Ⅰ 污水处理设备生产厂家
污水处理设备生产厂家
1、潍坊浩宇环保设备有限公司
主营产品:医院污水处理设备,生活污水处理设备,洗涤污水处理设备,养殖污水处理设备,屠宰污水处理设备,豆制品加工。
地址:山东省潍坊市临朐县山旺镇中小企业产业园内。
Ⅱ 王淑莹的主要论文
1. 王淑莹,曾薇,董文艺,杜红,陈韬. SBR法短程硝化及过程控制研究. 中国给水排水,2002,18⑽:1-5陈韬,王淑莹,彭永臻,田文军. 常温下A/O工艺的短程硝化反硝化. 中国给水排水,2002,18⑿:5-8
2. 王淑莹,高大文,彭永臻. SBR法处理高浓度豆制品废水的试验研究. 水处理技术,2002,28⑸:296-298。
3. 曾薇,王淑莹,彭永臻,陈韬. 供氧方式对SBR法硝化过程控制的影响. 环境化学, 2002,21⑹:571-575
4. 高大文,王淑莹,彭永臻,梁红. 温度变化对DO和ORP作为过程控制参数的影响.环境科学,2003,24⑴:63-69
5. 崔有为,王淑莹,孔祥智,记立平,王海东. 活性污泥处理系统抗盐度冲击的能力.中国给水排水,2003,19⑾:12-15
6. 马勇,王淑莹,王晓莲,彭永臻. A/O脱氮工艺的控制策略和应用性研究. 环境污染治理技术与设备,2003,4⑽:18-22
7. 崔有为,王淑莹,于德爽,祝贵兵,彭永臻. 以溶解氧作为SBR法处理含盐污水的计算机控制参数可行性研究. 给水排水,2003,29⑹:54-57
8. 王淑莹,陈滢,付强,范彩安,甘一萍,彭登富,彭永臻. A/O脱氮工艺中污泥上浮的原因与控制. 给水排水,2003,29⑺:13-15
9. 王淑莹,崔有为,于德爽,祝贵兵,王海东. 无机盐对活性污泥沉降性的影响.环境工程,2003,21⑸:7-9
10. 马勇,王淑莹,王晓莲,彭永臻. 利用ActiveX技术开发城市给水排水管网信息管理系统. 测绘通报,2003,7:41-43
11. 王淑莹,代晋国,李利生,顾华,彭永臻. 水环境中非点源污染的研究,北京工业大学学报,2003,29⑷:486-490
12. 代晋国,王淑莹,李利生,李勇智,武佃卫,杨忠山,彭永臻. 基于GIS的非点源污染的研究及应用. 安全与环境学报,2003,3⑹:36-39
13. 李勇智,王淑莹,吴凡松,代晋国,彭永臻. 强化生物除磷体系中反硝化聚磷菌的选择与富集. 环境科学学报,2004,24⑴:45-49
14. 宋学起,王淑莹,彭永臻,陈滢,吴凡松,李秀玮. 以氯化和时间控制实现亚硝化型硝化反硝化. 高技术通讯,2004,14⑴:95-99
15. 陈滢,王淑莹,张艳萍等. 短程硝化在处理生活污水中的应用研究. 中国科技成果,2004,⑽:25-29
16. 陈滢,王淑莹,彭永臻,宋学起,刘敏. 用实时控制SBR实现生活污水的短程硝化. 高技术通讯,2004,14⑷:83-88
17. 王之晖,王淑莹,彭永臻,高春娣. 前置反硝化脱氮系统外加碳源在线控制基础.环境科学. 2004,25⑶:73-77
18. 刘秀红、王淑莹、高大文、杨庆、吴凡松,短程硝化的实现、维持与过程控制的研究现状,环境污染治理技术与设备,2004,5⑿,7-12
19. 王海东,王淑莹,张永利,崔有为. 厌氧—往复好氧组合式工业废水处理新工艺. 环境污染治理技术与设备,2004,5⑻:49-52
20. 崔有为,王淑莹,宋学起,王海东,祝归兵,彭永臻. Nacl盐度对活性污泥处理系统的影响. 环境工程,2004,22⑴:19-21
21. 王之晖,王淑莹,彭永臻,李勇智. 智能控制在污水生物处理系统中的应用. 环境污染治理技术与设备,2004,5⑶:69-73
22. 祝贵兵,王淑莹,李探微,王亚宜,伦中财,彭永臻. 采用污泥过滤进行固液分离的试验研究. 哈尔滨工业大学学报,2004,36⑹:739-743
23. Wang S Y,Gao D W,Peng Y Z,Wang P,Yang Q. Nitrification-Denitrification via Nitrite for Nitrogen Removal from High Nitrogen Soybean Wastewater with On-Line Fuzzy Control. Water Science & Technology,2004,49(5-6): 121-127
24. Wang S Y,Gao D W,Peng Y Z,Wang P,Yang Q. Alternating Shortcart Nitrification-Denitrificationfor Nitrogen Removal from Soybean Wastewater by SBR with Real-Time Control. Journal of Environmental Sciences-China.2004,16⑶:380-383
25. Wang S Y,Li Y Z,Peng C Y,Peng Y Z. Nitrogen Removal from Pharmaceutical Manufacturing Wastewater with High Concentration of Ammonia and Free Ammonia via Partial Nitrification and Denitrification.Water Science & Technology 2004,50⑹: 31-36
26. 王晓莲,王淑莹. 马勇,彭永臻,A2O工艺中反硝化除磷及过量曝气对生物除磷的影响, 化工学报,2005,56⑻:1565-1570
27. 崔有为,王淑莹,朱岩等. 模糊控制强化生物除磷SBR系统的除磷过程. 高技术通讯,2005,15⑺,95-100
28. 王亚宜,王淑莹,彭永臻.MLSS、PH及NO2--N对反硝化除磷的影响,中国给水排水,2005,21⑺:47-51
29. 王淑莹,马勇,王晓莲,彭永臻. GIS在城市给水排水管网信息管理系统中的应用. 哈尔滨工业大学学报,2005,37⑴:123-126
30. 曾薇,王淑莹,彭永臻. SBR法好氧曝气时间的模糊控制. 水处理技术. 2005,31,⑴:65-68
31. 王少坡,王淑莹,彭永臻,李勇智. 常温内源反硝化脱氮过程中pH和ORP变化规律. 环境污染治理技术与设备,2005,6⑶:20-24
32. 崔有为,王淑莹,甘湘庆,姜桂莲,李桂星,袁一星,生物处理含盐污水的盐抑制动力学,环境污染治理技术与设备,2005,6⑸:38-41
33. 王海东,王淑莹,彭永臻,于德爽. UNITANK系统不同运行方式下污泥膨胀的特点与控制. 给水排水,2005,31⑶:37-39
34. 王晓莲,王淑莹,彭永臻,进水C/P比对A2/O工艺性能的影响,化工学报,2005,56⑼,1765-1770
35. 崔有为,王淑莹,朱岩,李桂星,甘湘庆,彭永臻,海水代用及其含盐污水的生物处理,工业水处理,2005,25⑽,1-5
36. 王淑莹,王晓莲,李探微,新型高效厌氧反应器的研究与开发,北京工业大学学报,2005,31⑹:608-612
37. 王亚宜、王淑莹、彭永臻、祝贵兵、令云芳,污水有机碳源特征及温度对反硝化聚磷的影响,环境科学学报,2006,26⑵:186-192
38. 王亚宜、王淑莹、彭永臻,反硝化除磷的生物化学代谢模型,中国给水排水,2006,22⑹:4-7
39. 令云芳、王淑莹、王亚宜、王伟、彭永臻,A2N反硝化除磷脱氮工艺的影响因素分析,工业用水与废水,2006,37⑵:7-11
40. 白璐、王淑莹、高守有,低曝气量与实时控制下的常温短程硝化研究,中国给水排水,2006,22⑼:30-33
41. 马勇,王淑莹,曾薇,彭永臻,周利,A/O生物脱氮工艺处理生活污水中试(一)短程硝化反硝化的研究,环境科学学报,2006,26⑸:703-709,
42. 王晓莲,王淑莹,王亚宜,彭永臻,强化A2/O工艺反硝化除磷性能的运行控制策略,环境科学学报,2006,26⑸:722-727
43. 杨庆,王淑莹,杨岸明,郭建华,薄凤阳,彭永臻,基于三层网络的SBR法深度脱氮智能控制系统的中试研究,环境科学学报,2006,26⑸:745-750
44. 白璐,王淑莹,彭永臻,高守有,低溶解氧条件下活性污泥沉降性的研究,工业水处理,2006,26⑸:54-56
45. 王淑莹,梁秀荣,文洋,陈滢,甘一萍,氧化沟工艺中污泥膨胀原因的分析,北京工业大学学报,2006,32⑷:347-351
46. 王伟,王淑莹,王海东,令云芳,刘智波,连续流分段进水生物脱氮工艺控制要点及优化,环境污染治理技术与设备,2006,7⑽:83-87
47. 郑淑文,王淑莹,张树军,彭永臻,两级UASB与好氧组合工艺处理城市生活垃圾渗滤液的启动运行,环境污染治理技术与设备,2006,7⑽:88-92
48. 令云芳,王淑莹,王伟,王亚宜,厌氧段HRT对A2N工艺反硝化除磷脱氮效果的影响,水处理技术,2006,32⑽:44-47
Ⅲ 氯化钙到底是酸性还是碱性
物理性质
编辑
熔点
782°C[1]
密度 1.086 g/mL at 20 °C[1]
沸点 1600°C[1]
闪点 >1600°C[1]
水溶性 740 g/L (20°C)[1]
无色立方结晶体,白色或灰白色,有粒状、蜂窝块状、圆球状、不规则颗粒状、粉末状。无毒、无臭、味微苦。吸湿性极强,暴露于空气中极易潮解。易溶于水,同时放出大量的热(氯化钙的溶解焓为-176.2cal/g),其水溶液呈微碱性。溶于醇、丙酮、醋酸。与氨或乙醇作用,分别生成CaCl2·8NH3和 CaCl2·4C2H5OH络合物。低温下溶液结晶而析出的为六水物,逐渐加热至30℃时则溶解在自身的结晶水中,继续加热逐渐失水,至200℃时变为二水物,再加热至260℃则变为白色多孔状的无水氯化钙。[2]
2化学性质
编辑
解毒剂
氯化钙结构式
5%水溶液pH值4.5~9.2。1.7%水溶液同血清等渗。该品以碳酸钙和盐酸为原料制得,为镁中毒时的解毒剂。[3]
化学反应方程式
可溶的氯化钙可用来调配一些不溶于水的钙化合物沉淀:
3 CaCl2(aq) + 2 K3PO4(aq) →Ca3(PO4)2 (s) + 6 KCl (aq)
氯化钙电解后可得出纯钙:
CaCl2 →Ca(s) + Cl2(g)[4]
物质毒性
编号
毒性类型
测试方法
测试对象
使用剂量
毒性作用
1
急性毒性
静脉注射
成年女性
20 mg/kg/1H-C
1.皮肤和附件毒性——皮炎 (全身暴露后)
2.营养和代谢系统毒性——钙浓度发生变化
2
急性毒性
口服
大鼠
1 mg/kg
详细作用没有报告除致死剂量以外的其他值
3
急性毒性
腹腔注射
大鼠
264 mg/kg
详细作用没有报告除致死剂量以外的其他值
4
急性毒性
皮下注射
大鼠
2630 mg/kg
详细作用没有报告除致死剂量以外的其他值
5
急性毒性
静脉注射
大鼠
161 mg/kg
详细作用没有报告除致死剂量以外的其他值
6
急性毒性
肌肉注射
大鼠
25 mg/kg
详细作用没有报告除致死剂量以外的其他值
7
急性毒性
口服
小鼠
1940 mg/kg
详细作用没有报告除致死剂量以外的其他值
8
急性毒性
腹腔注射
小鼠
210 mg/kg
1.行为毒性——嗜睡
2.行为毒性——惊厥或癫痫发作阈值受到影响
3.行为毒性——运动行为发生变化(具体情况具体分析)
9
急性毒性
皮下注射
小鼠
823 mg/kg
详细作用没有报告除致死剂量以外的其他值
10
急性毒性
静脉注射
小鼠
42 mg/kg
详细作用没有报告除致死剂量以外的其他值
11
急性毒性
皮下注射
狗
274 mg/kg
详细作用没有报告除致死剂量以外的其他值
12
急性毒性
静脉注射
狗
274 mg/kg
详细作用没有报告除致死剂量以外的其他值
13
急性毒性
皮下注射
猫
249 mg/kg
详细作用没有报告除致死剂量以外的其他值
14
急性毒性
静脉注射
猫
249 mg/kg
详细作用没有报告除致死剂量以外的其他值
15
急性毒性
口服
兔
1384 mg/kg
详细作用没有报告除致死剂量以外的其他值
16
急性毒性
皮下注射
兔
472 mg/kg
详细作用没有报告除致死剂量以外的其他值
17
急性毒性
静脉注射
兔
274 mg/kg
详细作用没有报告除致死剂量以外的其他值
18
急性毒性
静脉注射
豚鼠
150 mg/kg
详细作用没有报告除致死剂量以外的其他值
19
急性毒性
Intraarterial
豚鼠
300 mg/kg
详细作用没有报告除致死剂量以外的其他值
20
急性毒性
皮下注射
青蛙
666 mg/kg
详细作用没有报告除致死剂量以外的其他值
21
慢性毒性
口服
大鼠
2016 mg/kg/30D-I
1.大脑毒性——影响特定区域的中枢神经系统
2.心脏毒性脉冲率发生变化
3.血液毒性——白细胞计数发生变化
22
慢性毒性
吸入
哺乳动物
43 mg/m3/4H/17W-I
1.血液毒性——凝血因子发生变化
2.血液毒性——血清成分发生变化 (如TP、胆红素、胆固醇)
3.生化毒性——抑制或诱导过氧化氢酶
23
突变毒性
酿酒酵母
200 mmol/L
24
突变毒性
腹腔注射
大鼠
2500 umol/kg
25
突变毒性
大鼠腹水瘤细胞
3500 mg/kg
26
致癌性
口服
大鼠
112 mg/kg/20W-C
1.致癌性——可能致癌(根据RTECS标准)
2.内分泌毒性——甲状腺肿瘤
[5-17]
计算化学数据
1、 疏水参数计算参考值(XlogP):
2、 氢键供体数量:1
3、 氢键受体数量:3
4、 可旋转化学键数量:0
5、 互变异构体数量:
6、 拓扑分子极性表面积(TPSA):1
7、 重原子数量:4
8、 表面电荷:0
9、 复杂度:0
10、 同位素原子数量:0
11、 确定原子立构中心数量:0
12、 不确定原子立构中心数量:0
13、 确定化学键立构中心数量:0
14、 不确定化学键立构中心数量:0
15、 共价键单元数量:4[18]
其他
1 钛和氯化钙高温下的反应,都是固体,大约升温到1100℃
钙的金属活动性强于钛,所以在高温下钛也不会置换氯化钙中的钙;高温下,这两种物质也不能化合。
2 “焦亚硫酸钠”跟“无水氯化钙”一起投放在水里产生的那种刺鼻的气体
放出的气体是SO2。不管有没有无水氯化钙,焦亚硫酸钠本身就具备刺激性气味,溶于水后由于水解的原因,也会释放出少量SO2。其本身和氯化钙,不发生化学反应。我认为不会,除非是两固体混合,加入极少量的水。这样的话,一方面焦亚硫酸钠水解,另一方面CaCl2和水结合形成晶体,这样才有可能放出更多的SO2。如果彼此都是稀溶液的状态混合,应该影响不大这样
3 固体氯化钙与氧气反应生成物
固体氯化钙与氧气不反应 所以不能生成任何其他物质 固体氯化钙、液态氯化钙或气态氯化钙(如果它存在这些状态)与氧气都不反应[19]
3制备
编辑
1、二水氯化钙(脱水法)法:
将食用二水氯化钙于200~300℃下进行干燥脱水,制得食用无水氯化钙成品。
其化学反应方程式:CaCl2·2H2O--[260℃]→CaCl2+2H2O
对于中性氯化钙溶液,可采用喷雾干燥塔,在300℃热气流下进行喷雾干燥脱水,制得无水氯化钙粉末状成品。
2、喷雾干燥脱水法:将已除去砷和重金属的精制中性氯化钙溶液,通过喷嘴从喷雾干燥塔上方喷成雾状,与300℃热气流进行逆流接触达到干燥脱水,得到粉末状无水氯化钙,制得食用无水氯化钙成品。
3、母液法:
由氨碱法制纯碱时的母液,加石灰乳而得水溶液,经蒸发、浓缩、冷却、固化而成。
4、复分解法:
由碳酸钙(石灰石)与盐酸作用而得。
化学反应方程式:CaCO3+2HCl=CaCl2+H2O+CO2↑。
以上步骤完成后再加热至260摄氏度,蒸发脱水 。
5、精制法:
生产次氯酸钠中的副产品经精制而成。
制备碳酸钠的索尔维法的副产品精制而成。(Ca(OH)2 + 2 NH4Cl → CaCl2 + 2 NH3 + 2 H2O)
4鉴定方法
编辑
鉴别
配制10%试样液(以无水氯化钙CaCl2计),其钙盐(IT-10)和氯化物(IT-12)试验均为阳性。[20]
含量分析
取试样约1.5g(如系无水氯化钙则取试样约1g),准确称重,移入一250ml容量瓶中,用100ml水和5ml稀盐酸试液(TS-117)的混合液使之溶解,再用水定容后混合。取此溶液50.0ml放入一适当容器中,加水50ml,在搅拌下(最好用机械搅拌)从一50ml滴定管中加入0.05mol/L的EDTA二钠液约30ml,然后加15ml氢氧化钠试液(TS-224)和羟基萘酚蓝指示剂300mg,并继续滴定至产生蓝色为止。每毫升0.05 mol/L的EDTA二钠液相当于CaCl2·2H2O 7.551mg。如系无水氯化钙,则每毫升0.05mol/L的EDTA二钠液相当于CaCl2 5.550mg。[20]
5应用
编辑
工业用途
分子结构图[1]
1、用作多用途的干燥剂,如用于氮气、氧气、氢气、氯化氢、二氧化硫等气体的干燥。生产醇、酯、醚和丙烯酸树脂时用作脱水剂。氯化钙水溶液是冷冻机用和制冰用的重要致冷剂,能加速混凝土的硬化和增加建筑砂浆的耐寒能力,是优良的建筑防冻剂。用作港口的消雾剂和路面集尘剂、织物防火剂。用作铝镁冶金的保护剂、精炼剂。是生产色淀颜料的沉淀剂。用于废纸加工脱墨。是生产钙盐的原料。
2、螯合剂;固化剂;钙质强化剂;冷冻用制冷剂;干燥剂;抗结剂;抑微生物剂;腌渍剂;组织改进剂。
3、用作干燥剂、路面集尘剂、消雾剂、织物防火剂、食品防腐剂及用于制造钙盐
4、用作润滑油添加剂
5、用作分析试剂
6、主要用于治疗血钙降低而引起的手足搐搦症、荨麻疹、渗出性水肿、肠和输尿管绞痛、镁中毒等
7、在食品工业中用作钙质强化剂、固化剂、螯合剂和干燥剂。
8、可增加细菌细胞壁的通透性。[2]
医疗用途
适应症:
1.该品可用于肠绞痛等。
2.可用于瘙痒性皮肤病。
3.用于解救镁盐中毒。
4.用于维生素D缺乏性佝偻病、软骨病、孕妇及哺乳期妇女钙盐补充。
5、治疗钙缺乏,急性血钙过低、碱中毒及甲状旁腺功能低下所致的手足搐搦症,维生素D缺乏症等;
6、过敏性疾患;
7、镁中毒时的解救;
8、氟中毒的解救;
9、心脏复苏时应用,如高血钾、低血钙,或钙通道阻滞引起的心功能异常的解救。
10、氯化钙溶液能诱导肌动蛋白单体发生聚合,且肌动蛋白单体开始发生聚合的临界浓度与氯化钙溶液的浓度呈反曲函数关系。肌动蛋白受诱导聚合的具体机理与钙离子和蛋白多个特定部位的结合有关
用量用法:
将5%氯化钙液10-20ml,以25%葡萄糖液稀释1倍后缓慢静注。
注意事项:
1.静注时,可有全身发热感。注射宜缓慢(每分钟不超过2ml),因钙盐兴奋心脏,注射过快会使血钙浓度突然增高,引起心律失常,甚至心搏骤停。
2.在应用强心甙期间或停药后7日以内,忌用本品。
3.有强烈刺激性,5%溶液不可直接静注,应在注射前以等量葡萄糖液稀释。亦不宜作皮注或肌注。
4.注射液不可漏于血管外,否则导致剧痛及组织坏死。如有外漏于血管外应立即用.。5%普鲁卡因液作局部封闭。
5、小儿用量:低钙时治疗量为25mg/kg(6.8mg钙),静脉缓慢滴注。
规格: 针剂:每支0.3g(10ml)、0.5g(10ml)、0,6g(20ml)、1g(20ml)[21]
儿童用药:
一般情况下,本品不用于小儿。
不良反应:
静脉注射可有全身发热,静注过快可产生恶心、呕吐、心律失常甚至心跳停止。高钙血症早期可表现为便秘,倦睡、持续头痛、食欲不振、口中有金属味、异常口干等,晚期征象表现为精神错乱、高血压、眼和皮肤对光敏感,恶心。[22]
在生物学和医学的研究中,氯化钙广泛应用于配制生物医学实验所需的缓冲液,比如在研究一种针对钾离子通道复合物的新型激活剂时加入CaCl2配制用于被分离的卵母细胞的ND96储备液;在研究鸟苷酰环化酶C对中脑多巴胺神经元的功能时采用CaCl2进行脑片制备实验;在研究细菌和古细菌中用于抵御氟毒性的氟核糖开关时以1mmol/L浓度的CaCl2进行串联标记实验等。
在将目的基因导入受体细胞过程中,可以使用氯化钙增加受体细胞膜的通透性,使得质粒更容易地导入,这个方法是由斯坦福大学的遗传学家斯坦利·诺曼·科恩在1972年研究大肠杆菌时发现的。
通过静脉注射10%氯化钙溶液可用于低钙血症的治疗,氯化钙也能用于治疗镁中毒。通过心电图测量发现注射氯化钙溶液可对抗心脏毒性。在由高钾血症引发血清钾浓度过高的情况下,氯化钙能起到保护心肌层、防止心律不齐的作用。氯化钙作为美国医院急救室的常备药物,可用于快速治疗钙离子通道阻滞剂中毒(这种中毒可由服用预防心脏病的药物地尔硫䓬产生的副作用引发)和由氢氟酸引起的中毒,但对黑寡妇蜘蛛叮咬引发的中毒无有效的解毒作用。氯化钙溴化钠注射液在中国被国家食品药品监督管理局批准作为水电解质调节药使用。
干燥剂
颗粒状的无水氯化钙常作为干燥剂填充干燥管,用氯化钙干燥过的巨藻(或称海草灰)可用于纯碱的生产。一些家用除湿器比如DampRid会使用氯化钙吸收空气中的水分。氯化钙还可作为气体和有机液体的干燥剂或脱水剂。由于氯化钙是中性的,因此它可以干燥酸性或碱性的气体和有机液体,可也在实验室制取少量气体如氮气、氧气、氢气、氯化氢、二氧化硫、二氧化碳、二氧化氮等时干燥这些制出的气体。但不能用来干燥乙醇和氨,因为乙醇和氨气分别会与氯化钙反应生成醇合物CaCl2·4C2H5OH和氨合物CaCl2·8NH3。无水氯化钙还可被制成家用产品用作空气吸湿剂,无水氯化钙作为吸水剂已被FDA批准用于包扎急救,它的作用是确保创口处的干燥。
将无水氯化钙铺撒在沙石路面上,利用无水氯化钙的吸湿性在空气湿度低于露点时凝结空气中的湿气以保持道路表面的湿润,借此控制道路上灰尘的扬起。
除冰剂和冷却浴
氯化钙能降低水的凝固点,在道路上铺撒氯化钙水合物能防止结冰和除冰融雪,但是冰雪融化后的盐水会破坏沿路土壤和植被并使路面混凝土恶化。
氯化钙溶液也能和干冰混合后配制低温冷却浴。将棒状干冰分批加入到盐水溶液中,直至体系中出现冰块为止。不同种类和浓度的盐溶液所能维持的冷却浴稳定温度会有所差别。一般常用氯化钙为盐原料,通过调节浓度来获得所需的稳定温度,不仅是因为氯化钙廉价易得,而且因为氯化钙溶液的共晶温度(即溶液全部凝结形成颗粒状的冰盐粒子时的温度)相当的低,能达到-51.0℃,这样使得可调节的温度范围从0℃至-51℃。该方法可以在能起到保温效果的杜瓦瓶中实现,也可以在杜瓦瓶体积有限而同时又需要配制较多的盐溶液时使用一般的塑料容器来盛装冷却浴,这种情况下温度的维持同样较为稳定。
钙离子的来源
游泳池水中添加氯化钙可以使池水成为pH缓冲溶液同时增加池水硬度,这样做可以较少池壁混凝土受到的侵蚀。根据勒夏特列原理和同离子效应,增加池水钙离子浓度会减缓对混凝土结构必不可少的钙化合物的溶解。
在海洋水族馆的水中加入氯化钙能增加水中生物可利用钙的含量,水族馆中所养殖的软体动物和腔肠动物会利用它来形成碳酸钙的外壳。虽然用氢氧化钙或钙反应器也能达到同样的目的,但相比之下加入氯化钙是最快的方法也是对水的pH值影响最小的。
食品
作为一种食品配料,氯化钙可起到多价螯合剂和固化剂的作用,它已被欧盟批准为允许作为食品添加剂使用,E编码为E509。被美国食品药品监督管理局认为是“通常确认为是安全的物质”(Generally recognized as safe,缩写为GRAS)。据估计每人每天摄入的氯化钙食品添加剂有160至345毫克。
氯化钙作为固化剂,可用于蔬菜罐头。它还能使大豆凝乳固化形成豆腐,又能作为烹饪分子美食的原料通过与海藻酸钠反应使蔬菜和水果汁表面胶化形成类似鱼子酱状的小球。作为电解质添加到运动饮料或一些软饮料包括瓶装水中。由于氯化钙本身有非常强的咸味所以可代替食盐用于腌黄瓜的制作同时又不增加食物钠含量的效果。氯化钙可降低冰点的属性在填充有焦糖的巧克力棒中被用来延缓焦糖的冻结。
在缺乏矿物质的啤酒酿造液中会加入氯化钙,因为钙离子是啤酒酿造过程中最具影响性的矿物质之一,它会影响麦芽汁的酸性并对酵母作用的发挥起到影响。而且氯化钙能给酿造出的啤酒带来甜味。
其他方面
水合氯化钙固体可作为相变储能材料使用。比如六水合氯化钙由于熔点为30℃、熔化热(即物质从固相转变为同温度的液相过程中所吸收的热量)达到190 KJ/mol,故可作为中低温用于工业余热回收、太阳辐射热量的吸收利用,但是它同所有的无机水合盐类相变材料类似,存在过冷严重的问题(其过冷度达20°C),需要加入添加成核剂克服。
氯化钙在混凝土中起到帮助加快初始设定的效果,但氯离子会引起钢筋腐蚀,所以氯化钙不能用于钢筋混凝土。无水氯化钙因其吸湿性可以给混凝土提供一定程度的水分。
氯化钙也是塑料和灭火器中的添加剂,在废水处理作为助滤剂,在高炉中作为添加剂来控制原料的聚集和粘附从而避免炉料沉降,在织物软化剂中起到稀释剂的作用。
氯化钙溶解放热的性质使得它用在自加热罐头和加热垫上。
石油工业中,氯化钙用于增加无固相盐水的密度,也能加在乳化钻井液的水相中用来抑制粘土的膨胀。作为助熔剂在戴维法电解熔融氯化钠生产金属钠的过程中作为助熔剂起到降低熔点的作用。制作陶瓷时会将氯化钙作为材料成分之一,它会使黏土颗粒在溶液中悬浮,这样注浆时陶土颗粒用起来更容易。
6注意事项
编辑
危险性概述
侵入途径:粉尘吸入,食入
健康危害:粉尘会灼烧、刺激鼻腔、口、喉,还可引起鼻出血和破坏鼻组织;干粉会刺激皮肤,溶液会严重刺激甚至灼伤皮肤
皮肤接触: 脱去污染的衣着,用大量流动清水冲洗。
眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。
吸入: 脱离现场至空气新鲜处。如呼吸困难,给输氧。就医。
食入:饮足量温水,催吐。就医。[23]
医疗注射引起高钙血症:心脏骤停。
应急处理
隔离泄漏污染区,限制出入。避免扬尘,小心扫起,置于袋中转移至安全场所或运至废物处理场所处置。[23]
操作注意事项
密闭操作,加强通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防尘口罩,避免产生粉尘。搬运时要轻装轻卸,防止包装及容器损坏。[23]
储存注意事项
储存于阴凉、通风的库房。包装容器必须密封,防止受潮。与潮解性物品分开堆放。[23]
7相关限量
编辑
1.GB 2760-96:罐头、豆制品的凝固剂,GMP;加工助剂。
GB 2760—2001:软饮料0.44~3.7g/kg;调制水100mg/L(以Ca计36rng/L)。
2.FAO/WHO(1984,mg/kg):番茄罐头,片装为800,整装为450(以Ca计);葡萄抽罐头350(以Ca计);青豌豆、草莓、水果色拉等罐头350(以Ca计);成熟豌豆罐头350(以Ca计);果酱和果冻200(以Ca计);低倍浓缩乳、甜炼乳、稀奶油,单用为2g/kg,与其他稳定剂合用3g/kg(无水物计);奶粉、奶油粉5g/kg(无水物计);酸黄瓜250;一般干酪为所用牛乳的200。
3.GB 14880—94:作为营养强化剂同“01202,甘油磷酸钙”。
4.FDA,§184.1193(2000):焙烤食品、乳制品0.3%;无醇饮料及饮料原浆10.22 %;干酪、加工水果和果汁、肉汁和沙司0.2%;咖啡和茶0.3294;糖食制品类0.4%;果酱和果冻0.1%;肉类制品0.25%;植物蛋白制品2.0%;加工蔬菜汁0.4%;其他食品0.05%。
5.USDA,9CFR,§381.7,§381.147(2000):浸渍或注射生肉块用的蛋白酶溶液,以未处理原料重量计,≤3%。
6.用作豆腐用凝固剂,在豆乳中添加4%~6%浓度的溶液,一般用量为20~25g氯化钙/L豆乳。用氯化钙溶液浸渍果蔬,经杀菌后其脆硬性好,并有护色效果。例如用于苹果、整装番茄、什锦蔬菜、冬瓜等罐头食品。
7.日本最高使用量2.2%(钙1%)。[20]
8毒物学
编辑
氯化钙因能使湿润的肌肤脱水而具有刺激性,固体的无水氯化钙溶解时大量放热,如被不慎摄入可致口腔和食道烧伤。摄入氯化钙的浓溶液或固体可引起胃肠道刺激或溃疡。[24]
9风险术语
编辑
R20吸入有害。
R21与皮肤接触有害。
R37刺激呼吸系统。
R38刺激皮肤。[25]
所以总的来说,氯化钙是碱性的
Ⅳ 生活污水处理设备有哪些
生活污水包括住宅小区、医院、疗养院、办公楼、商场、宾馆、饭店等,污水处理设备有一体化污水处理设备、钢筋混凝土污水处理站等。
Ⅳ 豆制品煮制废水COD高达50000,而且废水中含有氨基酸、蛋白质等物质,处理很浪费,有什么设备可以把它固化
呵呵 加点石膏 就像做豆腐脑那样
Ⅵ 豆腐机水处理设备的原理是什么为什么做的豆腐滑嫩好吃
采用水处理设备肯定是要过滤出干净的水,然后在制作的过程中不停的加水,它的效果肯定是显而易见的,比原来手工控制水的成分要简单方便得多。
“豆制品粉碎的目的是破坏大豆的组织结构,使大豆蛋白在水中解离溶解。过去,粉碎操作多采用石磨的方式,现在则采用豆腐机设备粉碎磨浆。”
豆制品粉碎的目的是破坏大豆的组织结构,使大豆蛋白在水中解离溶解。过去,粉碎操作多采用石磨的方式,现在则采用豆腐机设备粉碎磨浆。让我们来看看使用豆腐机设备研磨浆糊的好处。
豆腐机设备磨浆的好处如下:
1.在常用的豆制品设备中有研磨机。与石材研磨相比,这种研磨机不仅效率更高、控制更均匀,而且产量更高。
2.值得注意的是,大豆在研磨过程中的厚度对蛋白质的提取有很大的影响,研磨浆的加水量直接关系到大豆研磨的厚度和研磨糊的稠度。因此,粉碎过程中必须控制豆水比。
3、豆腐机设备用于研磨豆类,可以用水带动大豆在研磨机中起到润滑作用;在研磨机运行时,水可以起到冷却作用,防止大豆蛋白因受热变性;第三,可以使研磨变得细腻,在研磨作用下可以使水和大豆蛋白混合成均匀的胶体溶液。
以上3个方面的内容就是使用豆腐机设备研磨的好处。
豆腐机磨浆有什么优势?如何安全使用豆腐机?
豆腐机是专业生产豆腐的机械设备,也称为豆腐加工机械,豆腐机多功能加工设备等。下面我们介绍一下豆腐机械的安全要点,希望能帮助您更好地生产豆腐。
1.安全保护装置必须正确安装才能启动机器。
2.工作区域应宽敞,以确保通风和防火,操作人员应穿着整齐,长发应扎扎固定。严禁硬质碎片进入机器,以免对机器造成损坏。
3.检查机器时,机器必须关闭。如果发现零件损坏,应及时更换和修理。
4.定期检查电路的安全性和可靠性,确保操作人员的安全。
5.在操作过程中,应注意观察、检查和紧固传动部件的螺栓,以确保机器的安全工作。
6.在作业过程中,作物的投料应连续均匀,投料量适中,否则会影响作业的质量和效率。操作结束时不能立即停止,应继续运行3分钟,以便机器中的所有物料都可以停止,否则容易造成机器堵塞。
7.如果堵塞,请立即停止机器,等待机器完全停止后再进行清洁。
8.机器操作时,手和手臂不得接触滚筒,不得打开或拆除护罩,以免造成人身伤害。
Ⅶ 豆制品废水出水水质变黄是什么原因,但出水的cod含量依然很高,请各位大师帮忙。
1. 豆制品废水的氨氮、SS都不低,还有部分油份,所以在进生化池之前,必要的预处理少不了,建版议生权化池前设置气浮池;考虑你们是建成的项目,增加这种占地面积不大的气浮池(钢制成套设备)是可行的;
2. A/O工艺应为缺氧-好氧工艺,要控制好缺氧池的DO;
3. O池的硝化液必须设置回流,以提高氨氮去除效率等。
另外,O池污泥解絮的原因需要具体查明,建议从中毒、PH、曝气量太多等方面因素予以查明。
总体好氧40h的停留时间不短了。
Ⅷ 豆制品污水处理/豆腐污水好处理吗
豆制品食品厂在我国分布十分广泛,由于生产工艺简单,水污染不严重,豆制品的污水处理一直不被重视。但是,由于越来越现代化的密集型生产,导致豆制品企业排放的污水也开始对环境造成危害了,因此,豆制品污水处理设备也渐渐被人们所熟知。豆制品污水设备原理并不复杂,了解豆制品污水处理设备,就要先了解豆制品生产工艺以及排污情况。
豆制品的主要生产原料是大豆。晒干后的大豆经筛选去除杂质后,用水浸泡、淘洗去除灰份,漂洗至洁净,使其充分吸水膨胀,然后用打浆机磨碎,用水调成豆浆。豆浆蒸煮后,根据不同的产品,加人不同量的卤水,搅拌均匀,压滤脱水后,可制成各种豆腐制品。
豆制品废水处理设备豆腐生产工艺:风选一水洗一浸泡一煮浆一点卤一压滤一成品豆腐生产过程中的废水排放废水水量在豆腐生产的过程中,产生大量的废水,废水主要来源于水洗、浸泡和压滤过程,另有部分冲洗水废水。各股废水的水量和浓度会随着生产工艺、产品类别、生产习惯等的不同而不同。
我国的豆腐产量大,由豆腐生产而排放大量的废水,废水中的有机物污染物浓度高,对水环境污染严重,现在还没有很好的、专门化的处理技术,对此进行厌氧技术。采用厌氧为主的技术,处理豆腐废水,COD去除率高,操作管理简便,运行费用低,将是一种处理豆腐废水的首选技术。豆腐生产废水属于豆制品废水,豆制品废水处理方法有氧生物处理、好氧处理、厌氧-氧结合处理等。
豆制品废水处理设备厌氧生物处理豆制品废水处理的厌氧生物处理工艺有:厌氧滤床(AF)、厌氧流化床(AFB)、上流式厌氧污泥床(UASB)、折流板反应器(ABR)、两相厌氧处理工艺等。
当前的豆制品污水处理设备多数是一体化的复合型设备,体积小、结构简单,便于维护是豆制品污水处理设备的主要特点,由于其造价低廉,被行业内很多豆制品企业采购和使用。
采购豆制品污水处理设备http://www.nmgjlscl.com/Item/Show.asp?m=1&d=3080