❶ 年产10万吨铜冶炼项目,废水水量大概每天有多少谢谢
10万吨铜冶炼厂采用的工艺不同,消耗新水量不同。根据铜冶炼行业准入条件的要求,
新建铜冶炼企业占地面积低于4平方米/吨铜,水循环利用率97.5 %以上,吨铜新水消耗20吨以下,吨铜排水2吨以下,铜冶炼含重金属废水必须达标排放。现有企业水循环利用率97%以上,吨铜新水消耗20吨以下,新建再生铜冶炼企业的水循环利用率达到95%以上,现有再生铜冶炼企业水循环利用率达到90%以上。
❷ 冶金工业废水处理技术及工程实例的目录
第一篇 冶金工业废水处理概况与技术发展趋势
1钢铁工业废水污染特征与处理现状分析
1.1钢铁工业污染特征与主要污染物
1.1.1钢铁工业排污特征
1.1.2钢铁工业废水特征与主要污染物
1.2钢铁工业废水处理回用现状与节水状况分析
1.2.1钢铁工业废水处理回用现状分析
1.2.2钢铁工业节水潜力与减排现状分析
2有色金属工业废水污染特征与节水减排状况分析
2.1有色金属工业废水污染特征与主要污染物
2.1.1有色金属冶炼废水来源与分类
2.1.2有色金属冶炼废水污染特征与危害性
2.2有色金属工业废水处理现状与节水减排途径
2.2.1有色金属工业冶炼废水处理现状与分析
2.2.2有色金属工业冶炼废水处理回用与节水减排对策
3冶金工业废水处理回用的技术对策与发展趋势
3.1冶金工业废水处理回用的基本方法与途径
3.1.1物理法处理回用技术与途径
3.1.2化学法处理回用技术与途径
3.1.3物理化学法处理技术与途径
3.1.4生物法处理技术与途径
3.2冶金工业废水处理回用技术差距与对策
3.2.1冶金工业环保水平与差距
3.2.2钢铁工业用水安全保障技术与废水处理回用的技术对策
3.2.3有色冶金工业废水处理回用的技术对策
3.3冶金工业废水处理回用技术的发展趋势
3.3.1冶金工业废水的最少量化
3.3.2冶金工业废水的资源化
3.3.3冶金工业废水的无害化
3.3.4循环经济发展模式与废水生态化
第二篇钢铁工业废水处理与回用技术及工程实例
4钢铁工业废水减排途径与清洁生产减排新技术
4.1钢铁工业废水特征与处理工艺选择
4.1.1钢铁工业废水排放特征
4.1.2钢铁工业废水排放与处理工艺选择
4.2钢铁工业节水减排途径与废水处理回用技术的差距
4.2.1钢铁工业节水减排途径与对策
4.2.2钢铁工业废水处理回用的技术差距与分析
5矿山废水处理与回用技术及工程实例
5.1矿山废水特征与污染控制的技术措施
5.1.1矿山废水特征与水质水量
5.1.2控制矿山废水污染的基本途径与减排措施
5.2矿山废水处理与回用技术
5.2.1中和沉淀法处理矿山废水
5.2.2硫化物沉淀法处理矿山废水
5.2.3金属置换法处理矿山废水
5.2.4沉淀浮选法处理矿山废水
5.2.5生化法处理矿山酸性废水
5.2.6中和?混凝沉淀法处理选矿废水
5.2.7氧化还原法处理选矿废水
5.3矿山废水处理回用技术及工程实例
5.3.1南山铁矿酸性废水处理与回用的工程实例
5.3.2硫化法处理某矿山废水的工程实例
5.3.3置换中和法处理某矿山废水的工程实例
5.3.4姑山铁矿选矿废水混凝沉淀法处理回用的工程实例
6烧结厂废水处理与回用技术及工程实例
6.1烧结厂废水特征与水质水量
6.1.1烧结厂用水要求与废水来源
6.1.2烧结厂废水特征与处理技术要求
6.2提高烧结厂废水资源回用技术途径与措施
6.2.1改革工艺设备,消除和减少污染源
6.2.2采用先进处理技术,减少外排废水量
6.2.3合理串接与循环用水,基本实现“零”排放
6.3烧结厂废水处理工艺与回用技术
6.3.1烧结厂废水处理工艺与回用技术发展进程
6.3.2浓缩池?浓泥斗处理与回用工艺
6.3.3浓缩池?水封拉链机处理与回用工艺
6.3.4浓缩?过滤法处理与回用工艺
6.3.5串级?循环综合处理与回用工艺
6.3.6浓缩?喷浆法处理与回用工艺
6.3.7集中浓缩综合处理与回用工艺
6.4烧结厂废水处理回用技术及工程实例
6.4.1浓缩?过滤法处理与回用工程实例
6.4.2磁化?沉淀法处理与回用工程实例
6.4.3浓缩?喷浆法处理与回用工程实例
7焦化废水处理与回用技术及工程实例
7.1焦化废水来源、特征与水质水量
7.1.1焦化废水来源
7.1.2焦化废水特征与水质水量
7.2焦化废水处理存在的难题与解决的途径
7.2.1焦化废水有机物组成
7.2.2预处理后焦化废水中有机物组成与类别
7.2.3焦化废水活性污泥法处理效果与问题
7.2.4厌氧状态下难降解有机物的降解特性与效果
7.3焦化废水处理与资源化技术的研究和开发
7.3.1国内外焦化废水处理现状与发展
7.3.2活性污泥法处理
7.3.3生物铁法处理
7.3.4缺氧?好氧(A?O)法处理
7.3.5厌氧?缺氧?好氧(A?A?O)法处理
7.3.6A?O?O法处理
7.3.7应用HSB技术处理焦化废水的试验研究
7.3.8利用烟道气处理焦化剩余氨水或全部焦化废水
7.4焦化废水处理与资源化技术及工程实例
7.4.1A?O?O法处理焦化废水的工程实例
7.4.2气浮除油+A?O工艺处理焦化废水的工程实例
7.4.3A?A?O法处理焦化废水的工程实例
7.4.4采用深度处理实现焦化废水回用的工程实例
7.4.5利用烟道气处理焦化剩余氨水或焦化废水的工程实例
8炼铁厂废水处理与回用技术及工程实例
8.1炼铁厂废水特征与水质水量
8.1.1炼铁厂废水来源与污染状况
8.1.2炼铁厂废水特征与水质状况
8.2炼铁厂废水处理与回用技术
8.2.1高炉煤气洗涤工艺与废水来源
8.2.2高炉煤气洗涤水的物理化学组成与沉降特性
8.2.3高炉煤气洗涤水资源回用技术路线与工艺
8.2.4高炉煤气洗涤水含氰处理与回用技术
8.2.5高炉冲渣水处理与回用技术
8.2.6炼铁厂其他废水处理与回用技术
8.3炼铁厂废水处理回用技术及工程实例
8.3.1湘潭某钢铁公司高炉煤气洗涤水处理改造工程实例
8.3.2药剂法处理高炉煤气洗涤水与回用工程实例
8.3.3石灰碳化法处理高炉煤气洗涤水与回用工程实例
8.3.4酸化法处理高炉煤气洗涤水与回用工程实例
9炼钢厂废水处理与回用技术及工程实例
9.1炼钢厂废水特征与水质水量
9.1.1炼钢厂废水来源与污染状况
9.1.2炼钢厂废水特征与水质水量
9.2炼钢厂废水处理与回用技术
9.2.1转炉烟气洗涤除尘废水特征
9.2.2转炉除尘废水成分与特性
9.2.3转炉除尘废水处理与回用技术
9.2.4连铸机用水系统与水质要求
9.2.5连铸废水处理典型工艺流程与回用技术
9.3炼钢厂废水处理回用技术及工程实例
9.3.1宝钢转炉烟气OG法除尘废水处理循环回用工程实例
9.3.2武钢转炉烟气OG法除尘废水处理与回用工程实例
9.3.3宝钢连铸浊循环水处理与回用工程实例
10热轧厂废水处理与回用技术及工程实例
10.1热轧厂废水特征与水质水量
10.1.1热轧厂废水来源与特征
10.1.2热轧厂废水的水质水量
10.2热轧废水处理与回用技术
10.2.1热轧厂废水处理技术现状与水平
10.2.2热轧废水处理要求与方案选择
10.2.3热轧废水处理工艺
10.2.4热轧废水处理主要构筑物
10.3热轧厂废水处理回用技术及工程实例
10.3.1柳钢中板热轧废水处理与循环回用工程实例
10.3.2武钢1700mm热连轧带钢厂废水处理与循环回用工程实例
10.3.3宝钢1580mm热轧带钢厂废水处理与循环回用工程实例
11冷轧厂废水处理与回用技术及工程实例
11.1冷轧厂废水特征与废水水质水量
11.1.1冷轧厂废水来源与组成
11.1.2冷轧厂废水特征与水质水量
11.2冷轧厂废水处理工艺与回用技术
11.2.1冷轧含油、乳化液废水处理与回用技术的方案选择
11.2.2化学法处理含油、乳化液废水与资源回用技术
11.2.3有机膜分离法处理含油、乳化液与资源回用技术
11.2.4无机膜分离法处理含油、乳化液与资源回用技术
11.2.5生物法和其他方法处理含油、乳化液废水
11.2.6冷轧含铬废水处理与资源回用技术
11.2.7冷轧酸碱性废水处理技术
11.3冷轧厂废水处理回用技术及工程实例
11.3.11550mm冷轧带钢厂废水处理工程实例
11.3.2鲁特纳法盐酸废液回收技术与工程实例
12钢铁工业净循环用水系统水质处理与水质稳定技术
12.1钢铁工业净循环用水系统
12.1.1钢铁工业净循环用水系统的形式
12.1.2钢铁工业净循环用水系统
12.2烧结厂净循环系统水质处理与回用技术
12.2.1腐蚀与污垢形成及其抑制方法
12.2.2水质稳定剂的种类与处理工艺
12.2.3处理工艺流程与药剂选择
12.3炼铁厂净循环系统废水处理与回用技术
12.3.1高炉冷却方式及其优缺点
12.3.2工业过滤水开路循环冷却系统废水处理与回用
12.3.3软(纯)水密闭循环冷却系统废水处理与回用
12.4炼钢厂净循环废水处理与资源回用技术
12.4.1转炉高温烟气循环冷却系统与回用技术
12.4.2连铸净循环用水系统与回用技术
12.4.3水质结垢或腐蚀倾向的判断与药剂筛选
第三篇有色金属工业废水处理与回用技术及工程实例
13有色金属工业废水减排途径与清洁生产减排新技术
13.1有色金属工业废水特征与减排基本原则与措施
13.1.1有色金属工业废水污染状况与特征
13.1.2有色金属工业废水减排原则与措施
13.2有色金属工业废水处理途径与工艺选择
13.2.1矿山废水处理途径与工艺选择
13.2.2重有色金属冶炼废水处理途径与工艺选择
13.2.3轻有色金属冶炼废水处理途径与工艺选择
13.2.4稀有金属冶炼废水处理途径与工艺选择
13.3有色金属冶炼废水的重金属处理回收与减排技术
14矿山废水处理与回用技术及工程实例
14.1矿山废水特征与水质水量
14.1.1采矿工序废水特征与水质水量
14.1.2选矿工序废水来源与特征及其水质水量
14.1.3矿山废水污染控制与节水减排技术措施
14.2有色矿山采矿废水处理与回用技术
14.2.1中和沉淀法处理工艺与回用技术
14.2.2硫化物沉淀法处理与回用技术
14.2.3铁氧体法处理与回用技术
14.2.4氧化法和还原法处理与回用技术
14.2.5膜分离法处理工艺与回用技术
14.2.6萃取电积法处理工艺与回用技术
14.2.7生化法处理工艺
14.3有色矿山选矿废水处理与回用技术
14.3.1自然沉淀法处理与回用技术
14.3.2中和沉淀与混凝沉淀法处理工艺与回用技术
14.3.3离子交换法处理工艺与回用技术
14.3.4浮上法处理与回用技术
14.4矿山废水处理回用技术及工程实例
14.4.1武山铜矿矿山废水处理技术及工程实例
14.4.2紫金山金矿含铜废水处理技术及工程实践
14.4.3山东招远罗山金矿含氰废水处理技术及工程实例
14.4.4江西德兴铜矿选矿废水处理与回用的工程实例
15重有色金属冶炼废水处理与回用技术及工程实例
15.1重有色金属冶炼废水来源与特征
15.1.1铜冶炼废水来源与特征
15.1.2铅冶炼废水来源与特征
15.1.3锌冶炼废水来源与特征
15.1.4重有色金属冶炼用水及其水质水量
15.2重有色金属冶炼废水处理与回用技术
15.2.1氢氧化物中和沉淀法处理与回用技术
15.2.2硫化物沉淀法处理与回用技术
15.2.3药剂还原法处理与回用技术
15.2.4电解法处理与回用技术
15.2.5离子交换法处理与回用技术
15.2.6铁氧体法处理与回用技术
15.2.7含汞废水处理与回用技术
15.3重有色金属冶炼废水处理回用技术及工程实例
15.3.1贵溪冶炼厂废水处理回用的工程实例
15.3.2富春江冶炼厂废水处理回用的工程实例
15.3.3韶关冶炼厂废水处理回用的工程实例
15.3.4株洲冶炼厂废水处理的工程实例
15.3.5水口山冶炼厂废水处理的工程实例
16轻有色金属冶炼废水处理工艺与回用技术及其工程实例
16.1轻有色金属废水来源与特征
16.1.1铝金属冶炼废水来源与特征
16.1.2镁金属冶炼废水来源与特征
16.1.3钛生产废水来源与特征
16.1.4氟化盐生产废水来源与特征
16.1.5碳素制品生产废水来源与特征
16.2轻有色金属冶炼废水处理与回用技术
16.2.1轻有色金属冶炼废水处理与回用技术
16.2.2含氟废水处理与回用技术
16.2.3煤气发生站含酚氰废水处理
16.2.4盐酸、氯盐等酸性废水处理与资源化技术
16.3轻有色金属冶炼废水处理回用技术及工程实例
16.3.1抚顺铝厂废水处理与回用技术的工程实例
16.3.2湘乡铝厂废水处理与回用技术的工程实例
16.3.3郑州铝厂废水处理与回用技术的工程实例
17稀有金属冶炼废水处理与回用技术及工程实例
17.1稀有金属冶炼废水来源与特征
17.1.1稀有金属冶炼废水来源
17.1.2稀有金属冶炼废水特征与水质状况
17.2稀有金属冶炼废水处理与回用技术
17.2.1稀有金属冶炼废水处理技术
17.2.2稀土含砷废水处理技术
17.2.3稀土放射性废水处理技术
17.2.4稀土酸碱废水处理技术
17.2.5稀土含铍废水处理技术与回用
17.3稀有金属冶炼废水处理与回用技术及工程实例
17.3.1中和沉淀吸附法处理含钇、稀土放射性废水的工程实例
17.3.2氯化钡与废磷碱液处理稀土金属生产废水的工程实例
17.3.3中和吸附法处理稀土金属冶炼废水的工程实例
17.3.4混凝沉淀法处理含氟与重金属废水的工程实例
18黄金冶炼废水处理与回用技术及工程实例
18.1黄金浸出与冶炼废水来源与特征
18.1.1黄金浸出废水来源与特征
18.1.2黄金冶炼废水特征
18.2黄金废水处理与回用技术
18.2.1含金废水处理与回用技术
18.2.2含氰废水处理与回用技术
18.3黄金冶炼废水处理回用技术的工程实例
18.3.1辽宁黄金冶炼厂废水处理与回用技术的工程实例
18.3.2紫金山金矿冶炼厂废水处理与回用技术的工程实例
参考文献
❸ 粘土矿物功能材料的制备及在含重金属元素废水处理中的应用
龚文琪 韩沛 王湖坤 刘艳菊 饶波琼
(武汉理工大学资源与环境工程学院,湖北武汉 430070)
摘要 研究了累托石-水淬渣及累托石-粉煤灰颗粒吸附材料制备的工艺条件、再生方法及其去除铜冶炼工业废水中重金属的条件。试验结果表明:累托石与水淬渣的比例为1∶1,另加入10%的添加剂(IS)和50%的水,焙烧温度为400℃时,制成的颗粒吸附材料不仅吸附效果好,而且散失率较低。在不调节铜冶炼工业废水pH值的条件下,颗粒吸附材料用量为0.05g/cm3,反应时间为40 min,吸附温度为25℃(常温)时,Cu2+、Pb2+、Zn2+、Cd2+、Ni2+的去除率分别为98.2%、96.3%、78.6%、86.2%、64.2%。累托石与粉煤灰的比例为1∶1,另加入15%的添加剂(IS)和50%的水,焙烧温度为500℃时,制成的颗粒吸附材料不仅吸附效果好,而且散失率较低。在不调节铜冶炼工业废水pH值的条件下,颗粒吸附材料用量为0.07g/cm3,反应时间为60 min,吸附温度为25℃(常温)时,Cu2+、Pb2+、Zn2+、Cd2+、Ni2+的去除率分别为98.9%、97.5%、96.7%、90.2%、79.1%。处理后的水均符合国家污水综合排放标准(GB8978—1996 )的一级标准。吸附饱和的颗粒吸附材料用1 mol/L氯化钠溶液再生效果好。该颗粒吸附材料具有分离容易、可重复使用、处理效果好、应用前景广阔等优点[1~11]。
关键词 累托石;水淬渣;粉煤灰;颗粒吸附材料;再生;铜冶炼工业废水
第一作者简介:龚文琪(1948—),男,汉族,湖北省武汉市人,教授,博士生导师,矿物加工专业。电话:027-62574946,E-mail:[email protected]。
累托石是二八面体云母和二八面体蒙脱石按1∶1构成的规则间层粘土矿物,具有独特的结构、较强的吸附性和阳离子交换性[1,2]。国内外学者研究了用累托石及其改性产物处理废水[3~5],已取得可喜的进展。但是,研究者们发现这些粉状吸附材料处理废水时存在的主要问题是:吸附材料粒度细,遇水后易分散粉化,造成后续固液分离十分困难,易形成新的工业污泥,这种工业污泥因吸附物质的富集对环境的二次污染危害性更大;吸附材料不能重复使用,所吸附的物质不能回收,处理成本大大增加[6]。为了解决这些问题,本文探讨了累托石-水淬渣和累托石-粉煤灰颗粒吸附材料制备的工艺条件、再生方法及其在铜冶炼工业废水处理中的应用,为铜冶炼工业废水中Cu2+、Pb2+、Zn2+、Cd2+、Ni2+等重金属离子的去除提供一种价格低廉、去除效果好的吸附材料。
一、试验部分
(一)试验材料
试验所用累托石产自湖北钟祥,由湖北名流累托石科技公司提供。其化学组成为:SiO243.82%,Al2O334.25%,Fe2O31.59%,CaO 3.76%,K2O 0.93%,Na2O 1.54%,MgO 0.36%,TiO22.97%;其矿物组成为:累托石85%;伊利石10%;高岭石5%。
试验所用高炉水淬渣取自武汉钢铁集团公司炼铁厂。其化学组成为:SiO232.98%,Al2O316.67%,Fe2O30.70%,CaO 35.99%,K2O 0.44%,MgO 8.52%,TiO21.43%。X射线衍射物相分析表明其为非晶相。
试验所用粉煤灰是湖北华电集团黄石发电股份公司的干排粉煤灰。其化学组成为:SiO254.72%,Al2O328.65%,Fe2O34.14%,CaO 3.39%,K2O 1.68%,MgO 0.78%,TiO21.22%。其矿物组成为:石英15%,莫来石15%,非晶相70%。
试验所用铜冶炼工业废水取自湖北省黄石市大冶有色金属公司铜冶炼厂的实际废水,水质分析结果为:Cu2+2.62 mg/dm3,Pb2+0.63 mg/dm3,Zn2+3.92 mg/dm3,Cd2+0.58 mg/dm3,Ni2+1.48 mg/dm3,pH 6.5。
(二)试验仪器
D/MAX-RB X射线衍射仪、ST-2000比表面积与孔径测定仪、XTLZ多用真空过滤机、F97-系列封闭化验制样粉碎机、XSB-70 B型ф200标准筛振筛机、20~400目标准检验筛、PHS-3C酸度计、SKFO-01电热干燥箱、SX2-4-13 马弗炉、THZ-82恒温水浴振荡器、AB204-N电子天平、JY38plus等离子体单道扫描直读光谱仪(ICP-AES)。
(三)试验方法
1.样品的制备
累托石样品采用反复分散-沉降的方法进行提纯,水淬渣和粉煤灰样品则直接使用。样品均经烘干及粉碎后筛分至小于240目备用。
2.累托石-水淬渣和累托石-粉煤灰颗粒吸附材料的制备
将经过制备的水淬渣或粉煤灰与累托石,另加添加剂(工业淀粉,简称IS)和水,按一定比例混合均匀,陈化24 h,制成粒径1~3mm的颗粒,送至马弗炉内焙烧2 h,自然冷却至室温即为所需颗粒吸附材料。
3.铜冶炼工业废水的处理
在250 mL锥形瓶中加入100 mL铜冶炼工业废水,加入一定量的颗粒吸附材料,放入恒温水浴振荡器中(振荡频率110 r/min)反应一定时间后,离心分离,取出上清液,测定重金属离子的浓度并计算其吸附去除率η(%):η=(Co-Ce)/Co×100%,式中Co和Ce分别为吸附前后溶液中重金属离子的浓度(mg/dm3)。
4.颗粒吸附材料散失率的测定
准确称取一定量的颗粒吸附剂(记为G1),置于250 mL具塞的锥形瓶中,加入100 mL去离子水,在恒温水浴振荡器中以110 r/min的振荡频率于一定温度条件下振荡一定时间后,用去离子水洗掉因粒状吸附材料破碎而产生的粉末,然后将湿颗粒吸附材料置于103~105℃烘箱中烘至恒重,冷却至室温后称重(记为G2),则散失率P(%)的计算公式为[7]:
P=(G1-G2)/G1×100%
二、试验结果与讨论
为了简化处理工艺,降低处理成本,本试验均在铜冶炼工业废水的自然pH(即不调节pH)的条件下进行,考查了颗粒吸附材料制备的工艺条件、废水处理工艺条件、颗粒吸附材料再生利用方法等对废水中重金属元素去除率的影响。
(一)颗粒吸附材料制备工艺条件的影响
1.焙烧温度的影响
由试验结果经过综合考虑Cu的去除率及颗粒吸附材料的散失率,确定累托石-水淬渣和累托石-粉煤灰颗粒吸附材料的焙烧温度分别为400℃和500℃,此时Cu的去除率较高而颗粒吸附材料的散失率较低。
2.累托石和水淬渣或粉煤灰混合比例的影响
累托石和水淬渣或粉煤灰混合比例对废水中Cu的去除率的影响试验结果可知,当累托石含量从10%增加到20%时,Cu的去除率有所增加,以后随着累托石含量的增加,Cu的去除率呈下降的趋势,而散失率随累托石含量的增加一直呈下降趋势。当累托石含量大于50%时,散失率接近0。从有效利用水淬渣和粉煤灰的角度考虑,确定累托石含量为50%,即水淬渣或粉煤灰与累托石的配比为1∶1,Cu的去除率较高且散失率很低。
3.添加剂比例的影响
由添加剂比例对累托石-水淬渣或累托石-粉煤灰颗粒吸附材料去除废水中Cu的影响试验结果可知:这两种颗粒吸附材料中添加剂的含量分别为10%与15%时,Cu的去除率都很高,而散失率都很低,从去除效果及成本的角度考虑,确定这两种颗粒吸附材料中添加剂的含量分别为10%与15%。
(二)颗粒吸附材料去除铜冶炼工业废水中重金属元素的效果
按上述试验确定的制备条件:累托石与水淬渣的比例为1∶1,另加入10%的添加剂和50%的水,焙烧温度为400℃;累托石与粉煤灰的比例为1∶1,另加入15%的添加剂和50%的水,焙烧温度为500℃;分别制成颗粒吸附材料,用以进行去除铜冶炼工业废水中重金属元素的条件试验。
1.反应时间的影响
在常温(25℃)、颗粒吸附材料用量为0.03g/cm3的条件下,反应时间对去除铜冶炼工业废水中重金属元素的影响试验结果表明,随着反应时间的延长,重金属元素去除率有逐渐增加的趋势,使用累托石-水淬渣颗粒吸附材料40 min以后,或使用累托石-粉煤灰颗粒吸附材料60 min以后,去除率趋于平衡。因此,确定使用这两种颗粒吸附材料的反应时间分别为40 min 和60 min。
2.吸附温度的影响
在颗粒吸附剂用量为0.03g/cm3,累托石-水淬渣颗粒吸附材料反应时间为40 min,累托石-粉煤灰颗粒吸附材料反应时间为60 min的条件下,进行吸附温度对去除铜冶炼工业废水中重金属元素的影响试验。结果表明在25℃时,两种颗粒吸附剂对重金属元素的去除率均最高。因此,确定吸附温度为25℃。
3.颗粒吸附材料用量的影响
在常温(25℃)、累托石-水淬渣和累托石-粉煤灰颗粒吸附材料的反应时间分别为40 min和60 min的条件下,进行这两种颗粒吸附剂的用量对去除铜冶炼工业废水中重金属元素的影响试验,结果表明随着吸附剂用量的增加,重金属元素去除率逐渐增加。当累托石-水淬渣颗粒吸附剂用量大于0.03g/cm3,累托石-粉煤灰颗粒吸附剂用量大于0.05g/cm3时,重金属元素去除率增加缓慢。因此,从成本角度考虑,确定这两种颗粒吸附剂用量分别为0.03g/cm3和0.05g/cm3。
(三)正交试验结果
以上探讨了各个单因素(时间、温度、用量)条件对于累托石-水淬渣或累托石-粉煤灰颗粒吸附材料对铜冶炼工业废水中重金属元素的去除效果。为了探讨在各个单因素的交互作用下颗粒吸附材料对该废水中重金属元素的最佳去除效果,进行了三因素两水平的正交试验,结果如表1和表2所示。
,烘干后再对铜冶炼工业废水进行吸附处理,试验结果见表3和表4。由表中可以看出,1 mol/L NaCl解吸再生效果最好,处理后的废水中Cu2+、Pb2+、Zn2+、Cd2+、Ni2+的残留浓度仍低于国家污水综合排放标准(GB8978—1996 )的一级标准,去除率同新制备的颗粒吸附材料的去除率很接近,在解吸再生6次后,去除率为新材料去除率的80%,说明所制备的颗粒吸附材料重复使用效果较好。
三、结论
1)累托石-水淬渣和累托石-粉煤灰颗粒吸附材料制备的工艺条件为:累托石与水淬渣的比例为1∶1,另加入10%的添加剂(IS)和50%的水,焙烧温度为400℃;累托石与粉煤灰的比例为1∶1,另加入15%的添加剂(IS)和50%的水,焙烧温度为500℃。所制成的颗粒吸附材料不仅吸附效果好,而且散失率较低。
2)累托石-水淬渣颗粒吸附材料去除铜冶炼工业废水中重金属元素的适宜条件为:在自然pH值的条件下,颗粒吸附剂用量为0.05g/cm3,反应时间为40 min,温度为25℃(常温)。该条件下Cu2+、Pb2+、Zn2+、Cd2+、Ni2+的去除率分别为98.2%、96.3%、78.6%、86.2%、64.2%。累托石-粉煤灰颗粒吸附材料去除铜冶炼工业废水中重金属元素的适宜条件为:在自然pH值的条件下,颗粒吸附剂用量为0.07g/cm3,反应时间为60 min,温度为25℃(常温)。该条件下Cu2+、Pb2+、Zn2+、Cd2+、Ni2+的去除率分别为98.9%、97.5%、96.7%、90.2%、79.1%。处理后的废水中这些重金属元素的残留浓度均低于国家污水综合排放标准(GB8978—1996)的一级标准。
3)用1 mol/L NaCl对最佳吸附条件下吸附饱和的颗粒吸附材料进行解吸再生,然后用来处理铜冶炼工业废水,处理后的废水中Cu2+、Pb2+、Zn2+、Cd2+、Ni2+的残留浓度仍低于国家污水综合排放标准(GB8978—1996)的一级标准,去除率同用新制备的颗粒吸附材料时的去除率很接近。相对于其他吸附材料,颗粒吸附材料具有分离容易、可重复使用、成本低廉、处理效果好等优势,因而具有良好的应用前景。
参考文献
[1]江涛,刘源骏.累托石.武汉:湖北科学技术出版社,1989:1-48
[2]张小庆.累托石的改性及在废水处理中的应用.西北工业大学学报,2003
[3]孙家寿,张泽强,刘羽.累托石层孔材料处理含铬废水的研究.岩石矿物学杂志,2001,20(4):555-558
[4]孙家寿,鲍世聪,李春领等.改性累托石处理含氰电镀废水研究.非金属矿,2001,(1)
[5]王湖坤,龚文琪.黏土矿物材料在重金属废水处理中的应用.工业水处理,2006,26(4):4-7
[6]孙秀云,王连军,周学铁.凹凸棒土-粉煤灰颗粒吸附剂的制备及改性.江苏环境科技,2003,16(2):1-3
[7]吴达华,吴永革,林蓉.高炉水淬矿渣结构特性及水化机理.石油钻探技术,1997,(1)
[8]许鹏举,岳钦艳,张艳娜等.PDMDAAC改性高炉渣处理印染废水的研究.工业水处理,2006,(5),62-64
[9]李亚峰,孙凤海,牛晚扬等.粉煤灰处理废水的机理及应用.矿业安全与环保,2001,(02)
[10]李春青,普红平.粉煤灰的改性及其在废水处理中的应用.中国资源综合利用,2006,(11)
[11]程爱华,王建东,姚改焕.粉煤灰在水处理中的应用.能源与环境,2006,(01)
Preparation of clay functional materials and their application in treatment of heavy metal-containing wastewater
Gong Wenqi,Han Pei,Wang Hukun,Liu Yanju,Rao Boqiong
(School of Resources and Environmental Engineering,Wuhan University of Technology,Wuhan 430070,Hubei,China)
Abstract:The preparation technological conditions and regeneration method of two novel granulated adsorbing materials of rectorite/fly ash composite(Material 1)and rectorite/water quenched-slag composite(Material 2 ) and the use of them to remove heavy metals from copper smelting plant wastewater have been studied.The experimental results showed that under the preparation conditions with the ratio of rectorite to fly ash or water quenched slag of 1∶1,the amount of the additive(Instrial Starch,IS) of 15%(Material 1) or 10%(Material 2),the addition of 50%water,and the calcination temperature of 500℃(Material 1) or 400℃(Material 2),the efficiency of heavy metal removal with the granulated materials was the best,whereas the ra tio of disintegration loss was low.Under the treatment conditions of natural pH,and with the addition of the granulated materials of 0.07g/cm3(Material 1) or 0.05g/cm3(Material 2),a reaction time of 60 minutes(Material 1 ) or 40 minutes(Material 2 ),and the adsorption temperature of 25℃,the efficiency for the gran ulated materials to remove Cu2+,Pb2+,Zn2+,Cd2+and Ni2+from copper smelting plant wastewater was 98.9%,97.5%,96.7%,90.2%and 79.1%(Material 1 ) or 98.2%,96.3%,78.6%,86.2%and 64.2%(Material 2),respectively,and the quality indexes of the wastewater after treatment conformed with the first level of integrated wastewater discharge standard(GB8978—1996 ) .The granulated materials saturat ed with heavy metal ions on the surface could be regenerated with quite good efficiency by washing with 1 mol/L sodium chloride(NaCl) solution.The granulated adsorbing materials had the advantages of high efficiency in wastewater treatment,easy method of solid-liquid separation and regeneration,and have a broad prospect of applications.
Key words:Rectorite,water quenched-slag,fly ash;granulated adsorbing material,regeneration,copper smelting plant wastewater.
❹ 铜发蓝后的污水如何做环保处理
这样的工艺,最简单和便宜就是使用一个石灰石过滤池置换就行了,CUCO3
❺ 如果去重金属铜冶炼厂和深加工厂去工作,会不会对身体有什么危害如果有危害具体是什么,
铜冶炼厂主抄要污染:一是含有二氧化硫的废气排放,二是粉尘比较严重,三是铜电解车间会有比较中的硫酸味道,四是会有比较多的废水排放。在其他金属回收中,还会有毒性大的镉或钴等等
故主要危害有:对人体的呼吸道影响比较大,以及工厂附近的农作物最好不要吃,基本给污染,会含重金属。另外,冶炼厂的噪音比较大,对人的听力也是有一点点的影响。
所以下车间的时候,一定要穿长袖长裤,不要穿凉鞋拖鞋;到干燥、造锍车间时,一定要带过滤口罩,防粉尘很吸入刺激性气体;到铜电解车间,高温时硫酸挥发大,可以的话最好穿具有防硫酸腐蚀的劳保服,如果只是短时间的,也可以不穿;到镉、钴等毒性大的车间,一定要遵守相关制度,不要乱摸等等。总之,去之前一定要阅读相关规章制度,严格要求自己。
你是在人力资源部上班,在车间的时间较少,平常注意多吃排尘、排毒及润肺的食物及时排除身体有害物质,同时保护自己呼吸道,少吃刺激其的食物;勤洗头洗澡等。
你放心,我到铜冶炼厂实习过2个月,问过车间的工人,只要按公司要求穿戴劳保品的职工,很少有得什么支气管炎、肺炎等这类病的。
❻ 论述铅,锡铜冶炼厂主要排放污染物是什么
铅,锡铜冶炼厂主要排放污染物是废水与废渣。
湿法冶炼采用大量的硫酸,碳酸氢铵,液碱等化学原料对矿物进行溶解,形成大量含含重金属,氨氮的高盐废水,会造成严重的水体污染。矿物溶解以及提纯过程中,会产生大量的废渣,同样含有大量的重金属和盐,也会造成严重的污染。
❼ 【污水治理新工艺解读】污水治理方案
现阶段,我国小城镇污水处理设施建设在工艺技术路线选择上,大多仍采用与大、中城市污水处理类似的传统工艺技术,如活性污泥法、生物膜法等处理工艺,而针对小城镇社会经济发展状况与管理水平、污水水量水质特点、地形地势条件等具体特点的经济适用型处理工艺的技术开发和应用仍较为滞后,这一方面导致工程投资大、运行费用高,加剧了小城镇原本就紧张的财政资金状况;另一方面,增加了污水处理设施的运行与维护管理难度,不利于设施的正常运行和处理效益的充分发挥。
与大、中城市相比较,小城镇污水主要为生活污水(占50%以上),污水中悬浮物浓度较高,特别是一些小城镇排水系统不完善,大多采用明渠排水,雨水和地下水入渗现象严重,降低了污水中的有机物浓度。由于小城镇人口规模小,污水水量、水质都呈现出较为突出的时间不均匀性和水质不稳定性。
针对我国小城镇污水产生特点及小城镇自身经济发展特性,污水处理工艺技术的选择既不能完全照搬目前在大、中城市中广泛采用的城市污水处理工艺技术,也耐衡信不能完全采用村庄居民点的污水处理方式,而必须按照经济、高效、简便、易行的原则进行选择。具体地说,即适宜小城镇采用的污水处理工艺应基建投资省、运行费用低、节能降耗明显;处理工艺具有较强的耐冲击负荷能力,去除效率高;处理工艺简便易行、运行稳定、维护管理方便,利用当地小城镇现有的技术与管理力量就能满足设施正常运行的需要;处理工艺具有一定的灵活性,能较好地适应现阶段达标处理排放要求与将来考虑进行再生利用需要的变化。
膜生物技术在猪粪废水处理中应用
项目简介:集约化畜禽粪便废水的污染量已经超过工业废水及生活污水,逐渐成为上海市地面水主要污染源。奉贤芦泾饲养场猪粪废水具有典型的高浓度、高SS、高NH3-N等特点,采用膜生物技术作为主要处理工艺,不仅避免了常规厌氧处理方法操作管理不便、系统酸化以及存在沼气爆炸安全隐患等弊病,而且从调试结果看,以膜生物反应器为主的整套废水处理设施处理能力大、净化功能好、脱氮效果稳定,且不会出现污泥膨胀等影响正常运行的现象。膜生物技术作为处理该类废拦敬水的一种有效方法值得进一步推广。
该项目具有以下特点:(1)处理出水水质稳定; (2)处理设备占地面积小;(3)处理效率高,抗有机负荷冲击能力强; (4)动力消耗低; (5)由于活性污泥不会流失,因此不会出现污泥膨胀影响正常运行的现象; (6)操作管理简单。
项目负责:上海荏源公司。
水解酸化-曝气生物滤池
处理小城镇污水
项目简介:中小城镇污水主要为生活污水和以有机废水为主的工业废水的混合污水,其水量较小,一般不超过5万m3/d,但是水质和水量波动较大。由于资金和技术、管理水平等多方面的原因,决定了在城镇污水处理厂必须经济昌轮、高效、节能和操作简便。目前国内很多中小城镇仍采用明渠排水,尤其是南方地区,大量雨水流入和地下水渗入,加之城镇生活水平不高等原因决定了污水中有机物浓度较低。因此,必须结合当地污水的水量、水质以及温度、气候、气象、地理、经济等实际情况选择适宜的处理工艺。
水解酸化―曝气生物滤池工艺在工程投资、占地和能耗上具有极大的优势,其可根据进出水水质要求的不同,分别采用的二段或三段处理工艺组合,且可根据水量的大小进行模块化设计,是适合我国国情的中小城镇污水处理新技术,具有很大的推广价值。
城市污水水解-厌氧-微氧
联合处理工艺
技术简介:在原位复合尼龙-6/炭纳米管(PA6/CNT)过程中,炭纳米管将以其外壁上连接的羧基官能团(-COOH)参与尼龙-6(PA6)的加成聚合反应,并阻碍PA6分子的长大。这在很大程度上削弱了基体强度。采用改进原位复合法复合PA6/CNT,可大大提高PA6分子的平均分子量,减轻炭纳米管对基体PA6强度的削弱,大幅度提高PA6/CNT复合材料的强度。研究结果表明:在总HRT不超过8.5h(水解2.5h、厌氧4.0h、微氧2.0h),平均温度为19℃,进水浓度为30050mg/L时,总COD和SS的去除率分别可达75%和80%以上。总出水COD、BOD、SS完全达到国家二级排放标准。微氧单元对厌氧出水中残余有机物去除效果良好,HRT不超过2h,DO控制在0.2"0.5mg/L左右,进水为150mg/L时,去除率可达53%以上。微氧污泥沉降性能良好,SVI=38.8ml/g。水解-厌氧-微氧工艺在突出低能耗的前提下,达到了较高的有机物去除率,与现有的城市污水处理工艺相比有一定的优越性。
该工艺与“水解-好氧”、“厌氧-好氧”工艺相比,在总停留时间相当的情况下,微氧工艺的气水比为1:4左右,DO为0.2~0.5mg/L,减少好氧阶段的曝气量。在实验室条件下,整个系统每日仅从微氧池排出少量的污泥,污泥产率VSS/COD约为0.018,更进一步降低了能耗与污泥的处理费用。
技术负责:中国轻工局。
滴流床反应器处理有机废水研究
项目简介:滴流床用在湿式氧化工艺上处理废水的研究国内处在刚起步阶段。废水处理的对象主要是单一的模型废水如酚、取代酚、环已醇、琥珀酸和乙醒等。提出和广泛使用的反应器数学模型主要是一维恬塞流模型和一维轴向混合模型。滴流床反应器催化湿式氧化处理实际废水、滴流床反应器的流体力学、传质、传热对反应效果的影响、实际废水滴流床催化湿式氧化的反应器模型和清流床催化湿式氧化工业化放大等方面的研究还有待于深入进行。
大量研究已经证明湿式氧化(WO)是处理高浓度难降解有机废水的最佳方法之一,但WO过程中需要的高温高压以及对设备材质的高要求限制了它的推广应用。为了降低反应温度与压力,非均相催化剂的催化湿式氧化(Catalyticwetoxidation,简记CWO)技术研究与开发成为研究的热点。适合非均相催化湿式氧化的气液固三相反应器主要有滴流床(TBRs)、三相流化床和浆料反应器。
项目负责:同济大学污染控制与资源化国家重点实验室。
小城镇生活污水处理新技术
项目简介:小城镇生活污水低成本处理及回用是困扰新农村建设的难题之一,此前一直没有适合小城镇处理污水的合适技术。新出现的一体化地下厌氧耗氧处理装置,在工艺和设备方面有多项创新,占地面积小,整个设施为一体化地下构筑物,既克服了冬季运行中气温偏低造成的影响,又可在覆土后绿化或建设相应的管理用房。
该项目有耗能小、低投入、低运行费用、不产生二次污染、不使用任何化学药物、简易可行的自动操作等突出优点,平均消耗1度电可以处理约30吨的生活污水,直接运行费用仅0.05元/吨,适宜在广大小城镇和农村地区推广。
项目负责:天津科技大学化工学院庞金钊教授。
硅藻精土处理污水技术
项目简介:硅藻精土水处理剂工艺可适用于城市污水及垃圾渗滤液和各类工业废水处理。该技术在云南、贵州、广西、内蒙古建成污水处理工程,在各省环境监测中心站等部门的监测下,成功地把城市污水、多种工业废水处理达到国家排放标准或实现循环使用。去除率分别是BOD59292.8、CODcr95以上、SS99.9、TN78、TP90.7。
该技术既具有传统工艺的综合优点,同时弥补了各处理技术的不足的污水处理新工艺、新技术。
项目负责:浙江省水利局。
意义:该工艺提供了既经济又适用的最佳技术,组成专家组及中国硅藻土协会评定为国内首创。
氯化钠改性沸石吸附水中苯酚
项目简介:对于微污染含酚水处理,活性炭吸附有一定效果,但活性炭价格较高,再生费用昂贵,且每次再生损耗高达5%~15%。沸石是一种天然廉价的多孔矿物质,表面粗糙、比表面积大,吸附性能较强,用于处理氟、重金属离子已有成功案例。该方法根据改性后沸石吸附苯酚的效果确定了合适的改性方法;研究了pH值、苯酚浓度、处理时间、沸石用量等对钠型沸石吸附苯酚效果的影响;最佳条件下沸石处理低浓度含酚水的静、动态试验结果表明,改性沸石对低浓度的含酚水有良好的吸附效果。
项目负责:兰州铁道学院副教授王萍。
意义:沸石经氯化钠改性后,在酸性条件下对苯酚有较好的去除效果,可用于微污染含酚水处理,吸附苯酚后的沸石可用碱液再生,该方法操作简单,原料丰富,有较好的实际应用价值。
垃圾卫生填埋渗滤水控制与处理
技术简介:土地处理是利用土壤――微生物――植物系统的陆地生态系统的自我调控机制和对污染物的综合净化功能来处理污水,使水质得到不同程度的改善,实现废水资源化和无害化。因此,基于垃圾渗滤水土地处理的垃圾循环准好氧情填埋方式得到了越来越广泛地关注。垃圾循环准好氧性填埋方式是将收集到的渗滤水循环回到填埋场中利用填埋场自身形成的稳定系统使渗滤水中的有机物经过垃圾层和覆土层来降解,从而加速渗滤水的净化。在准好氧性填埋场中,有机成分(主要是BOD)能够很快降解,但是氮化物的降解速度却较慢。当通过将渗滤水循环到填埋场中,可以促进硝化和反硝化过程的进行,这样有机成分和氮化物得到更加有效地去除,从而减轻了渗滤水的污染负荷,并且有利于减少渗滤水的最终水量和促进垃圾在填埋场中的稳定化。
调查结果表明,所有的垃圾简单填埋处理后,在填埋场周围的地下水均受到污染,许多有毒害物质在一般地下水中不存在,却在填埋场周围的地下水中出现。因此,现代意义的垃圾卫生填埋处理已发展成底部密封型结构,或底部和四周都密封的结构,从而防止了渗滤水的流出和地下水的渗入,并且对垃圾渗滤水进行收集和处理,有效地保证了环境的安全。
项目负责:国家给水排水工程技术研究中心范洁。
CASS法处理含盐废水研究
项目简介:采用CASS生化处理系统处理含盐的海产品加工废水,处理效果比较理想。试验出水的COD可以达到《污水综合排放标准》(CB8987-1996)中的二级标准。因此可将本试验过程放大,应用于临海港建设的海产品加工厂的污水处理工程中。进水中Cl-的质量浓度在6300mg/L以下时,CASS系统可稳定运行,在Cl-的质量浓度超过8100mg/L时出水水质变坏,无法稳定运行。进水中Cl-的质量浓度在4500mg/L以下时,CASS生化处理系统的抗海水浓度波动能力比较强,遇见Cl-的质量浓度梯度为3600mg/L的冲击可以在短的时间(1个运行周期)内恢复正常;当废水中Cl-的质量浓度超过4500mg/L后,CASS生化处理系统的抗海水浓度波动能力减弱,遇到相同浓度的冲击时,所需要的恢复时间则较长。对比海水比例上升和下降两个过程的数据,可以发现相同的浓度梯度冲击下,对CASS生化处理系统而言,海水比例降低产生的冲击影响比海水比例升高产生的影响要大。
项目负责:大连机工机械环保研究所李琳琳。
意义:采用鱼品加工厂生产废水掺一定比例的海水作为试验用水,通过含盐量的不断增加研究系统的耐盐性,通过含盐量的降低和升高研究系统可以在1个运行周期内恢复正常运行。
水解酸化-接触氧化法
处理啤酒废水
项目简介:啤酒废水属中浓度的有机废水,实践证明,采用厌氧-好氧生物技术处理啤酒废水是可行的。啤酒废水悬浮物浓度较高,如果预处理措施不得当,则容易造成水解酸化池中布水系统发生堵塞或积泥。鉴于废水中的细小麦糟、麦皮等不溶性有机物占有相当比重,建议在废水进入水解酸化池前最好经过网目规格为60-80目的微滤机进行预处理,尤其是设布水器的工程务必如此。水解酸化池设计成池底设多孔布水管的上流式污泥床厌氧反应器,和UASB不同之处在于以弹性填料代替其三相分离器。若后续采用活性污泥法,则建议将好氧处理产生的剩余污泥排入水解池进行消化处理,这样不仅可以得到脱水性能良好的污泥,而且总污泥产量比传统工艺低20%-40%,没有条件采用强化预处理措施和设置布水器的,建议池底增设泥斗以便及时排除沉淀污泥。
项目负责:山东省轻工业设计院高级工程师周焕祥。
意义:好氧处理若采用阶段曝气措施亦即多点进水方式,就这样可消除池前端供氧量不足而池后端供氧量过剩的弊病,提高了生物处理效率,同时也降低了处理消耗。
粉煤灰处理含氟废水
项目简介:工业生产过程中使用含氟原料的工艺很多,如玻璃制造工业、电子部件制造工业、熔融盐电解工业、原子有工业、铸造工业及特种钢材处理等一些工厂经常会排放出含氟化物的废水。大量含氟废水排入水体,将会污染河流,特别是污染了饮用水水源。我国常用的含氟废水处理多采用加药和吸附两种方法,如加入石灰、镁盐、铝盐处理,或用羟基磷灰石、骨炭、活性氧化铝等吸附。但这两种方面多数工艺复杂、劳动条件差、费用较高。而作为工业废物排出的粉煤灰,侵占土地,淤塞河道,造成扬尘、严重污染环境。其处理通常是采用水力冲灰输送至贮灰场贮存。采用粉煤达处理含氟废水,具有以废治废和资源综合利用的好处。
粉煤灰具有一定除氟效果,对于高含氟废水具有较好的处理效果。影响粉煤灰吸附容量的主要因素依次为:原水氟浓度→粉煤灰投量→搅拌时间。除氟后的粉煤灰可烧制成砖。搅拌时间在生产中可选定30-40min,混合方法宜采用分步混合方法,以降低出水氟浓度,提高粉煤灰吸附容量。
项目负责:航天部第三研究院曹仁堂。
二段法改良工艺处理高浓度
难降解城市污水
项目简介:工业废水经过企业内部处理后与生活污水混合,进入城市污水处理厂进行生物处理是可行的,工业废水内部的难生物降解物质随同生活污水中易生物降解物质,通过所谓的"协同降解"作用一起降解掉了。高浓度、难降解的城市污水处理的最大问题是硝化菌的难以存活,第二大问题则是有机物的去除,第三个问题是化学除磷的实施。因此,相关的处理工艺应围绕着这三点进行技术上的突破。
奥贝尔氧化沟、二段法、AB法和延时曝气法都具有一定的耐冲击负荷的能力,但经过改进的二段法工艺一方面具有耐冲击负荷,更适宜于处理城市污水中化工废水比例高、废水成分复杂、处理难度大的特点,另一方面在难以生物除磷的条件下,更易于布置成多点投药,实现化学除磷。
项目负责:中国市政工程华北设计研究院陈立。
意义:在总结高浓度难降解的城市污水处理工程技术的基础上,通过试验提出了二段法改良工艺,并在高浓度难降解城市污水处理中硝化菌的难以存活、有机物的去除及化学除磷等技术上有所突破。二段法改良工艺一方面具有耐冲击负荷,更适宜于处理城市污水中化工废水比例高、废水成分复杂、处理难度大的特点,另一方面在难以实施生物除磷的条件下,更易于布置成多点投药,实现化学除磷。
铜冶炼含砷污水处理
技术简介:铜冶炼企业含砷污水处理采用硫化法和石灰乳两段中和加铁盐除砷工艺,能够达到预期目标,但污酸处理存在着处理成本高的问题,有待于新的处理工艺运用,目前国内已有院校试验电积法处理含砷污酸,其成本低于硫化法,将给企业带来明显的经济效益。目前铜冶炼企业含砷工业污水虽然经处理后做到了达标排放,但在处理水返回使用,降低处理成本方面仍有许多工作可做,这些工作与企业体制,管理水平有着明确的联系。做好这些工作可明显提高企业的经济效益和环境效益。
项目负责:铜陵有色设计研究院龙大祥。
意义:采用此办法,将对铜冶炼企业含砷工业污水的形成以及如何处理达标排放提出一条新的捷径,并确保不造成二次污染。
双功能陶瓷膜生物反应器处理废水
项目简介:利用膜生物反应器(MembraneBioreactor,MBR)处理废水正在受到人们的关注。而无机膜生物反应器(InorganicMembraneBioreactor,IMBR)则是在MBR基础上兴起的。IMBR的核心是采用无机膜,与有机膜比较,无机膜具有化学稳定性好、热稳定性高、机械性能优异、通量大、寿命长、容易清洗等优点,但也存在着制造成本高,运行费用大等问题,特别是容易堵塞的问题。本研究针对上述陶瓷膜容易堵塞的问题。提出了一种新的膜生物反应器的设计方案。即将陶瓷膜设计成U型管状,并置于反应器内,成为内置式膜反应器。该陶瓷膜既可以曝气,又可以进行抽滤,形成一种具有双重功能的陶瓷膜,在处理废水的同时不断地进行曝气/抽滤的切换。而曝气的同时又是对陶瓷膜的反吹,以解决陶瓷膜容易堵塞的问题,从而提高反应器处理废水时的效率。
陶瓷膜的过滤作用主要是通过在陶瓷膜表面形成过滤层实现的。用双功能陶瓷膜生物反应器处理废水时,由于可以进行抽滤/曝气的切换,从而有效地解决了一般膜反应器中普遍存在的膜容易堵塞的问题,提高了膜反应器处理废水的效率。此外,在该反应器中增加陶瓷载体,既可以增加生物相浓度,又可避免悬浮的微生物堵塞陶瓷膜。废水经过陶瓷膜的过滤,其出水浊度较低,与传统的废水处理方法相比,由于出水的浊度较低,可以缩短废水的沉清过程,从而提高废水处理的效率。因此双功能陶瓷膜生物反应器具有很大的应用价值。
项目负责:南昌航空工业学院环境与化学工程系张永明。
❽ 含重金属废水处理的处理方法
含重金属废水处理使用膜处理技术:
其中纳滤可以浓缩废水中金属离子、盐类等,反渗透可以膜截留金属离子和有机添加剂,而让水分子透过膜,而达到分离、浓缩目的。
含重金属废水进入处理系统,根据需要,经过复合试剂预处理,减少其它离子对膜系统的影响,之后通过纳滤膜、反渗透膜实现物料分离、浓缩。
本系统设置多套纳滤装置,既可以辅助实现浓缩倍数的要求,也可以切换实现出水重金属离子实现达标排放的要求。
重金属废水来源及其处理原则:
重金属废水主要来自矿山、冶炼、电解、电镀、农药、医药、油漆、颜料等企业排出的废水。废水中重金属的种类、含量及存在形态随不同生产企业而异。由于重金属不能分解破坏,而只能转移它们的存在位置和转变它们的物理和化学形态。
例如,经化学沉淀处理后,废水中的重金属从溶解的离子形态转变成难溶性化台物而沉淀下来,从水中转移到污泥中;经离子交换处理后,废水中的重金属离子转移到离子交换树脂上,经再生后又从离子交换树脂上转移到再生废液中。
因此,重金属废水处理原则是:首先,最根本的是改革生产工艺.不用或少用毒性大的重金属。其次是采用合理的工艺流程、科学的管理和操作,减少重金属用量和随废水流失量,尽量减少外排废水量。