污染等。吹脱法一般与其它氨氮废水处理方法联合运用,用吹脱法对高浓度氨氮废水预处理。
3、化学氧化法包含:折点氯化法、催化氧化法、电化学氧化法;
4、生物法包含:传统生物脱氮技术、新型生物脱氮技术(同时硝化反硝化(SND)、短程消化反硝化、厌氧氨氧化)
5、膜分离法。利用膜的选择透过性对液体中的成分进行选择性分离,从而达到氨氮脱除的目的。包括反渗透、纳滤和电渗析等。影响膜分离法的因素有膜特性、压力或电压、pH值、温度以及氨氮浓度等。
膜分离法的优点是氨氮回收率高,操作简便,处理效果稳定,无二次污染等。但在处理高浓度氨氮废水时,所使用的薄膜易结垢堵塞,再生、反洗频繁,增加处理成本,故该法较适用于经过预处理的或中低浓度的氨氮废水。
6、离子交换法。通过对氨离子具有很强选择吸附作用的材料去除废水中氨氮的方法。常用的吸附材料有活性炭、沸石、蒙脱石及交换树脂等。
离子交换法是通过对氨离子具有很强选择吸附作用的材料去除废水中氨氮的方法。常用的吸附材料有活性炭、沸石、蒙脱石及交换树脂等。
7、土壤灌溉。是将低浓度氨氮废水直接作为肥料使用的方法。对于有些含有病菌、重金属、有机及无机等有害物质的氨氮废水需经预处理将其去除后再进行灌溉。土壤灌溉要求氨氮浓度一般为几十毫克每升。
④ 目前稀土氯铵废水的处理还有哪些不足
氨氮废水是稀土分离厂最难解决的特征污染物,处理氨氮废水的方法主要有蒸发浓缩法、折点氯化法、膜法、氨吹脱法等。
蒸发浓缩法适用于铵浓度达80克/升以上的高浓度氯化铵废水,但要消耗大量的能量,生产出来的氯化铵产品也存在市场销售困难的问题,因此该方法仅适用于煤炭资源丰富且氯化铵销路较好的地区。
折点氯化法适用于处理低浓度氨氮废水,虽然其处理效果稳定,不受水温影响,投资较少,但是加氯量较大、费用高,副产物氯胺和氯代有机物会造成二次污染,要注意密封和再处理。
反渗透膜法是将低浓度含氨废水(0.3%)浓缩至6%~7%,然后再通过氨碱法生产氨水,其淡化水NH4+小于10毫克/升,淡水回用率达90%。日本科学家发明了一种隔膜电渗析—电透析法是处理含铵废水新技术,氯化铵、硝酸铵废水经预处理以及隔膜电渗析处理后,浓度得到富集,再经电解透析处理,可回收HCl、HNO3、氨水。目前已投入工业运行。
氨吹脱法通过调节pH值,使NH4+转化为NH3,然后大量曝气,促使NH3向空气中转移, 因此达到去除水体中NH4+含量的目的。氨吹脱法运行过程中最大的费用是调整pH值消耗的碱,用石灰虽然成本低但沉渣多难清理,采用纯碱或固碱成本较高,氨氮含量难以达到排放标准,而且NH3排放到大气中对环境造成二次污染。
尽管氨氮可以采用不同方法进行处理,但靠一种方法很难达到排放标准,而且造成大量能源消耗,处理成本高,最好的办法还是从源头消除氨氮的污染问题,业内研究机构开发了系列无氨氮排放的清洁生产技术,部分已推广应用。稀土非皂化萃取分离技术是采用氧化镁或氧化钙对有机相进行预处理,以此替代氨水或氢氧化钠,可节约生产成本30%~50%,分离过程不产生氨氮废水,极大地节约了治理成本,具有很好的经济效益和社会效益;碳酸钠沉淀稀土工艺是用碳酸钠代替碳铵沉淀稀土,也从源头上消除了氨氮废水的污染。
⑤ 工业产生的氟化物治理常采用什么方法
处理含氟废水有多种方法。这里整理了化学沉淀法、混凝沉淀法、环瑞GMS系列除氟药剂法、吸附法、电析法、除氟药剂法、电凝聚法、离子交换树脂法、反渗透法、液膜法、微生物处理法、诱导结晶法。
一、除氟剂法:
主要分为液体除氟剂GMS-F4和固体除氟药剂GMS-F6,该产品主要成分为铝铁硅无机聚合盐,特殊的结构设计使其能够在水中快速水解,产生大量带正电荷的聚合胶体,胶体中含有多个羟基配位体,能够在废水中与氟离子实现交换,交换容量大。在交换以后,胶体半径大幅度降低,与游离氟离子产生强电荷吸附形成共沉淀。
除氟剂是一种专为解决废水中氟去除难题研发的药剂,它适用于各行业污水氟超标治理;反应速度快,去除率可达95%以上。
(1)相对钙盐,去除过程产生的污泥量极少,形成的氟化物沉淀不会逆转;
(2) 环瑞除氟剂是一种多功能高效除氟剂,在强化去除重金属离子、悬浮物等方面具有明显的作用;
(3) 沉降速率快,吸附效率快,去除率高。在相同的条件下除氟效率是活性氧化铝的2-4倍,是沸石分子筛的8-10倍,可大大降低处理成本;
(4) 反应快速、投加量少。除氟混合反应仅需5-10分钟左右,可根据现场实际情况在工艺过程中投加处理,药剂投加成本比钙盐除氟剂、氧化铝离子交换吸附等经济;
(5) 产品中不含钙质,不会造成系统管道等组件堵塞;
(6) 产品中无游离氯离子,压滤液对生化系统无影响;
(7) 处理设备简单,投加即可见效,无需复杂调试;
(8) 不含钙质,长期使用不会造成管道、阀体结垢、堵塞现象。
------------------------------------------------------------------------------------------
二、化学沉淀法:
化学沉淀法是含氟废水最常用的处理方法,普遍应用于高浓度含氟废水中。是将某些化学药品加入含氟废水中,从而生成难溶性氟化物或者利用共沉淀吸附氟离子,再用自然沉淀或者过滤材料等方法使沉淀物与水溶液分离,以达到除氟的目的。常用的试剂是石灰和氯化钙。
该工艺具有方法简单、处理方便、费用低等优点,但存在处理后出水很难达标、泥渣沉降缓慢且脱水困难等缺点。
如氟化钙在18℃时于水中的溶解度为16.3 mg/L,按氟离子计为7.9mg/L,在此溶解度的氟化钙会形成沉淀物。氟的残留量为10~20mg/L时形成沉淀物的速度会减慢。当水中含有一定数量的盐类,如氯化钠、硫酸钠、氯化铵时,将会增大氟化钙的溶解度。因此用石灰处理后的废水中氟含量一般不会低于20~30 mg/L。
-------------------------------------------------------------------------------------------
三、混凝沉淀法:
混凝沉淀法是利用混凝剂中的Al3+、Fe3+、Mg2+等阳离子与原水形成络合物而除氟的一种方法。混凝剂的投加量、原水pH值、混合强度及时间、反应强度及时间、沉淀时间、原水温度、水中共存干扰离子(CO32-、SO42-、Cl-)等都对除氟效果有较大影响。
铝盐混凝法是去除水中氟离子的常用方法之一,其中碱式氯化铝的铝离子与水中氢氧根反应,生成氢氧化铝。氢氧化铝在pH值6-7的范围,按下列反应,被吸附在氢氧化铝胶体颗粒上,发生沉淀后去除。
------------------------------------------------------------------------------------------------
四、电析法:
电渗析法处理技术是膜分离技术的一种。这种技术是在外加直流电场作用下,利用离子交换膜的选择透过性(即阳膜只允许阳离子选择透过,只允许阴离子选择透过),使水中阴、阳离子作定向迁移而将氟离子分离出来的方法。该法主要适用于苦咸水淡化、工业用纯水、超纯水制造。
电渗析法处理技术是膜分离技术的一种。这种技术是在外加直流电场作用下,利用离子交换膜的选择透过性(即阳膜只允许阳离子选择透过,只允许阴离子选择透过),使水中阴、阳离子作定向迁移而将氟离子分离出来的方法。该法主要适用于苦咸水淡化、工业用纯水、超纯水制造。
电渗析除氟优点在于不用投加药剂,除氟的同时可以降低高氟水的含盐总量,使水质得到全面改善。
缺点在于处理设备昂贵,管理复杂,能耗较大,除氟的同时除去了对人体有益的矿物质等,限制了该法的广泛使用。
-------------------------------------------------------------------------------------------
五、电凝聚法:
电凝聚法即电化学凝聚法。利用电解原理对水进行电化学处理。在直流电场作用下,氧化铁板或铝板等生成Fe3+或Al3+,可以与水反应生成水合络合物。在不同条件下,形成单核或多核的水解缩聚物,缩聚物表面含有大量经基。电凝聚除氟的作用机理实质上是静电吸附和离子交换。
电凝聚法是在酸性条件下,依靠静电吸附和离子交换吸附的双重作用达到除氟效果的。
影响除氟的因素较多(原水pH值,电流密度,水流速度等),且存在电极钝化的问题。针对于大水量现场,使用不太现实,目前仅针对于低浓度、小水量废水的除氟。
该法有以下优点 :
(1)设备简单 ,操作容易;
(2)由于地下水清净,吸附介质始终具有较大的活性,可调节电流来达到所要求的出水含氟量;
(3)不必再生,简化操作和管理;
(4)基本保持地下原有水质,不影响饮水者的健康。
望采纳!!
⑥ 含高盐的废水如何处理
高盐废水,其主要来源于化工、制药、石油等企业。该类共同特点是:化学成分复杂、含大量有版机物,包括权有机溶剂、有机酸类、酯类、酮类、酚类等等,而且含盐量高,比如含氯化钠、氯化铵、硫酸铵、硫酸钠或者是多种混合盐等,很难直接用生化方法处理,且物化处理过程较复杂,处理费用较高,是废水处理行业公认的高难度处理废水,高盐废水排放对环境影响巨大,所以得先去除废水中的污染物,才能排放。
为了最大限度的减少此类高有机、杂盐废水排放对环境要求的影响,青岛康景辉在处理该类高有机、杂盐废水的时候,采用多效蒸发(或MVR蒸发)+结晶系统。产生的蒸馏水直接循环回用或达标排放;除盐废物可进一步转换为干燥晶体回收利用或进行进一步处理,从而彻底实现零排放。
⑦ 如何去除污水中的残留氯化铵请问如何去除污水中的
5:长进短出 用洗气瓶排水收集气体的连接. 氧化铁和稀硫酸反应:其余碱、(2)Fe2O3、NO2 29: 固体需匙或纸槽、 氧气的性质. 铁和硫酸铜溶液反应,其他都溶于水、炼钢的主要设备有三种、煤焦油: 斗架烧杯玻璃棒:Fe + CuSO4 === FeSO4 + Cu 21.氢气还原氧化铜、乙醇、导电性最强的金属是银:(1)大部分固体物质溶解度随温度的升高而增大、点,反应后溶液的质量变重: 55.3CO+ 2Fe2O3 高温 4Fe + 3CO2↑ 七:Fe(OH)3白色↓。 9、古代三大化学工艺。试纸测气先湿润. 甲烷在空气中燃烧、酸式碳酸钠。 6;液态二氧化碳灭火器、利(离)、催化剂. 氧化铜和稀硫酸反应、硝酸:高碳钢:焦炭。 ②凡是给试管固体加热:H2CO3 == H2O + CO2↑ 31.二氧化碳可溶于水;铁、燃烧后的产物是水不污染环境;(2)玻璃棒的末端轻靠在滤纸三层处,仰视偏低俯视高. 碳在氧气中不充分燃烧、蓝矾、相对原子质量最小的原子是氢;稀有气体单质:正极放出氧气,(其中BaSO4、俗名及化学式 ⑴金刚石、氧化钾、化肥随雨水流入河中。 4,后除水蒸气 实验检验原则:Ca(OH)2 + SO2 == CaSO3 ↓+ H2O (2)碱 + 酸-------- 盐 + 水(中和反应,Cu(OH)2是蓝色沉淀、向上排空法: “茶(查):短进长出 用洗气瓶排空气收集气体的连接:2NaOH + SO3 == Na2SO4 + H2O 71.消石灰放在空气中变质。难溶性碱中Fe(OH)3是红褐色沉淀。 17、息(熄)” “查”检查装置的气密性 “装”盛装药品酸 硫酸 H2SO4 亚硫酸 H2SO3 盐酸 HCl 硝酸 HNO3 硫化氢 H2S 碳酸 H2CO3 初中常见物质的化学式 氢气 碳 氮气 氧气 磷 硫 氯气 (非金属单质) H2 C N2 O2 P S Cl2 钠 镁 铝 钾 钙 铁 锌 铜 钡 钨 汞 (金属单质) Na Mg Al K Ga Fe Zn Cu Ba W Hg 水 一氧化碳 二氧化碳 五氧化二磷 氧化钠 二氧化氮 二氧化硅 H2O CO CO2 P2O5 Na2O NO2 SiO2 二氧化硫 三氧化硫 一氧化氮 氧化镁 氧化铜 氧化钡 氧化亚铜 SO2 SO3 NO MgO CuO BaO Cu2O 氧化亚铁 三氧化二铁(铁红) 四氧化三铁 三氧化二铝 三氧化钨 FeO Fe2O3 Fe3O4 Al2O3 WO3 氧化银 氧化铅 二氧化锰 (常见氧化物) Ag2O PbO MnO2 氯化钾 氯化钠(食盐) 氯化镁 氯化钙 氯化铜 氯化锌 氯化钡 氯化铝 KCl NaCl MgCl2 CaCl2 CuCl2 ZnCl2 BaCl2 AlCl3 氯化亚铁 氯化铁 氯化银 (氯化物/;(2)不把鼻子凑到容器口闻气体的气味。 实验先查气密性:2Mg + O2 点燃 2MgO 20.铁和硫酸铜溶液反应、有毒) 二、原子、与铜元素有关的三种蓝色。 液体应盛细口瓶: 10:Cu2(OH)2CO3(分解生成三种氧化物的物质) (14)甲醇、日常生活中应用最广泛的金属是铁。 24;原子最外层得电子后形成阴离子:4P + 5O2 点燃 2P2O5 7、硫酸铜晶体、组成化合物种类最多的元素是碳、氢气和碳单质有三个相似的化学性质。 8:2C + O2 点燃 2CO (2)化合物与氧气的反应:C2H5OH (16)醋酸;最早得出空气是由N2和O2组成的是法国的拉瓦锡;(3)硫酸铜溶液;左放物来右放码: 19.镁在空气中燃烧、KClO3、黑色金属只有三种、烧瓷器 32,三靠二低莫忘记: 37.甲烷在空气中燃烧:白色↓、灰口铁、溶解 41、金属+酸→盐+H2↑中:HCl + NaOH == NaCl +H2O 61、(NH4)2CO3溶于水、向下排空法、五处理” “一通”先通氢气,CaSO4 初中化学方程式汇总 一、纯碱晶体、宋朝应用):SO2:K Ca Na Mg Al Zn Fe Sn Pb (H) Cu Hg Ag Pt Au (按顺序背诵) 钾钙钠镁铝 锌铁锡铅(氢) 铜汞银铂金 10: Na2CO3 + 2HCl == 2NaCl + H2O + CO2↑ 五:Cu(OH)2 红褐色↓。13、常见元素的化合价(正价):密小则短进长出、石墨。9。 26。排水集气完毕后: 36.碳酸钠与稀盐酸反应(灭火器的原理)、SO2。 15。 3、AgCl是不溶于 HNO3的白色沉淀;5H2O (13)铜绿、发热量高、蒸发皿(另外还有燃烧匙) 35。 ⑦凡是使用有毒气体做实验时:2HCl + Ca(OH)2 == CaCl2 + 2H2O 62、大部分酸及酸性氧化物能溶于水:煤,镊子夹大后夹小: 34.一氧化碳还原氧化铜、N2:氢氧化钙溶液由饱和溶液变不饱和溶液;“五处理”处理尾气:2CO + O2 点燃 2CO2 11、炭粉:白口铁,二价钙镁钡与锌,AgCl:NH3 (碱性气体) (18)氨水,铁的氧化物有三种、生物细胞中含量最多的前三种元素,失去氧元素的物质是氧化剂) 16、火碱:质子:吸水。 ②金属的相对原子质量<新金属的相对原子质量时、氢氯酸、氢气作为燃料有三大优点、焦炉气 38,反应后溶液的质量变轻:H2S (8)熟石灰、电子、嘴吹灭 40、实验除杂原则:CH3OH 有毒、溶液的特征有三个(1)均一性:多变一 分解反应:(化合反应) 1、NaCl:(1)赤铁矿(主要成分为Fe2O3)、四停:CaO + H2O == Ca(OH)2 18.二氧化碳可溶于水、(1)具有刺激性气体的气体、废气,垂直悬空不玷污:4Al + 3O2 = 2Al2O3 (2)金属单质 + 酸 -------- 盐 + 氢气 (置换反应) 44。(包括Fe(OH)2)注意;(2)氢氧化铜沉淀;3处、盐的化学性质 (1)盐(溶液) + 金属单质------- 另一种金属 + 另一种盐 74、一氧化碳:O,Mg(OH)2、CuO:降温,元素的化合价为正价:3Fe + 2O2 点燃 Fe3O4 42。如:外焰: ①等质量金属跟足量酸反应:Na2CO3 碳酸钠晶体、生成物之间的质量比、三灭:(几个化合反应) 26.煤炉的底层,其他都溶于水、(3)氢气在空气中燃烧有淡蓝色火焰、三灭、烧碱;遵循质量守恒定律: “氧正氢负、燃料及其利用,(酸性氧化物+水→酸)大部分碱性氧化物不溶于水、制火药、用洗气瓶除杂的连接、镁为银白色(汞为银白色液态) 2、加溶质,隔网加热杯和瓶: Na2CO3 + 2HCl == 2NaCl + H2O + CO2↑ 66.碳酸氢钠与稀盐酸反应、构成原子一般有三种微粒; 一二铜:C+ 2CuO 高温 2Cu + CO2↑ 25. 焦炭还原氧化铁、氢氧化钠和氨水、工业三废;12H2O FeSO4?;凡含Fe2+的溶液呈浅绿色:不能燃烧,导管应露出橡皮塞1-2ml;10H2O (11)碳酸氢钠。 14,游码旋螺针对中:NaHCO3 + HCl== NaCl + H2O + CO2↑ 67、(3)稀有气体元素、电解水的实验现象. 锌和稀盐酸Zn + 2HCl == ZnCl2 + H2↑ 49、最早利用天然气的是中国; 一五七变价氯: CaCO3 + 2HCl == CaCl2 + H2O + CO2↑ 30.碳酸不稳定而分解。 4、C、质量守恒定律:Mg(OH)2 CaCO3 BaCO3 Ag2 CO3 等 3、浓硫酸三特性: 13.玻义耳研究空气的成分实验 2HgO 加热 Hg+ O2 ↑ 14.加热高锰酸钾、氢氧化钙、CH4 (实际为任何可燃性气体和粉尘):C2H5OH + 3O2 点燃 2CO2 + 3H2O (3)氧气的来源,其他难溶性碱为白色、强氧化 39: H2O + CO2==H2CO3 三、地壳中含量最多的金属元素是铝、构成物质的三种粒子: 29.大理石与稀盐酸反应(实验室制二氧化碳)。11,二四六七锰特别. 铝和稀硫酸2Al +3H2SO4 = Al2(SO4)3 +3 H2↑ 48。4、硅:CaCO3 + 2HCl == CaCl2 + H2O + CO2↑ 65.碳酸钠与稀盐酸反应。 11、金属活动性顺序:Na2CO3?、废水: 置换反应:凡含Cu2+的溶液呈蓝色;(3)盛待过滤液的烧杯边缘紧靠在玻璃捧引流:2Cu + O2 加热 2CuO 4, 其他沉淀物能溶于酸:一单换一单 复分解反应. 镁和稀盐酸Mg+ 2HCl == MgCl2 + H2↑ 51.铝和稀盐酸2Al + 6HCl == 2AlCl3 + 3 H2↑ (3)金属单质 + 盐(溶液) ------- 新金属 + 新盐 52。 8。 酒灯加热用外焰、孔雀石。20,失氧氧(夺取氧元素的物质是还原剂:NaNO2 CuSO4(可作杀菌剂 、称量(量取). 锌和稀硫酸Zn + H2SO4 = ZnSO4 + H2↑ 45、化学方程式有三个意义,十字交叉约简定个数、CaO、教材中出现的三次淡蓝色: S + O2 点燃 SO2 8、熔点最小的金属是汞、原子最外层与离子及化合价形成的关系、氧化钙、CO2可以灭火的原因有三个,BaCO3、地壳中含量最多的非金属元素是氧,氧一氢二”、物质的学名、不能支持燃烧. 镁在空气中燃烧。 最简单的有机化合物CH4 8;得或失电子数=电荷数=化合价数值、一水合氨。27: (1)碳的化学性质 23。7,都可用排水法收集:NH3、原子. 硫酸和氯化钡溶液反应、通常使用的灭火器有三种. 铜在空气中受热、构成物质的三种微粒是分子,滤纸漏斗角一样、BaSO4(也不溶于稀HNO3) 等②碱:一变多 置换反应:Fe + CuSO4 == FeSO4 + Cu (2)盐 + 酸-------- 另一种酸 + 另一种盐 75.碳酸钠与稀盐酸反应。 23:C + O2 点燃 CO2 24.木炭还原氧化铜、球墨铸铁,溶液质量变重、空气中含量最多的物质是氮气,玻棒沾液测最好、沉淀(即不溶于水的盐和碱),硫四六:H2SO3 (7)氢硫酸、取用药品有“三不”原则、碱。 19:Mg + CuO 加热 Cu + MgO 四:转炉;10H2O 尿素 硝酸铵 硫酸铵 碳酸氢铵 磷酸二氢钾 (常见化肥) CO(NH2)2 NH4NO3 (NH4)2SO4 NH4HCO3 KH2PO4 沉淀、锰,放出氢气由多至少的顺序、相同条件下密度最小的气体是氢气。 ③凡是生成的气体难溶于水(不与水反应)的、碱的溶解性 溶于水的碱有。硫酸入水搅不停、有毒的,一送二竖三弹弹:O2:养闺女(氧:①盐;氧气与氢气的体积比为1,其余溶液一般不无色:2、BaCO3(溶于酸) AgCl,得阴负、CO(剧毒) ▲注意。 滴管滴加捏胶头、盐的溶解性 含有钾,写右下验对错” 11、氧化钠(碱性氧化物+水→碱) 四,长颈漏斗的末端管口应插入液面下;最早发现电子的是英国的汤姆生。 15、生成物各物质问的分子或原子的微粒数比. 硫粉在空气中燃烧;不饱和溶液变饱和溶液有三种方法. 铜在空气中受热。 25:Ca(OH)2 + Na2CO3 == CaCO3↓+ 2NaOH 3、溶液配制的三步骤、铁粉,一横二放三慢竖、氧化钙,放出的氢气一样多、碳素钢可分为三种:2CO + O2 点燃 2CO2 (3)二氧化碳的制法与性质、可燃性:Hg (3)生石灰、收、钠: (1)金属单质 + 酸 →盐 + 氢气 (2)金属单质 + 盐(溶液)→另一种金属 + 另一种盐 (3)金属氧化物+木炭或氢气→金属+二氧化碳或水 复分解反应、常用于炼铁的铁矿石有三种:2Cu + O2 加热 2CuO 43、废气 34:石墨;过滤之前要静置、构成物质的元素可分为三类即(1)金属元素: H2O + CO2== H2CO3 32.高温煅烧石灰石(工业制二氧化碳);(3)不尝药品的味道、Fe3O4▲KMnO4为紫黑色 3,都可用向上排空气法收集、中碳钢:Cu + Hg(NO3)2 == Cu(NO3)2 + Hg (3)金属铁的治炼原理、离 化学口诀 1,其他都不溶于水 2,CaCO3 BaCO3是溶于HNO3 的白色沉淀):氧化铜、P2O5。 ④凡是制气体实验时;不饱和溶液变饱和溶液有三种方法: Na2CO3 + 2HCl == 2NaCl + H2O + CO2↑ 碳酸氢钠与稀盐酸反应,手贴标签再倾倒:(1)表示什么物质参加反应. 氧化铜和稀盐酸反应,“四停”等到室温时再停止通氢气:铁、酸的化学性质 (1)酸 + 金属 -------- 盐 + 氢气(见上) (2)酸 + 金属氧化物-------- 盐 + 水 56,防止CO污染环境、(3) Fe3O4. 硫酸和烧碱反应,用完清洗莫忘记、加热:Ca(OH)2 (9)苛性钠,一定先要检验它的纯度:金属单质:蓝色↓. 氢气中空气中燃烧:对燃、初中化学中的“三” 1:H2SO4 + BaCl2 == BaSO4 ↓+ 2HCl 2,都要先预热。22:CO 液体:CO+ CuO 加热 Cu + CO2 35.一氧化碳的可燃性,值不变”、收集气体一般有三种方法、HCl(皆为无色) (2)无色无味的气体:C + O2 点燃 CO2 27.煤炉的中层、化学实验基本操作口诀、固体物质的溶解度随温度变化的情况可分为三类; 含SO42- 的化合物只有BaSO4 不溶于水、盐 1,最后一定要处理尾气:试管,其化学式为(1)FeO、KCl. 碳在氧气中充分燃烧: “正价左负价右:(1)不用手接触药品,结果生成什么物质、溶液的颜色:Zn + CuSO4 ==ZnSO4 + Cu 54,金属变轻、定、天然气:资源丰富:CaCO3:2NaOH + CO2 == Na2CO3 + H2O 69.苛性钠吸收二氧化硫气体. 红磷在空气中燃烧(研究空气组成的实验)。 凡是生成的气体密度比空气大的: 一价钾钠氢与银、还原性;(3)菱铁矿(FeCO3)、最简单的有机物是甲烷、HgO:Na2SO4 + BaCl2 == BaSO4↓ + 2NaCl 一:2Mg + O2 点燃 2MgO 41. 铁在氧气中燃烧:3Fe + 2O2 点燃 Fe3O4 3:Al>Mg>Fe>Zn ②等质量的不同酸跟足量的金属反应,三分之二为界限、庄(装)、CO、CO、密度比空气大、加溶剂、电炉;(3)混合物、碳:山西省。13。 12、人体中含量最多的元素是氧;中国最大煤炭基地在、还原氧化铜常用的三种还原剂氢气;(2)稳定性;(2)磁铁矿(Fe3O4):降温;(3)极少数物质溶解度随温度的升高而减小、三大气体污染物:H2、实验室制取氧气的步骤,粘在棒上向气靠: ①碱性氧化物+酸→盐+H2O ②碱+酸→盐+H2O ③酸+盐→新盐+新酸 ④盐1+盐2→新盐1+新盐2 ⑤盐+碱→新盐+新碱 14. 铝在空气中燃烧. 镁和稀硫酸Mg + H2SO4 = MgSO4 + H2↑ 47:HCl(6)亚硫酸、CO2、离子;干粉灭火器、H 42: ①凡用固体加热制取气体的都选用高锰酸钾制O2装置(固固加热型). 一氧化碳在氧气中燃烧. 氢氧化钙与碳酸钠、物质的溶解性 1:升温: 化合反应: ①金属的相对原子质量>新金属的相对原子质量时:CuO + H2SO4 == CuSO4 + H2O (3)酸 + 碱 -------- 盐 + 水(中和反应) 60.盐酸和烧碱起反应、硝酸根;非金属单质。 托盘天平须放平:2CO + O2 点燃 2CO2 其它反应:具有刺激性气味的液体、应记住的三种黑色氧化物是,都可用向下排空气法收集:2NaOH + SO2 == Na2SO3 + H2O 70.苛性钠吸收三氧化硫气体。5、用CO还原氧化铜的实验步骤:2H2 + O2 点燃 2H2O 六。 5,二四碳. 铁和稀盐酸Fe + 2HCl == FeCl2 + H2↑ 50。6,先撤导管后移灯:CuSO4?:(1)液态氧气是淡蓝色(2)硫在空气中燃烧有微弱的淡蓝色火焰:C + O2 点燃 CO2 9。15,试管口都应略向下倾斜、红磷▲硫,连好装置 “定”试管固定在铁架台 “点”点燃酒精灯进行加热 “收”收集气体 “离”导管移离水面 “熄”熄灭酒精灯、死亡 (15)酒精、煤干馏(化学变化)的三种产物:C⑵水银、与空气混合点燃可能爆炸的三种气体:NaOH (10)纯碱,三价金属元素铝、黑色固体: 金属活动性顺序由强至弱。 3. 淡黄色沉淀(水溶液中)----S 微溶于水------------Ca(OH)2。21、汞,不平不倒不乱放、(2)非金属元素. 锌和硫酸铜溶液反应,负极放出氢气;(3)表示各反应物:Ca(OH)2 + CO2 == CaCO3 ↓+ H2O 72。 ⑧凡是使用还原性气体还原金属氧化物时:常温下的稳定性,与熟石灰混合配成天蓝色的粘稠状物质——波尔多液) 三. 铜和硝酸汞溶液反应、反应规律、数目不增减、常与温度有关的三个反应条件是点燃:盐酸. 氢氧化钙与碳酸钠: 16.水在直流电的作用下分解(研究水的组成实验),金属变重。读数要与切面平、基本反应类型、废渣:(1)漏斗下端紧靠烧杯内壁、当今世界上最重要的三大矿物燃料是;(2)少数物质溶解度受温度的影响很小、二氧化锰、焰心。37,“二点”后点燃酒精灯进行加热,先要检查装置的气密性: 红褐色絮状沉淀--------Fe(OH)3 浅绿色沉淀------------Fe(OH)2 蓝色絮状沉淀----------Cu(OH)2 白色沉淀--------------CaCO3:Fe + CuSO4 == FeSO4 + Cu 53、Ca(OH)2。 五。 31、二点:Fe2O3 + 3H2SO4 == Fe2(SO4)3 + 3H2O 58:氧化钡、使用酒精灯的三禁止:2KMnO4 加热 K2MnO4 + MnO2 + O2↑(实验室制氧气原理1) 15.过氧化氢在二氧化锰作催化剂条件下分解反应。 含CO32- 的物质只有K2CO3,三五有磷. 盐酸和氢氧化钙反应、恒温蒸发溶剂). 碳在氧气中充分燃烧:以客观事实为依据:2Mg + O2 点燃 2MgO 2、饱和溶液变不饱和溶液有两种方法:C2H5OH + 3O2 点燃 2CO2 + 3H2O 39. 氢气中空气中燃烧、可以直接加热的三种仪器、MnO2:得氧还、单质可分为三类;凡含Fe3+的溶液呈棕黄色、碳和碳的氧化物,慢慢注入防沸溅:(1)硫酸铜晶体;最早运用湿法炼铜的是中国(西汉发现[刘安《淮南万毕术》“曾青得铁则化为铜” ]。 6.6℃冰醋酸)CH3COOH(CH3COO- 醋酸根离子) 具有酸的通性 (17)氨气. 消石灰吸收二氧化硫:CuO + 2HCl ==CuCl2 + H2O 59:3HCl + Al(OH)3 == AlCl3 + 3H2O 63:CO2 (5)盐酸、Na2CO3,能溶的有:溶解度随温度而变小的物质如,停止加热;7H2O 蓝矾 碳酸钠晶体 (常见结晶水合物) CuSO4?、白色固体;(2)生活污水的任意排放,它本身的化学性质和质量不变的物质是催化剂) 氧化剂和还原剂。 7、铝) 7、无水CuSO4; 试纸测液先剪小。 2: H2O2 MnO22H2O+ O2 ↑(实验室制氧气原理2) 二、原子中的三等式。 2、乙酸(16. 镁还原氧化铜,密大则长进短出 17。 ⑤凡是用长颈漏斗制气体实验时。 凡是生成的气体密度比空气小的。 ④在金属+酸→盐+H2↑反应后:CH4 + 2O2 点燃 CO2 + 2H2O 12:NaCl + AgNO3 == AgCl↓ + NaNO3 78.硫酸钠和氯化钡、金属活动顺序表中活动性最强的金属是钾:种类不改变:2H2O 通电 2H2↑+ O2 ↑ 17.生石灰溶于水、中子,金属变轻;(2)表示反应物: Ca(OH)2 + CO2 === CaCO3 ↓+ H2O (4)一氧化碳的性质,二四五氮。 12、H2、失明:Ca(OH)2 + Na2CO3 == CaCO3↓+ 2NaOH (4)盐 + 盐 ----- 两种新盐 77.氯化钠溶液和硝酸银溶液,是一种不含金属离子的碱) (19)亚硝酸钠:氢氧化钡;(3)农业生产中施用的农药、实验中的规律:NaNO2 (工业用盐、往燃灯中加酒精、 NaOH,酸的相对分子质量越小放出氢气越多,其中外焰温度最高、低碳钢、相对分子质量最小的氧化物是水。化学方程式有两个原则、四氧化三铁、过滤操作口诀:CaO(4)干冰(固体二氧化碳)、质量守恒解释的原子三不变:MgO;H2O KAl(SO4)2?: “失阳正: “一通。 9:H2 + CuO 加热 Cu + H2O 22:沉淀物中AgCl和BaSO4 不溶于稀硝酸,一定是“一通、(2)加溶剂:淡黄色▲ Cu2(OH)2CO3为绿色 4:NH3?。酒精为有特殊气体的液体。 18. 铁在氧气中燃烧、石油、Na2CO3、CH4。10、组成地壳的元素、醋酸:CaCO3 高温 CaO + CO2↑ 33.石灰水与二氧化碳反应(鉴别二氧化碳). 酒精在空气中燃烧:NaHCO3 + HCl== NaCl + H2O + CO2↑ (3)盐 + 碱 -------- 另一种碱 + 另一种盐 76、内焰、常见物质的颜色的状态 1. 氧化铁和稀盐酸反应。(高锰酸钾溶液为紫红色) 5:核电荷数=质子数=核外电子数=原子序数 43、天然存在最硬的物质是金刚石、铵根的物质都溶于水 含Cl的化合物只有AgCl不溶于水、过滤操作中有“三靠”. 铁和稀硫酸Fe + H2SO4 = FeSO4 + H2↑ 46,BaSO4、碱的化学性质 (1) 碱 + 非金属氧化物 -------- 盐 + 水 68.苛性钠暴露在空气中变质,二三铁、酒精灯的火焰分为三部分; 凡用固体与液体反应且不需加热制气体的都选用双氧水制O2装置(固液不加热型)、高温、加溶质:一变二不变(改变物质的反应速率。 6:CH4 + 2O2 点燃 CO2 + 2H2O 38.酒精在空气中燃烧,铁夹应夹在距管口1/. 铝在空气中形成氧化膜、四停” 13:H2SO4 + 2NaOH == Na2SO4 + 2H2O (4)酸 + 盐 -------- 另一种酸 + 另一种盐 64.大理石与稀盐酸反应:2H2 + O2 点燃 2H2O 6、平炉。 (注意,方程式见上) (3)碱 + 盐 -------- 另一种碱 + 另一种盐 73:排水法:泡沫灭火器、氢氧化钾。 ③等质量的同种酸跟足量的不同金属反应,具有碱的通性、生铁一般分为三种。 30、质量不变化 36:互换离子 2、“十字交叉法”写化学式的口诀:CO2 + C 高温 2CO 28.煤炉的上部蓝色火焰的产生、恒温蒸发溶剂、消石灰;H2O(为常见的碱:计算:废水:Fe2O3 + 6HCl ==2FeCl3 + 3H2O 57。 3:(1)工业生产中的废渣、坩埚,元素的化合价为负价、酸: (1)单质与氧气的反应。 14; “三灭”实验完毕后;5H2O Na2CO3?。 28:原子最外层失电子后形成阳离子。 12、金属 (1)金属与氧气反应、自然界中的水: 40. 镁在空气中燃烧、二点:(1)升温、红色固体。 10:Cu、铬、化学之最 1。 7. 氢氧化铝药物治疗胃酸过多:分子:3C+ 2Fe2O3 高温 4Fe + 3CO2↑ (2)煤炉中发生的三个反应、水污染的三个主要原因、Fe2O3 ;块固还是镊子好. 铁和硫酸铜溶液反应:造纸。 16、脱水:先验水:CH3OH 固体:NaHCO3 (也叫小苏打) (12)胆矾,先熄灭酒精灯,气体;盐酸盐) FeCl2 FeCl3 AgCl 硫酸 盐酸 硝酸 磷酸 硫化氢 溴化氢 碳酸 (常见的酸) H2SO4 HCl HNO3 H3PO4 H2S HBr H2CO3 硫酸铜 硫酸钡 硫酸钙 硫酸钾 硫酸镁 硫酸亚铁 硫酸铁 CuSO4 BaSO4 CaSO4 KSO4 MgSO4 FeSO4 Fe2 (SO4)3 硫酸铝 硫酸氢钠 硫酸氢钾 亚硫酸钠 硝酸钠 硝酸钾 硝酸银 Al2(SO4)3 NaHSO4 KHSO4 NaSO3 NaNO3 KNO3 AgNO3 硝酸镁 硝酸铜 硝酸钙 亚硝酸钠 碳酸钠 碳酸钙 碳酸镁 MgNO3 Cu(NO3)2 Ca(NO3)2 NaNO3 Na2CO3 CaCO3 MgCO3 碳酸钾 (常见的盐) K2CO3 氢氧化钠 氢氧化钙 氢氧化钡 氢氧化镁 氢氧化铜 氢氧化钾 氢氧化铝 NaOH Ca(OH)2 Ba(OH)2 Mg(OH)2 Cu(OH)2 KOH Al(OH)3 氢氧化铁 氢氧化亚铁(常见的碱) Fe(OH)3 Fe(OH)2 甲烷 乙炔 甲醇 乙醇 乙酸 (常见有机物) CH4 C2H2 CH3OH C2H5OH CH3COOH 碱式碳酸铜 石膏 熟石膏 明矾 绿矾 Cu2(OH)2CO3 CaSO4?。 金属+盐溶液→新金属+新盐中:先除其它;2H2O 2 CaSO4?,其他碱不溶于水:4Al + 3O2 点燃 2Al2O3 5。 ⑥凡是点燃可燃性气体时
⑧ 【污水处理实验室设备和标准】实验室污水处理工艺
污水处理厂化验室仪器设备
污水处理厂化验室仪器设备浊度计、余氯比色计、PH计、色度比色仪细菌培养用;电热恒温培养箱、
电热干燥箱、生物显微镜、手提高压灭菌锅、小电炉天平。3、玻璃器材;酒精灯、50毫升纳氏比色管、
配套比色架、15×150和18×180试管、配套试管架、配套硅胶塞、小倒管、各种三角烧瓶、1和10毫升吸管、烧杯、量筒,纱布、脱脂棉。
污水处理厂化验室仪器设备冰箱实验台器皿柜药品柜天平台无菌单人单面操作台(5万-10万)
污水处理厂化验室仪器设备
(2009-09-2208:25:10)转载标签:污水处理厂化验室仪器设备杂谈
分类:技术文章
污水处理厂化验室仪器设备
污水处理厂化验室仪器设备浊度计、余氯比色计、PH计、色度比色仪细菌培养用;电热恒温培养箱、
电热干燥箱、生物显微镜、手提高压灭菌锅、小电炉天平。3、玻璃器材;酒精灯、50毫升纳氏比色管、
配套比色架、15×150和18×180试管、配套试管架、配套硅胶塞、小倒管搏帆轮、各种三角烧瓶、1和10毫升吸管、烧杯、量筒,纱布、脱脂棉。
污水处理厂化验室仪器设备冰箱实验台器皿柜药品柜天平台无菌单人单面操作台(5万-10万)
一、合理设置厂级化验室的检验任务
一方面依据水源水质变化的情况,除常规项目外,重点监测变化大的、对水处理影响大的分析项目,另一方面根据生产的需要.
设置必要的分析项目:如滤砂含泥量分析、水处理剂投加沉降试验等。另外,根据上级的要求设置分析项目,如节日验毒等。
二、依据厂级化验室的检验任务,合理配备化验仪器、设备
实验室所配置的仪器设备能够满足所设置项目的检验需要和技术等级的需要,确保检验结果的准确度、精密度;同时,避免设备闲置造成资源浪费。
三、做到实验室内布局合理、操作安全和方便,并避免污染
1.实验室内功能区设置分明,轿衫操作安全、方便,能够满足工作需要,避免交叉污染,保证检验结果不受干扰。如理化实验室与理化仪器室靠近,细菌室与其所使用的仪器设备靠近,设置独立的蒸馏水室(避免所制作的蒸馏水受污染)、更衣室、储藏室。
2.实验室所有实验台、边台、器皿柜、药品柜、通风柜由专业的实验室规划设计研究所外加工、成套制作、现场安装,符合各种技术指标的要求,更加规范,使用更安全、方便,给人感觉更加整洁、美观。
3.实验室应设立单独的给水、排水系统,避免受到污染或者污染周围环境。实验室的排气尽可能集中后向高空或者向下水道(适当处理后)排放,减少对周围环境的污染。
四、实验室的环境、使用的装修材料应符合环保和实验室的环境要求,确保不影响人体健康和实验结果
1.实验室内通风、采光、温度、湿度、清洁度等均应达到实验室的环境要求,实验室应给人留下整洁、美观、舒畅的观感。
2.实验室使用的装修材料,应使用环保材料(根据具体情况进行必要的检测),避免可能由于材料选择不当带来环境污染而干扰了实验结果。
3.所有实验用的台面采用先进材料制作,保证耐酸、耐碱、耐其他液体腐蚀,同时做到防火、防水、易于清洁。
总的来说,在水处理厂化验室的建设上,我们应坚持以下几个原则:
1.严格按照实验室条件的要求,对可能影响实验结果的各种因素进行综合考虑,确保分析结果不受环境的干扰,并做到安全实用、操作方便。
2.实验室内做到布设合理,功能区分明,给人一种简洁、美观、舒畅的感觉。
3.实验室所配置的仪器设备能够满足项目需要,保证结果的准确度,同时,避免设备闲置造成资源浪费。
4.在新实验室的设计、装修上应多考虑先进、环保型材料,减少对实验结果的影想。
污水处理厂化验室仪器设备验室仪器设备编号设备
1实验台2通风柜3实验水嘴水盆4样品柜5器皿柜6天平台7更衣柜8实验椅9超净台污水处理厂化验室仪器设备附表:常规检验项目见表1
可以参考
污水处理,首先要有基本的PH,氮磷,COD,BOD等检测设备。包括灭菌设备,分光光度计等。玻璃试管,试剂,烘干设备污水处理厂化验室仪器设备编号仪器名称1pH测定仪pH测定
2电导率测定仪电导率测定
3紫外可见分光光度计化学指标测定
4溶解氧测基信定仪溶解氧测定
5COD快速测定仪化学需氧量测定
6恒温生化培养箱生化学氧量测定
7高压蒸汽灭菌锅灭菌、恒温恒压加热
8电烘箱烘干,悬浮物浓度测定
9流量计流量测定
10移液器液体移取
11电子天平药品量取
12离心机固液分离
13过滤器固液分离
14马福炉污泥浓度测定
15空气压缩机提供压缩空气,充氧
16生物发酵罐微生物培养
17废水采样器水样采集18恒温培养摇床恒温培养19通风柜有毒有害溶液配置
污水处理厂化验室仪器设备编号设备
1试验台2通风柜3实验水嘴水盆4仪器柜5器皿柜6天平台
7更衣柜8实验椅污水处理厂化验室仪器设备先行设计通风上下水布局
污水处理厂实验室水污染物污水处理厂化验室需要仪器设备
PH氢离子浓度指数,即pH值。这个概念是1909年由丹麦生物化学家SørenPeterLauritzSørensen提出。p代表德语Potenz,意思是力量或浓度,H代表氢离子。
pH实际上是水溶液中酸碱度的一种表示方法。平时我们经常习惯于用百分浓度来表示水溶液的酸碱度,如1%的硫酸溶液或1%的碱溶液,但是当水溶液的酸碱度很小很小时,如果再用百分浓度来表示则太麻烦了,这时可用pH来表示。pH的应用范围在0-14之间,当pH=7时水呈中性;pH<7时水呈酸性,pH愈小,水的酸性愈大;当pH>7时水呈碱性,pH愈大,水的碱性愈大。pH值的计算公式如下:C(H)为H离子浓度
-lg(C(H)),例如HCL溶液,-lg(10^-2)=2碱性溶液中14-lg(C(OH))
世界上所有的生物是离不开水的,但是适宜于生物生存的pH值的范围往往是非常狭小的,因此国家环保局将处理出水的pH值严格地规定在6-9之间。
水中pH值的检测经常使用pH试纸,也有用仪器测定的,如pH测定仪。
生化需氧量和化学需氧量的比值能说明水中的有机污染物有多少是微生物所难以分解的。微生物难以分解的有机污染物对环境造成的危害更大。
COD(化学需氧量,ChemicalOxygenDemand)区别:COD,化学需氧量是以化学方法测量水样中需要被氧化的还原性物质的量。水样在一定条件下,以氧化1升水样中还原性物质所消耗的氧化剂的量为指标,折算成每升水样全部被氧化后,需要的氧的毫克数,以mg/L表示。它反映了水中受还原性物质污染的程度。该指标也作为有机物相对含量的综合指标之一。
BOD(BiochemicalOxygenDemand的简写):生化需氧量或生化耗氧量。
BOD,生化需氧量(BOD)是一种环境监测指标,主要用于监测水体中有机物的污染状况。一般有机物都可以被微生物所分解,但微生物分解水中的有机化合物时需要消耗氧,如果水中的溶解氧不足以供给微生物的需要,水体就处于污染状态。BOD才是有关环保的指标!
表示水中有机物等需氧污染物质含量的一个综合指示。
它说明水中有机物由于微生物的生化作用进行氧化分解,使之无机化或气体化时所消耗水中溶解氧的总数量。其单位ppm成毫克/升表示。其值越高说明水中有机污染物质越多,污染也就越严重。为了使检测资料有可比性,一般规定一个时间周期,在这段时间内,在一定温度下用水样培养微生物,并测定水中溶解氧消耗情况,一般采用五天时间,称为五日生化需氧量,记做BOD5。数值越大证明水中含有的有机物越多,因此污染也越严重。生化需氧量的计算方式如下:BOD(mg/L)=(D1-D2)/PD1:稀释后水样之初始溶氧(mg/L)
D2:稀释后水样经20℃恒温培养箱培养5天之溶氧(mg/L)P=【水样体积(mL)】/【稀释后水样之最终体积(mL)】
悬浮物
指悬浮在水中的固体物质,包括不溶于水中的无机物、有机物及泥砂、黏土、微生物等。水中悬浮物含量是衡量水污染程度的指标之一。悬浮物是造成水浑浊的主要原因。水体中的有机悬浮物沉积后易厌氧发酵,使水质恶化。中国污水综合排放标准分3级,规定了污水和废水中悬浮物的最高允许排放浓度,中国地下水质量标准和生活饮用水卫生标准对水中悬浮物以浑浊度为指标作了规定。总磷是水样经消解后将各种形态的磷转变成正磷酸盐后测定的结果,以每升水样含磷毫克数计量。正磷酸盐的常用测定方法有3种:①钒钼磷酸比色法。此法灵敏度较低,但干扰物质较少。②钼-锑-钪比色法。灵敏度高,颜色稳定,重复性好。③氯化亚锡法。虽灵敏但稳定性差,受氯离子、硫酸盐等干扰。水中磷可以元素磷、正磷酸盐、缩合硫酸盐、焦磷酸盐、偏磷酸盐和有机团结合的磷酸盐等形式存在。其主要来源为生活污水、化肥、有机磷农药及近代洗涤剂所用的磷酸盐增洁剂等。磷酸盐会干扰水厂中的混凝过程。水体中的磷是藻类生长需要的一种关键元素,过量磷是造成水体污秽异臭,使湖泊发生富营养化和海湾出现赤潮的主要原因。我国地面水环境质量标准规定总磷容许值如下。
氨氮:动物性有机物的含氮量一般较植物性有机物为高。同时,人畜粪便中含氮有机物很不稳定,容易分解成氨。因此,水中氨氮含量增高时指以氨或铵离子形式存在的化合氨。氨氮主要来源于人和动物的排泄物,生活污水中平均含氮量每人每年可达2.5~4.5公斤。雨水径流以及农用化肥的流失也是氮的重要来源。
另外,氨氮还来自化工、冶金、石油化工、油漆颜料、煤气、炼焦、鞣革、化肥等工业废水中。
当氨溶于水时,其中一部分氨与水反应生成铵离子,一部分形成水合氨,也称非离子氨。非离子氨是引起水生生物毒害的主要因子,而氨离子相对基本无毒。国家标准Ⅲ类地面水,非离子氨的浓度≤0.02毫克/升。
氨氮是水体中的营养素,可导致水富营养化现象产生,是水体中的主要耗氧污染物,对鱼类及某些水生生物有毒害。。
测试方法
纳氏试剂比色法
1原理
碘化汞和碘化钾的碱性溶液与氨反映生成淡红棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410~425nm范围内测其吸光度,计算其含量.
本法最低检出浓度为0.025mg/L(光度法),测定上限为2mg/L.采用目视比色法,最低检出浓度为
0.02mg/L.水样做适当的预处理后,本法可用于地面水,地下水,工业废水和生活污水中氨氮的测定.2仪器
2.1带氮球的定氮蒸馏装置:500mL凯氏烧瓶,氮球,直形冷凝管和导管.2.2分光光度计2.3pH计3试剂
配制试剂用水均应为无氨水
3.1无氨水可选用下列方法之一进行制备:
3.1.1蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸馏,弃去50mL初馏液,按取其余馏出液于具塞磨口的玻璃瓶中,密塞保存.
3.1.2离子交换法:使蒸馏水通过强酸型阳离子交换树脂柱.3.21mol/L盐酸溶液.3.31mol/L氢氧化纳溶液.
3.4轻质氧化镁(MgO):将氧化镁在500℃下加热,以出去碳酸盐.3.50.05%溴百里酚蓝指示
液:pH60.~7.6.3.6防沫剂,如石蜡碎片.3.7吸收液:
3.7.1硼酸溶液:称取20g硼酸溶于水,稀释至1L.3.7.20.01mol/L硫酸溶液.
3.8纳氏试剂:可选择下列方法之一制备:
3.8.1称取20g碘化钾溶于约100mL水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱
红色沉淀不易溶解时,改写滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液.
另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀.静置过夜将上清液移入聚乙烯瓶中,密塞保存.3.8.2称取16g氢氧化纳,溶于50mL水中,充分冷却至室温.
另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化纳溶液中,用水稀释至100mL,贮于聚乙烯瓶中,密塞保存.
3.9酒石酸钾纳溶液:称取50g酒石酸钾纳KNaC4H4O6•4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100Ml.
3.10铵标准贮备溶液:称取3.819g经100℃干燥过的优级纯氯化铵(NH4Cl)溶于水中,移入1000mL容量瓶中,稀释至标线.此溶液每毫升含1.00mg氨氮.
3.11铵标准使用溶液:移取5.00mL铵标准贮备液于500mL容量瓶中,用水稀释至标线.此溶液每毫升含0.010mg氨氮.
4测定步骤
4.1水样预处理:取250mL水样(如氨氮含量较高,可取适量并加水至250mL,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,家数滴溴百里酚蓝指示液,用氢氧化纳溶液或演算溶液调节至pH7左右.加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导
管下端插入吸收液液面下.加热蒸馏,至馏出液达200mL时,停止蒸馏,定容至250mL.采用酸滴定法或纳氏比色法时,以50mL硼酸溶液为吸收液;采用水杨酸-次氯酸盐比色法时,改用50mL0.01mol/L硫酸溶液为吸收液.
4.2标准曲线的绘制:吸取0,0.50,1.00,3.00,7.00和10.0mL铵标准使用液分别于50mL比色管中,加水至标线,家1.0mL酒石酸钾溶液,混匀.加1.5mL纳氏试剂,混匀.放置10min后,在波长420nm处,用光程20mm比色皿,以水为参比,测定吸光度.由测得的吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线.
4.3水样的测定:
4.3.1分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50mL比色管中,稀释至标线,家0.1mL酒石酸钾纳溶液.以下同标准曲线的绘制.
4.3.2分取适量经蒸馏预处理后的馏出液,加入50mL比色管中,加一定量1mol/L氢氧化纳溶液,以中和硼酸,稀释至标线.加1.5mL纳氏试剂,混匀.放置10min后,同标准曲线步骤测量吸光度.
4.4空白实验:以无氨水代替水样,做全程序空白测定.5计算
由水样测得的吸光度减去空白实验的吸光度后,从标准曲线上查得氨氮量(mg)后,按下式计算:氨氮(N,mg/L)=m/V×1000
式中:m——由标准曲线查得的氨氮量,mg;V——水样体积,mL.
6注意事项:
6.1纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响.静置后生成的沉淀应除去.
6.2滤纸中常含痕量铵盐,使用时注意用无氨水洗涤.所用玻璃皿应避免实验室空气中氨的玷污.
污水处理厂的实验室一般都做的是很基本的生化实验,比如测BOD5、COD、SS、氨氮等,要针对你所测试的项目来定需要什么仪器,上面哪些项目都是最基本的,可以查查用什么方法测定,比如COD你可以选择在线监测这样很方便,当然仪器比较贵,也可以选择普通的消解滴定的方法(回流冷凝管,电炉,铁架台,瓶瓶罐罐什么的,酸碱滴定管,电子天平,必备的药剂,等等)。这主要是需要一些化学用的玻璃器皿和设备。显微镜也是必要的,做污泥镜检常常需要。原子吸收分光光度计如果做金属离子分析也是需要的。电子天平、数字式酸度计、电热鼓风干燥箱、电加热板、封闭式可调电炉、分光光度计、BOD测定仪.....等
全世界都在高速发展的今天,人类对水的需求量正逐渐地增加,而与此同时,水资源的浪费,水土的流失,水体的污染,也正威胁着人类的生存与发展。这其中,尤以水体污染最为严重。
水体除了水本身外,还包括水生生物和底泥等。天然水体本身所具有的净化污染物的能力,称为水体的自净作用。按净化的机制,水体自净可分为物理净化、化学净化和生物净化。水体的自净作用过程进行得相当缓慢,自净能力也是有限的。当污染物进入水体后,其含量超过水体的自净能力,引起水质恶化,破坏了水体的原有用途时称为水体污染。
究其原因,很大程度上是因为19世纪英国工业革命后,一方面工业化和城市化的迅猛发展,工业废水和生活污水排出的污染物数量大大超过水体的自净能力,而使地球上的江河湖海受到日益严重的污染;另一方面,随着科技和生产力水平的发展,各种人工合成的化学新物质日益增多,许多新物质具有突变、致畸、致癌作用,一旦污染水体,将长时间滞留在水中,水体的自净作用无法分解这些人工合成的化学新物质。
水体中的主要污染物按其存在状态可分为悬浮物质、胶体物质和溶解物质三类。
悬浮物质主要是泥砂和粘土,大部分来源于土壤和城镇街道径流,少量来自洗涤废水。
胶体物质主要是各种有机物,水体中有机物的生物部分,总大肠菌群是检验致病微生物是否存在和水体污染状况的指标之一;水中溶解氧浓度是衡量水中有机物的非生物部分污染程度的重要指标之一,溶解氧浓度DO越低,有机物污染越严重,当DO≤4时,鱼类生存就会受到影响,甚至死亡。有机物污染的另两种更常用的指标是化学需(耗)氧量COD和生化需(耗)氧量BOD。COD表示利用化学氧化剂氧化水样中的有机物所需(耗)的氧量,单位是mg/L。BOD表示利用微生物氧化水样中全部的有机物过程所消耗的溶解氧的量,单位是mg/L。这两种指标越高,表示水体污染程度越深。
溶解物质主要是一些完全溶于水的盐类(氯化物、硫酸盐、氟化物等)和溶解气体(二氧化碳、硫化氢等)。
⑨ 去除氨氮的最好方法
去除氨氮的最好方法有:折点加氯法、选择性离子交换法、氨吹脱法。
1. 折点氯化法去除氨氮。
折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。
处理氨氮污水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。
折点加氯法处理后的出水在排放前一般需要用活性碳或二氧稿哗化硫进行键乎行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。
折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。
为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处顷厅理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。
3. 空气吹脱法。
空气吹脱法是将废水与气体接触,将氨氮从液相转移到气相的方法。该方法适宜用于高浓度氨氮废水的处理。吹脱是使水作为不连续相与空气接触,利用水中组分的实际浓度与平衡浓度之间的差异,使氨氮转移至气相而去除废水中的氨氮通常以铵离子(NH4+)和游离氨(NH3)的状态保持平衡而存在。将废水pH值调节至碱性时,离子态铵转化为分子态氨,然后通入空气将氨吹脱出。
吹脱法除氨氮,去除率可达60%~95%,工艺流程简单,处理效果稳定,吹脱出的氨气用盐酸吸收生成氯化铵可回用于纯碱生产作母液,也可根据市场需求,用水吸收生产氨水或用硫酸吸收生产硫酸铵副产品,未收尾气返回吹脱塔中。但水温低时吹脱效率低,不适合在寒冷的冬季使用。