A. 含溴废水如何制作其它化工原料
制作普通的塑料袋
用的原料一般都是聚乙烯颗粒(PE)。PE又分HDPE、LDPE、LLDPE
普通塑料袋一般用HDPE的比较多
PE又分有好料再生料之说。具体做什么质量的袋子就用什么质量的料
B. 徐州哪里有卖 氢溴酸,溴化钠,含溴母液,含溴废水。
台州九州化工有溴化钾母液
C. 生化污水处理能降低废水的含盐吗
生化法呢,就是利用细菌真菌啥的,把污水中的有机物吃掉(分解掉)。
所以呢,像一些离子啥的,要用其他方法的
这是一种重金属离子超标,您可以找一下重金属捕捉剂直接投加去处理的,希洁化学回答 希望可以帮到您!
摘要:屠宰生产工艺过程中所产生的高浓度有机废水,经格栅、蹄网、沉砂池预沉、调 节池均和、SBR 反应池生化、消毒池杀菌等工艺处理后,其废水出水水质达到国家《污水综合排放标准}GB8978-1996 的一级排放标准(新改扩).
肉类食品是人类生活所必需,是满足人类对蛋白质、脂肪等营养物质需求的主要来源之一。肉类加工是指对猪、牛、羊等家畜和鸡、鸭等家禽等屠宰和进一步加工,以便生产人们生活所需要的肉类食品和副食品。
在屠宰和肉类加工的过程中,要耗用大量的水,同时又要排除含有血污、油脂、毛、肉屑、畜禽内脏杂物、未消化的食料和粪便等污染物质的废水,而且此类废水中还含有大量对人类健康有害的微生物。肉类加工废水如不经处理直接排放,会对水环境造成严重污染,第人畜健康造成危害。肉类加工废水所含污染物质大多属于易于生物降解的有机物,在它们排入水体后,会迅速地耗掉水中的此绝溶解氧,造成鱼类和水生生物因缺氧而死亡;由于缺氧还会使水体转变为厌氧状态,这样会使水质恶化、产生臭味、影响卫生。同时,废水中的致病微生物会大量繁殖,危害人民健康。对屠宰肉类加工废水进行处理,去除其污染对保护生态环境和人类健康是十分必要的。
屠宰和肉类加工厂的废水主要产生在屠宰工序和预备工序。废水主要来自于圈栏冲洗、宰前淋洗和屠宰、放血、脱毛、解体、开腔劈片、清洗内脏肠胃等工序,油脂提取、剔骨、切割以及副食品加工等工序也会排放一定的废水。此外,在肉类加工厂还有来自冷冻机房的冷却水,以及车间卫生装置、洗衣房、办公楼和场内福利设施排出的生活污水等。
肉类加工废水含有大量的血污、油脂、油块、毛、肉屑、内脏杂物、未消化的食料和粪便等污染物。外观呈令人不快的血红色,并具有使人厌恶的腥臭味。此外,在肉类加工废水中,还含有粪便大肠杆菌、粪便链球菌以及沙门氏菌等与人体健康有关的细菌,但一般不含有毒物质。
肉类加工废水所含污染物主要呈溶解、胶体和悬浮等物理形态的有机物质,其污染指标主要有PH、COD、BOD、SS等,此外还有总氮、有机氮、硝态氮、总固体、总磷、硫酸根、硫化物和总碱度等
我市某肉类加工厂,主要负责向市内各大菜市场提供新鲜、优质的猪肉、牛肉、羊肉等肉类,日屠宰猪 150 头,牛 10 头、羊 15 只.宰猪、牛、羊等的生产工艺差不多,均有宰杀、去毛(牛为剥皮)、去内脏、剔骨、切割等步骤,在这些生产工艺和屠宰后的装置、生产场地的清洗等过程中,均会产生大量的有机废水.这些废水中含有大量的血块、油脂、猪皮、猪毛(羊毛)、动物内脏弃物、未消化的食物、粪便等污物;并带有令人不适的血红色、血腥味以及大量的细菌、大肠杆菌等污染物.此废水如不经处理而直接排人水体,将会给水资掠带来很大的危害.
1.废水来源
屠宰废水主要来源于屠宰车间,包括①屠宰前冲洗活牲畜产生的废水;②屠宰牲畜时产生的废水;③剥皮、去毛、冲洗动物肉体时产生的废水;④取内脏、内脏物去除、食用油脂提取时产生的废水;⑤冲洗车间地面、屠宰装置时产生的废水;⑥冲洗活动物圈栏时产生的废水其中以屠宰过程中产生的废水污染最为严重,其血块等尽可能因收利用,以增加收入和减少后续废水的处理负荷.
2.水量、水质
屠宰废水,主要由屠宰车间排出,其废水量直接取决与宰杀牲畜的种类和禅扒禅头数,且废水量在一天内变化幅度较大,废水主要集中在早上的5:00 到上午的 8:00 之间排放.有关资料显 示问:日本厚生省宰杀一头大小牲苦的用水量分别为:1.0m³和0.4~0.7m³ 俄罗斯宰杀一头大和小牲畜的用水量分别为 0.8m³和0.4-0.6m³;而我国几家屠宰广宰杀一头大小牲畜的用水量计分别为1.0-1.5 m³0.4-0.7 m³ ; 本肉类加工厂平均宰杀一头大小牲畜的用水量均按1.0 m³计算,考虑到随着城市人口的进一步增多使屠宰牲畜量将有所增加,因此总的废水设计量为180 m³。
2.2 废水水质
屠宰废水的水质属高悬浮物和高有机物废水,宰杀和内脏处理二贺尘工序所排出的废水尤甚.其中宰杀废水含有大量的血液和蛋白质,废水呈鲜红色,BOD5 ( 生化需氧量)值很高,具体数值与是否回收血液有关,一般介于5000-10000mg/L ,最高可达到3000mg/L ,COD 5(化学需氧量)一般在 13000-25000mg/L 之间,SS( 悬浮物)也高达 3000-4000mg/L; 内脏处理工序主要含有胃肠的未消化物及排泄物,其 BO民值可高达13000mg/L ,COD5 35000mg/L 左右, SS 也高达 10000-15000mg/L.因此,在进入后续处理设施之前,需利用一调节池来均和其水质与水量.
废水处理的出水水质指标执行国家《污水综合排放标准~GB8978一1996 的一级排放标
准(新改扩),其出水水质指标如表 2 所示.
3.废水处理工艺
从表 1 可以看出,此废水的可生化性好,因此采用生化为主的处理方法,其主要处理工艺流程如图 l 所示.
屠宰废水经格栅、筛网初步去除了水体中的血块、肉皮、动物内脏、毛发等粗污物后,废水直接进入沉砂池,动物体内未消化物、排泄物和比重较大的悬浮物在此得以沉降,在调节池中经过了水量均和与水质均化的屠宰废水再由 SBR 反应池进行深度生化处理.SBR 反应池中废水到达设定液位后再进行射流曝气,使有机废水中的榕解氧大大增加,在活性污的作用下,屠宰废水中的大分子有机污染物降解为小分子有机物,最终分解为二氧化碳、甲烧和水.曝气结束待污泥沉降后,上清被排人消毒池消毒,经杀菌消毒后的清水直接排入水体中.
SBR 反应池采用 1 个混凝土水池,每天分两班使用,底部沉积污泥达到一定水位时,由污泥泵抽人污泥池中浓缩,经浓缩的污泥由环卫车定期抽吸远走.SBR 反应油采用分步控制生化处理,以进水、曝气反应、静沉、排水和排泥等 5 个阶段为一个执行周期,如图 2 所示,一个执行周期为 7h[匀,其中进水: 1. 5h( 进水一个小时后开始曝气);曝气反应 :3.5h; 静沉: 1. 0h; 排水: 1.0h; 排泥:0.5h.SBR 生化系统具有完全混合特点的推流式反应器,又是一个理想状态的二次沉淀池,此外,SBR 系统污泥沉降效能好,污泥增殖和产污泥量均较小,故特别适应与生化效能好且水量不大的有机废水.
4.主要构筑物及装置
(1)格栅及筛阿:尺寸均为 1600mmx1400mm,前后相隔 2000mm 布置在进水渠中,有效过滤面积为 1.6m ,经隔离下来的血块、油脂、猪皮、猪毛(羊毛)、动物内脏弃物等粗污物罔时进入旁边的储污池中,即减轻后续处理负荷及防止相关装置的堵塞.
(2)沉砂池:尺寸为 3600mm×1200mm×1500mm,底部留有 2 个污泥斗,利用一台污泥泵定1200mmx 1500mm 期抽取污泥,污泥泵型号为: 150QW200-10.
(3)调节池:尺寸为 6000mmx5000mmx2500mm ,有效容积为60m³,同时起调节水量,均和水质以及沉降从沉砂池中漂来的悬浮物.
(4)SBR 反应池:尺寸为 10000mmx6000mmx3500mm ,有效容积为150m³,分两班执行,内设有 2 只潜水自吸式曝气机曝气,其型号为 QBZ040(充氧(02)量为: 3.2-4.6kg/h).
(5) 消毒池:尺寸为 4000mmx3000mmx2000mm ,有效容积为 20m³,消毒时间为1.0h,采用投药泵自动加人次氯酸纳溶液(浓度为 7.5%或 6mg/L)杀菌消毒,投药泵的型号为:B-1500 系列,B一750 型.
(6)污泥浓缩池:有效容积为 25m³ φ2500x3500 ,因锥体形状,钢筋混凝土制作.
5.执行结果分析
屠宰废水经格栅、筛网、沉砂池、调节池、SBR 生化反应池、消毒池等处理后,废水中的污染物指标均达到国家排放标准.经市环保局监测站测定,其出水水质指标如表 3 所示.
6.经济效益分析
本屠宰废水处理工程的执行费用主要由装置电费、药剂费、人工费、维修费、折旧费等组
成.
(l)装置电费:装置正常运转时.所有电机功率为 42.5kW ,每天执行两班,共间断执行 16
个小时,电费单价为 0.85 元/kW.h ,则每吨屠宰废水总耗电费为 :0.23 元/t;
(2)人工费:操作人员 2 人,每人每月工资为 450 元,则人工费用为 :0.21 元/t;
(3)药剂费:每吨屠宰废水所耗药剂(次氯酸铀溶液)费用为:0.19 元/t;
(4)维修费:按总投资年维修费率1.0%计,则维修费为 :0.05 元/t;
(5)折旧费:按总投资年折旧费率 3.6%计(其中折旧率 2.1% ,大修率为1.5%) ,则维修费为 :0.18 元/t;
(6)总执行成本:0.86 元/t;
(7)工程造价:本工程总投资 29.5 万元,日处理屠宰废水量 180t.造价指标为 :1650 元/t.
处理站能耗主要体现在曝气和泵的消耗上来,基本上可以通过这两个方面寻找方法
氨氮偏高可以使用深圳长隆的氨氮去除剂
污水中的氨氮达到一定浓度时,用化学沉淀法配合其他深度处理的方法来降低氨氮含量
如果能用生化法处理污水是最好的方法,因为过程中会少加入化学物质,不会发生二次污染事故,所以现在的技术基本趋势是少新增化学物质进行处理。利用膜处理等。
成正比,即电导率越高含盐量越高,或含盐量越高电导率越高
因为盐在水中溶解,形成Cl离子,Na离子,更容易导电
污水处理佳ph7-8间前面厌氧需要定碱度PH高影响微物新陈代谢利于机物除
污泥的常见处置方法有以下几种:
填埋:卫生填埋操作简单、费用低,而且经过消化后的污泥有机物含量减少、效能相对稳定、总体积减小,脱水后再进行填埋也就成了一种比较经济的污泥处理方式。
制肥利用:污泥制肥料曾是污泥利用的主要途径,其实质是利用污泥中的好氧微生物菌对污泥中的多种有机物进行氧化分解,转化为植物容易吸收的类腐殖质,因此生物能得到利用,能源得以节约。
干化:污泥干化技术是指利用热来破坏污泥的胶凝结构,并对污泥进行消毒灭菌。干化温度高达95℃以上,除有效杀灭病原菌外,还能使污泥容积显著降低,并将臭味消除。
D. 超滤技术在工业废水处理中的应用
超滤技术在工业废水处理中的应用
简介:超滤是迅速崛起的一门分离技术,它在环境保护的水处理中有着广泛的应用。文章简要介绍了超滤技术的发展现状,并对超滤分离法在电泳漆、化学纤维、纺织、造纸、印钞、酿造、制革、石油和食品工业废水处理中的应用进行了综述。
早在1861年Schmidt用牛心包膜截留阿拉伯胶,可作为世界上第一次超滤试验,到1960年,在Loeb和Sourirajan试验成功不对称反渗透醋酸纤维素膜的影响下,1963年Michaels开发了不同孔径的不对称CA超滤膜。基于CA膜物化性质的限制,1965年开始,不断有新品种的高聚物超滤膜问世,并很快商品化,1965-1975年是超滤工艺大发展的阶段,膜材料从初期的不对称CA膜扩大到现在的聚砜(PSF)、聚丙烯腈(PAN)、聚醚砜(PES)以及各种高分子合金膜等,膜组件有板式、卷式和中空纤维等,在不同的生产过程中都已成功的应用[1]。目前所用超滤膜较多由高分子材料制成,随着工业上超滤技术的应用和发展,以金属、陶瓷、多孔硅铝等材料制成的无机膜,在20世纪80年代初期至90年代获得了重要发展。如1980-1985年期间,美国UCC公司开发的载体为多孔炭、外涂一层陶瓷氧化锆的无机膜可用作超滤膜管,美国Alcoa/SCT公司开发的商品名为Membralox的陶瓷膜管,能承受反冲,可采用错流(CrossFlow)操作[2]。用无机膜进行超滤,比常规的分离技术更加经济有效。目前工业所用的无机膜几乎全部是多孔陶瓷膜或以多孔陶瓷为支撑体的复合膜。随着粉末技术的发展,很多优质价廉的烧结金属微孔管投入市场,它具有易于和金属构件组合、加工等优点。近年来,国外还有人烧结不锈钢微孔管内壁烧结孔径为0.1纳米的TiO2薄层,构成Scepter不锈钢膜[3]。
近30年是超滤技术迅速发展的时期,超滤技术被广泛地应用于饮用水制备、食品工业、制药工业、工业废水处理、金属加工涂料、生物产品加工、石油加工等。
1 工业废水处理中的应用
目前膜法水处理技术在环境过程中的应用,主要是超滤、反渗透、渗析和电渗析等方法用于处理各工业废水。超滤技术因其操作压力低、能耗低、通量大、分离效率高,可以回收和回用有用物质和水,特别是通量大的特点,使得超滤成为废水处理工程采用的主要膜分离技术。
1.1 电泳漆废水
国外超滤技术的较大规模应用开始于70年代,当时就是主要用于电泳涂漆工业。废水中的漆料是使用漆料总量的10%~50%,采用超滤技术处理电泳漆废水不仅可以减少漆的损失和回用废水,而且可以使有害无机盐透过超滤膜从而提高了电泳漆的比电阻,调节和控制、漆液的组成,保证电泳涂漆的正常运行。70 年代初期主要用CA膜管式超滤器处理阳极电泳漆废水,70年代后期,改用框式、卷式、中空纤维式超滤器处理阴极电泳漆废水。国内一些汽车厂、电泳漆行业也采用超滤技术,如长春汽车轿车厂从Aomicon公司引进中空纤维式阴极电泳漆专用超滤器,由30根直径7.62cm的膜组件并联而成,总膜面积约75 cm2,处理能力为1.5 t/h,装有循环液定时自动换向系统,以减少膜污染,延长膜清洗周期。北京某汽车厂原排放电泳漆废水量为200 m3/d,工件带出漆液量19.13 L/h,经用超滤法处理后,保证了电泳槽漆液的电阻率大于500 Ω/cm,维持了电泳漆的固体含量稳定,对电泳漆的截留率为97%~98%,排水量降到5 m3/d,节省了大量补充的去离子水[4]。中国科学院生态环境研究中心研制出荷正离子的中空纤维膜组件,对比实验表明结果良好,与进口膜性能相近,可以用于生产。无锡超滤设备厂对有关的超滤膜进行开发,以共聚丙烯腈为膜材料,二甲基乙酰胺为溶剂,添加适量致孔剂制取的荷正电荷超滤膜透液量大,性能稳定,油漆截留率高,抗污染性能好,也已用于生产。我国许多厂家引进国外超滤装置,所以用性能优良的国产荷电超滤膜装置取代进口装置成为现在的新目标。
1.2 化纤、纺织工业废水
化纤工业中有多种废水可用超滤法处理与回收。如回收聚乙烯醇(PVA),国外不少工厂已用于生产。日本某工厂采用8 cm2的管式超滤器将PVA原液由0.1%浓缩到10~15倍,进口压力为3.92×105 Pa,出口压力为1.96×105 Pa,进料温度55~66℃,膜的水通量为100~140 L/ (cm2·h),对PVA的分离率为98.2%,每天回收PVA 20 kg,运行良好[5]。
染料废水种类繁多,组成复杂,主要包括含盐、有机物的有色废水;氯化及溴化废水;含有微酸和微碱的有机废水;含有铜、铅、铬、锰、汞等阳离子的有色废水;含硫的有机物废水。废水量大,浓度高,色度高,毒性大,是治理难度最大的工业废水之一。上海印染厂最早采用醋酸纤维外压管式超滤装置处理还原染料废水并回收染料获得成功,中科院环境化学所也完成了用聚砜超滤膜管式和中空纤维式装置处理染料废水的现场实验,脱色率为95%~98%,COD去除率60%~90%,浓缩液含染料15~20 g/L,并被印染厂引用于生产[6]。
洗毛废水是纺织工业污染最严重的废水之一,洗毛废水中含有大量的悬浮物、油脂和合成洗涤剂,其中主要污染物是羊毛脂。羊毛脂是日用化工、医药工业的原料,也是很好的防腐剂和润滑剂,具有较高的经济价值。传统回收羊毛脂的方法回收率较低,而采用超滤技术处理洗毛废水取得了好的效果。国内的许多毛纺厂和洗毛厂采用超滤法处理洗毛废水工艺,该工艺包括预处理、超滤浓缩、离心分离和水回用四个系统,比传统的离心工艺羊毛脂回收率提高1~2倍。具体操作工艺条件为[7]:料液温度50 ℃,操作压力0.12~0.35 MPa,膜表面流速3 m/s,膜平均水通量40 L/(cm2·h),浓缩倍数为3~6倍,结果油脂截留率为98%~99%,COD截留率为90%~98%。
1.3 造纸工业废水
造纸工业耗水量极大,造纸废水主要来源于去皮、浆化、洗净、漂白、抄纸等工序。用超滤技术处理造纸废水既可以对废水中某些有用成分进行浓缩回收,又可将透过水回用。开山屯化纤浆厂是国内制浆造纸行业中第一家引进了具有国际80年代先进水平的大型超滤设备,并成功地用于亚硫酸盐制浆废液的处理,在此基础上又用自制聚砜膜代替进口膜而取得成功,实验证明达到了DDS公司生产的FSN61PP超滤膜的水平。工艺为:将废液预热升温到50~70℃,打开进料阀,废液经过过滤器进入储罐内,超滤始终控制入口压力0.6 MPa,出口压力0.3 MPa,膜的工作温度60~65 ℃,膜工作面积2.25 cm2。结果成品的木质素磺酸浓度大于95%,还原物去除率大于85%,固形物的率大于30%,达到了对废液中高分子木质素磺酸的有效分离、纯化以及浓缩的目的。日本于1981年采用NTU-3508超滤组件建成了日处理4000 m3的管式膜装置,是世界上最大规模的装置。我国目前已具备生产此类超滤和反渗透膜组件的能力,并迅速推广[8]。
1.4 印钞废水
我国印钞业擦板废液的处理一直是困扰印钞行业的老大难问题。中科院上海原子核研究所与上海印钞厂、南昌印钞厂、西安印钞厂等合作,从1993年开始进行了用板式超滤器处理擦板废液的工作,并对原有的HPL-Ⅱ(A)型超滤器进行了改进,研制成功适用于处理印钞擦板废液的HPL-Ⅱ(B)型板式超滤器。经超滤处理后,透过膜的清液不含油墨,碱的含量不变,对COD的去除率为99%以上,对固含量为3%的擦板废液可浓缩至12%,废液的回收率为75%,且比采用中和法处理废液省力省大量资金。
1.5 酿造工业废水
味精废液是含大量菌体等有机物、氯化物的粘性液体,COD高达70 000 mg/L,废液的排放对环境造成严重的污染,同时废液中还含有一些价值很高的代谢副产物。味精厂用CA、PS、PVC等超滤膜对味精废液进行处理,其操作条件为:操作压力0.25MPa,操作温度25℃,超滤浓缩倍数5~6倍,处理结果表明:透过液清澈透明,菌体去除率达98%以上。透过液经管道输入酱油厂用来生产味精酱油;对浓缩液进行超滤可得到含蛋白质和脂肪及核酸的价值很高的代谢副产物;超滤谷氨酸发酵液,透过液清澈透明,用来提取谷氨酸可提高纯度和提取率[9]。
1.6含油废水的处理
乳化油废水是一种常见的工业废水,超滤法处理乳化油废水应用已有20多年。在1979年,西德已有超过250个超滤设备被用于浓缩乳化油,所用膜组件为管式、卷式和板式,1989年膜生产单位提高为能处理乳化油废水的系列膜设备。采用荷电中空纤维膜处理含有氢氧化钠、磷酸盐、碳酸钠、硼酸钠、亚硝酸钠和非离子或阴离子表面活性剂的乳化油废水时,在温度50℃,进口压力0.12 MPa,出口压力0.10 MPa时,透过液通量达25~33 L/(cm2·h),透过液含油量仅十几mg/L。对于含有氢氧化钠、盐等水溶液和部分表面活性剂的透过液稍加调整即可回用脱脂。浓缩液进入油-水分离器,分离出来的油品可回收形成无排放体系。目前,上海宝钢采用Abcor公司管状膜的大型超滤设备来处理乳化油废水。中科院上海原子核研究所选用PSF100型超滤膜采用3块HPM型隔板并联成板式超滤器,在料液流速1.6 m/s,平均压力0.3 MPa,自然升温等运行条件下,先后进行2次连续浓缩运行,结果表明:油分截留率大于99%,COD的去除率达到95%,体积浓缩比高,超滤平均通量为30 L/(cm2·h),处理乳化油废液效果很好[10]。
含原油废水中含油量通常为100~1000 mg/L,超过国家排放标准(10 mg/L),故排放前必须进行除油处理。可采用中空纤维超滤膜组件和超滤设备,在操作压力为0.10 MPa,废水温度40℃,膜的透水速度可达60~120 L/(cm2·h),可以把含原油100~1000 mg/L的废水处理达到环境排放标准10 mg/L以下,也使处理后的水质达到了低渗透油田的注水标准[11]。
金属加工过程中产生大量的含有切削油、悬浮物和洗涤剂的废水,必须进行处理才能排放。超滤处理可把废水分离成两部分:浓缩液中含有油和悬浮颗粒,透过液中几乎不含油。用超滤与微滤联合进行处理,先用微滤把油浓缩至10%,其中微滤膜的透水能力为250 L/(cm2·h),在进行超滤处理,可回收85%的清洗剂。用超滤处理钢厂冷压车间的压延油废水时,先用80目筛网过滤后,含油废水进入循环槽,再经60目筛网过滤后进入超滤膜,超滤浓缩液进入油-水分离器,分离出的油含油量大于90%,可进行燃烧处理,分离出的水返回循环槽进行超滤处理。超滤透过液可循环使用,超滤过程中的透水量和透过液的油分浓度都很稳定,不受供给水中油分浓度的影响。
处理石油开采产生的含油废水,可在油田用膜分离器中进行超滤与反渗透(或纳滤)的组合操作。先使分离出的水进入中空纤维超滤膜,透过液再进入反渗透膜(或纳滤膜),不但去除了悬浮物,还去除了溶解盐和溶解油,以满足特殊水质的要求。
用超滤处理各种乳化油废水的开发还在进行,分离效率已基本解决,而要攻克的难关是膜的污染与清洗问题[12]。
1.7 制革工业废水
制革工业脱毛用的原料主要是Na2S和石灰,其废水产生量约占皮革污水总量的10%,且毒性大,硫化物含量达2 000~4 000 mg/L,悬浮物和浊度值都很大,是皮革工业中污染最为严重的废水。在对废水进行处理时,用超滤法分离其中蛋白质,采用磺化聚砜类膜进行超滤,把浸灰废液的浓度提高5~10倍,膜不会出现堵塞现象,其处理效果优于一般净化技术。
超滤可回收40%的Na2S、20%的石灰和68%~70%的液体,回收大量的蛋白质,据估算,每吨盐腌皮可获得30~40 kg的角蛋白,因而具有较好的经济效益[13]。
1.8食品工业废水
生产大豆分离蛋白质会产生大量的高浓度有机废水,用超滤法处理起废水,既可回收经济价值很高的可溶性蛋白和低聚糖,又解决了环保问题,并且与传统的处理方法相比,运行费用低,产出效益高,回收产品质量稳定,操作简便。
马铃薯生产淀粉的废液有机物含量高,COD通常在10 000 mg/L左右,国外应用超滤技术去除马铃薯淀粉排放废水中的COD并浓缩回收可溶性蛋白质,国内也用膜装置为聚砜(PS)和聚丙烯腈(PAN)中空纤维超滤膜组件进行实验,工艺条件为:操作压力0.10 MPa,进料流量70 L/h,室温,超滤前调整料液pH 3.5左右(接近蛋白质等电点,截留率高)。实验结果表明超滤效果较好,废水的COD值由8 175 mg/L降为3 610mg/L,COD去除率为55.8%。膜污染后用40 ℃、0.1 mol/L的NaOH溶液来清洗,恢复率在90%左右[14]。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd