Ⅰ 废水处理方法有哪些
废水处理方法有:
1、物理法:利用物理作用处理、分离和回收废水中的污染物。例如沉淀法(重力分离法)除去水中相对密度大于1的悬浮物;过滤法(滤网沙层活性碳)可除去水中的悬浮物;蒸发法用于浓缩废水中不挥发性和可溶性物质,另外还有离心分离法、汽浮(浮选)法、高梯度磁分离法等。
2、化学法:利用化学反应或物理化学作用处理回收可溶性废物或胶状物质。例如中和法用于中和酸性或碱性废水;萃取法利用可溶性废物在两相作用中溶解度不同的“分配”,回收酚类和重金属等;氧化还原法用来除去废水中还原性或氧化性污染物,杀灭天然水体中的病原菌。此外还有混凝法和化学沉淀法等。
3、物理化学法:吸附法、离子交换法、萃取法、膜析法、蒸发法。
4、生物法:利用微生物的生化作用处理废水中的有机污染物。例如,生物过滤法和活性污泥法来处理生活污水或有机生产废水,使有机物转化降解成无机盐而得到净化。还有生物膜法、生物塘法。
5、污泥土地处理法:用于有机质处理。污水灌溉,慢速下渗,快速下渗就要通过污水处理厂进行处理,然后在循环使用,用来冲厕所等用。
Ⅱ 废水处理方法
废水处理有物理处理法、化学处理法、生物处理法。
三、生物处理法。
1、通过微生物的代谢作用,使废水中呈溶液、胶体以及微细悬浮状态的有机污染物,转化为稳定、无害的物质的废水处理法。
2、根据作用微生物的不同,生物处理法又可分为需氧生物处理和厌氧生物处理两种类型。
3、废水生物处理广泛使用的是需氧生物处理法,按传统,需氧生物处理法又分为活性污泥法和生物膜法两类。
4、活性污泥法本身就是一种处理单元,它有多种运行方式。属于生物膜法的处理设备有生物滤池、生物转盘、生物接触氧化池以及生物流化床等。
Ⅲ 污水处理工艺流程介绍
污水处理一般原则是:改革工艺,减少污染,回收利用,综合防治,技术先进,经济合理等。在流程选择时应注重整体最优,而不只是追求某一环节的最优。
污水处理工艺流程介绍
一级处理:物理处理
机械(一级)处理工段包括格栅、沉砂池、初沉池等构筑物,以去除粗大颗粒和悬浮物为目的,处理的原理在于通过物理法实现固液分离,将污染物从污水中分离,这是普遍采用的污水处理方式。
机械(一级)处理是所有污水处理工艺流程必备工程(尽管有时有些工艺流程省去初沉池),城市污水一级处理BOD5和SS的典型去除率分别为25%和50%。
在生物除磷脱氮型污水处理厂,一般不推荐曝气沉砂池,以避免快速降解凯竖辩有机物的去除;在原污水水质特性不利于除磷脱氮的情况下,初沉的设置与否以及设置方式需要根据水质特性的后续工艺加以仔细分析和考虑,以保证和改善除磷除脱氮等后续工艺的进水水质。
二级处理:生物化学处理
污水生化处理属于二级处理,以去除不可沉悬浮物和溶解性可生物降解有机物为主要目的,其工艺构成多种多样,可分成活性污泥法、AB法、A/O法、A2/O法、SBR法、氧化沟法、稳定塘法、CASS法、土地处理法等多种处理方法。目前大多数城市污水处理厂都采用活性污泥法。
生物处理的原理是通过生物作用,尤其是微生物的作用,完成有机物的分解和生物体的合成,将有机污染物转变成无害的气体产物(CO2)、液体产物(水)以及富含有机物的固体产物(微生物群体或称生物污泥);多余的生物污泥在沉淀池中经沉淀池固液分离,从净化后的污水中除去。
三级处理:污水的深度处理
三级处理是对水的深度处理,是继二级处理以后的废水处理过程,是污水最高处理措施。现在的我国的污水处理厂投盯缺入实际应用的并不多。
它将经过二级处理的水进行脱氮、脱磷处理,用活性炭吸附法或反渗透法等去除水中的剩余污染物,并用臭氧或氯消毒杀灭细菌和病毒,然后将处理水送入中水道,作为冲洗厕所、喷洒街道、浇灌绿化带、工业用水、防火等水源。
由此可见,污水处理工艺的作用仅仅是通过生物降解转化作用和固液分离,在使污水得到净化的同时将污染物富集到污泥中,包括一级处理工段产生的初沉污泥、二级处理工段产生的剩余活性污泥以及三级处理产生的化学污泥。
由于这些污泥含有大量的有机物和病原体,而且极易腐败发臭,很容易造成二次污染,消除污染的任务尚未完成。污泥必须经过一定的减容、减量和稳定化无害化处理井妥善处置。污泥处理处置的成功与否对污水厂有重要的影响,必须重视。
如果污泥不进行处理,污泥将不得不随处理后的出水排放,污水厂的净化效果也就会被抵消掉。所以在实际的应用过程中,污水处理过程中的污泥处理也是相当关键的。
处理方法
生物除磷
在经济发展过程中,我国的主要河流和湖泊由于受磷污染,富营养化严重,国家环保局为控制磷污染,对磷排放制定了比较严格的标准。化学强化生物除磷污水处理工艺以除去污水中有机污染物和各种形态的磷为主,此污水处理工艺将化学除磷和生物除磷一体化,通过厌氧消化生物系统中活性污泥产生挥发性有机酸,作为聚磷菌生长的基质或称之为营养物,使聚磷菌在活性污泥中选择性增殖,并将其回流到生物系统中,使纤丛生物污水处理系统工作在高效除磷状态;同时污泥在厌氧条件下产生的磷释放,通过化学除磷消除。这是一种高效市政污水处理工艺技术,满足了我国现阶段,为解决水体富营养化,需要在常规二级污水处理基础上进一步除磷的要求。
循环间隙
我国经济发展水平各地相差较大,经济发展滞后的城市还不能拿出很多资金用于污水治理,因此,怎样利用有限的资金,降低环境污染,是很多城市政府面临的问题。在污水处理方面,直到不久前,一些城市还采用一级或一级强化处理工艺技术,出水达不到国家二级排放标准对除去有机污染物的要求。
循环间歇曝气工艺充分发挥高负荷氧化沟处理效率高的优点,又充分利用序批式活性污泥污水处理工艺出水好的特点,保证了系统出水达到国家污水排放一级标准在除去有机污染物方面的要求。在投资和运行费用上比通常以除去有机污染物为主的二级生物污水处理系统降低30%左右,是适合我国现阶段污水处理要求的工艺技术。
旋转接触
旋转接触氧化污水处理工艺技术是在生物转盘技术基础上,结合生物接触氧化技术优点发展起来的新一代好氧生物膜处理技术。旋转接触氧化污水处理工艺技术和成套设备提供了一种简单和可靠的污水处理方法。整个污水处理系统中的转轴是唯一的转动部分,一旦机器出了故障,一般机械人员都可以进行维修。
系统生物量会根据有机负荷的变化而自动补偿。附在转盘上的微生物是有生命的,当污水中的有机物增加时,微生物随之增加,相反,当污水中的有机物减少时,微生物随之减少。所以这污水处理系统的工作效果不容易受到流量和负荷的突然变化和停电的影响。运行费用低,只有其他曝气污水处理系统耗电的八分之一到三分之一。占地面积仅相当常规活性污泥法一半。由于生物系统中生长的微生物种类多,能够高效处理各种难降解工业污水。
Ⅳ 氨氮废水处理的国内外现状
数字和公式都无法显示,给我邮箱给你发过去这篇期刊
氨氮废水处理技术现状及发展
许国强#,曾光明#,殷志伟!,张剑锋!
湖南大学环境科学与工程系,湖南长沙 湖南有色金属研究院,湖南长沙摘要) 系统地概述了氨氮废水处理技术现状及在工业中的应用情况,并在分析和评价的基础上探讨其发展趋势。
关键词) 氨氮废水;生物硝化;离子交换;氨吹脱;折点氯化
中
湖南有色金属
/# 前言
近年来,随着城市人口的日益膨胀和工农业的不断发展,水环境污染事故屡屡发生,对人、畜构成严重危害。许多湖泊和水库因氮、磷的排放造成水体富营养化,严重威胁到人类的生产生活和生态平衡。氨氮是引起水体富营养化的主要因素之一,为满足公众对环境质量要求的不断提高,国家对氮制订了越来越严格的排放标准,研究开发经济、高效的除氮处理技术已成为水污染控制工程领域研究的重点和热点。本文系统地阐述了氨氮废水处理现状和发展。
! 处理技术现状
氨氮存在于许多工业废水中,特别是钢铁、化肥、无机化工、铁合金、玻璃制造、肉类加工和饲料等生产过程,均排放氨氮废水,其浓度取决于原料性质、工艺流程、水的耗量及水的复用等。对一给定废
水,选择技术方案主要取决于:(#)水的性质;(!)处理效果;(,)经济效益。以及处理后出水的最后处置方法等。
虽然有许多方法都能有效地去除氨,如物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电渗析、电化学处理、催化裂解;生物方法有硝化及藻类养殖,但其应用于工业废水的处理,必须具有应用方便、处理性能稳定、适应于废水水质及比较经济等优点,因此,目前氨氮处理实用性较好的技术为:(#)生物脱氮法;(!)氨吹脱、汽提法;(,)折点氯化法;(%)离子交换
法; # < , =。!$ # 生物脱氮法
生物脱氮通常包括生物硝化和生物反硝化。
生物硝化是在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐和硝酸盐的过程。如果反应完全,氨氧化成硝酸盐分两阶段完成:开始,在亚硝酸菌的作用下使氨氧化成亚硝酸盐,亚硝酸菌属于强好氧性自养细菌,利用氨作为其唯一能源,方程式(#)为这个反应关系式。第二阶段,在硝酸菌的作用下,使亚硝酸盐转化为硝酸盐,硝酸菌是以亚硝酸作为唯一能源的特种自养细菌,方程式(!)为这个反应的关系式。整个硝化反应可以用总方程式(,)来表示。从此关系式中可看到要达到完全硝化,#$ & >? >?@1/, 1 A B 9(以氮计)就需要%$ C >? B 9的溶解氧。
!虽然有些异养生物也能进行硝化,但硝化中最主要的生物是亚硝酸菌属和硝酸菌属。硝化最佳E/值为’$ %,当E/ 在+$ ’ < ’$ " 范围时,为最佳速度的"&F。当温度从( G提高到,& G时,硝化速度也随之不断增加,而剩余溶解氧大于#$ & >? B 9 就足以维持这一反应。
反硝化就是在缺氧条件下,由于反硝化菌的作用,将和
. 还原为的过程。其过程的电子供体是各种碳源,若以甲醇作碳源为例,其反应式为:
对于硝化反应,温度对其影响比其它生物处理过程要大些,一般温度应维持在为宜。
用生物法处理含氨氮废水时,有机碳的相对浓度是考虑的主要因素,维持最佳碳氮比也是生物处理法成功的关键之一。若废水性质不宜直接进行生物处理,则采用物化法或物化. 生物联合法达到排放要求较为经济。
生物脱氮可去除多种含氮化合物,其处理效果稳定,不产生二次污染,而且比较经济,但有占地面积大、低温时效率低、易受有毒物质影响且运行管理比较麻烦等缺点。
氨吹脱、汽提法
吹脱、汽提法用于脱除水中溶解气体和某些挥发性物质。即将气体通入水中,使气水相互充分接触,使水中溶解气体和挥发性溶质穿过气液界面,向气相转移,从而达到脱除污染物的目的。常用空气或水蒸气作载气,前者称为吹脱,后者称为汽提。氨吹脱、汽提是一个传质过程,即在高0* 时,使废水与空气密切接触从而降低废水中氨浓度的过程,推动力来自空气中氨的分压与废水中氨浓度相当的平衡分压之间的差。
吹脱法一般采用吹脱池(也称曝气池)和吹脱塔两类设备,但吹脱池占地面积大,而且易污染周围环境,所以有毒气体的吹脱都采用塔式设备。汽提则都在塔式设备中进行。
自然吹脱法依靠水面与空气自然接触而脱除溶解性气体,它运用于溶解气体极度易解吸、水温较高、风速较大、有开阔地段和不产生二次污染的场合。此类池子兼有贮水作用。塔式设备中填料吹脱塔主要特征是在塔内装置一定高度的填料层,使具有大表面积的填充塔来达到气. 水间充分接触,利于气. 水间的传质过程。常用填料有木格板、纸质蜂窝、拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。废水被提升到填充塔的塔顶,并分布到填料的整个表面,水通过填料往下流,与气流逆向流动,废水在离开塔前,氨组分被部分汽提,但需保持进水的0* 值不变。空气中氨的分压随氨的去除程度增加而增加,随气水比增加而减少,对要求达到的任何氨去除程度,进口浓度、0* 和塔温度曲线图有一个最小的气水比。由于氨吹脱、汽提的同时起到了冷却塔的作用,气水比增加将同时降低出口冷水的温度,如果0* 低于1"/ 2 时,它会降低吹脱效果。
氨吹脱、汽提工艺具有流程简单、处理效果稳定、基建费和运行费较低等优点,但其缺点是生成水垢,在大规模的氨吹脱、汽提塔中,生成水垢是一个严重的操作问题。如果生成软质水垢,可以安装水的喷淋系统;而如果生成硬质水垢,不论用喷淋或刮刀均不能消除此问题。
(/ ! 折点氯化法
折点氯化法是投加过量的氯或次氯酸钠,使废水中氨完全氧化为$( 的方法。其反应可表示为
$当氯气通入废水中达到某一点,在该点时水中游离氯含量最低,而氨的浓度降为零。当)3( 通入量超过该点时,水中的游离氯就会增多。因此,该点为折点。处理时所需的实际氯气量取决于温度、0* 值
及氨氮浓度。折点氯化法处理后的出水在排放前一般需用活性炭或与%( 进行反氯化,以去除水中残余的氯。在反氯化时产生的氢离子而引起的0* 值下降一般可忽略,因为去除1 45 残余氯只消耗( 45 左右
的碱(以)6)%! 计)。活性炭去除残余氯的同时还具有去除其他有机物的优点。
此法效果最佳,不受水温影响,操作方便,投资省,但对于高浓度氨氮废水的处理运行成本很高。
(/ + 离子交换法
沸石是一种对氨离子有很强选择性的硅铝酸盐,一般作为离子交换树脂用于去除氨氮的为斜发沸石,其对离子的选择顺序依次为。
此法具有投资省、工艺简单、操作较为方便的优点,但对于高浓度的氨氮废水,会使树脂再生频繁而造成操作困难,且再生液仍为高浓度氨氮废水,需再处理。常用的离子交换系统有三种类型:(1)固定床;
(()混合床;(!)移动床A ! B。
(/ +/ 1 固定床
在此系统中,溶液的去离子过程为二阶段间歇
过程。溶液通过阳树脂床时阳离子与氢离子交换生
成酸溶液,然后此溶液再通过阴树脂床,以去除阴离
子。交换能力将耗尽时,树脂在原位再生,经常采用
向下流再生法,此法操作可靠方便,但其化学效率相
对较低,容积较大,联系到树脂用量大,有时为了适应连续流的要求,还需要有储备装置,因而投资费用
较高。
#$ %$ # 混合床
混合床系统用一步法来去除溶液中的离子。溶
液流过阳、阴树脂充分混合的混合床。混合床的再生
比两个单生床再生要复杂一些,因为在再生前必须
将两种树脂分开。在水力学上可利用两种树脂的比
重差用水力反洗使其分层。虽然混合床的化学效率
较高,但它需要大量的清洗水。这对节约用水不利,
另外将交换离子作为回收产品收集时,回收液稀,其
浓缩费用也很高。
#$ %$ ! 移动床
移动床系统通过二阶段过程来去除溶液中的离
子。在这两个过程中,虽然实际上工作流体处理的水
是间歇的,而它的效果却是连续的。首先溶液和阳树
脂逆向流动,阳树脂脉动通过容器,新鲜树脂从一端
补充,用过的树脂从另一端排出,在此过程中完成离
子交换和树脂再生。然后溶液游向流过一个与上面
相似的阴树脂移动床来完成阴离子的交换。
#$ & 化学沉淀法’ % (
化学沉淀法从#) 世纪*) 年代就开始应用于废
水处理,随着对化学沉淀法的不断研究,发现化学沉
淀法最好使用+!,-% 和./-。其基本原理是向0+%
1
废水中投加./# 1 和,-%
! 2 ,使之和0+%
1 生成难溶复
盐./0+%,-%·*+#-3 简称.4,5 结晶,再通过重力
沉淀使.4, 从废水中分离。这样可以避免往废水中
带入其它有害离子,而且./- 还起到了一定程度的
中和+1 的作用,节约了碱的用量。经化学沉淀后,若
0+%
1 60 和,-%
! 2 的残留浓度还比较高,则有研究建
议化学沉淀放在生物处理前,经过生物处理后0 和
, 的含量可进一步降低。产物.4, 为圆柱形晶体,
无吸湿性,在空气中很快干燥,沉淀过程中很少吸收
有毒物质,不吸收重金属和有机物。另外,.4, 溶解
度随着7+ 的升高而降低;温度越低,.4, 溶解度也
越低。
化学沉淀法可以处理各种浓度氨氮废水。其与
生物法结合处理高浓度氨氮废水,曝气池不需达到
硝化阶段,曝气池体积比硝化2 反硝化法可以减小
约一倍。0+%
1 60 在化学沉淀法中被沉淀去除,与硝
化6 反硝化法相比,能耗大大节省,反应也不受温度
限制,不受有毒物质的干扰,其产物.4, 还可用作
肥料,可在一定程度上降低处理费用。因此,.4, 沉
淀法是一种技术可行、经济合理的方法,很有开发前
景,但要广泛应用于工业废水处理,尚需解决以下两
个问题:(")寻找价廉高效的沉淀剂;(#)开发.4,
作为肥料的价值。
! 工业应用
氨氮处理技术的选择与氨氮浓度密切相关。对
于低浓度氨氮废水处理,应用较多的方法是空气吹
脱法、离子交换法、生物硝化和反硝化法等,其中
对于无机类氨氮废水的处理,以前两种方法应用较
多;而对于有机类氨氮废水的处理,则以生物硝化
和反硝化法为主。
!$ " 低浓度氨氮废水
!$ "$ " 天然沸石离子交换法’ & (
天然沸石为一种骨架状的铝硅酸盐,具有离子
交换特性,尤其是对0+%
1 具有特殊的选择性;还具
有良好的热稳定性和耐酸性,在高温或强酸条件下,
晶格仍可保持稳定。天然沸石离子交换法处理氨氮
废水具有工艺简单、操作方便、投资少等特点,一般
来说,对于氨碱厂和一些工艺比较先进、管理水平较
高的联碱厂,部分高浓度含氨再生液均可返回到生
产系统中去,这样既能简化整个污水处理工艺流程,
也能大幅度降低污水处理成本。但对合成氨及其他
氨加工行业不能返回工艺中的高浓度含氨再生液,
必须进行空气吹脱(吹脱气经+#8-% 吸收后排空)、
蒸馏等方法处理后使之循环使用。空气吹脱费用低,
但受到环境制约,而蒸馏法则不受环境影响,但费用
较高,硫酸吸收吹脱气中氨所得硫酸铵可作为复合
肥料生产的原料使用,而蒸馏所回收氨则可返回到
生产系统。
!$ "$ # 生物脱氮法
!$ "$ #$ " 在焦化废水中的应用
氨氮是焦化废水中的主要污染物之一,目前来
说,生物脱氮基本流程为4—4—- 工艺’ * (,焦化废
水含有高浓度0+!60 和有机物,其中很多物质具有
较强生物毒性,从而对硝化、反硝化过程有抑制作
用。所以应对硝化菌进行驯化,使其逐步适应高浓度
焦化废水环境,防止废水中有机物及0+! 对硝化菌
的抑制。综合考虑到0+!60 和9-: 的去除,厌氧处
理部分能通过厌氧水解和酸化菌群的作用改变废水
中有机物成分来提高废水的可生化性,便于后续工
序的良好运行。一般亚硝酸菌比硝酸菌有较强的环
境适应能力及耐受毒物能力,容易出现积累现象,所
以一般应防止水质的大幅度波动和长时间的冲击。由于%&!
’ 对环境也有一定的危害,会引起水体富营
养化,所以应对%&!
’ 的排放进行一定控制,可以进
一步反硝化处理,使%&!
’ 转化为%"。对于(—(—&
工艺的处理效果,回流比、碳氮比、溶解氧、)* 和温
度等都是主要因素,这些都应该视废水的水质而
定。
!+ #+ "+ " 在炼油废水中的应用
国内有的炼油厂废水处理采用隔油池—气浮池
—生物滤塔—活性污泥池处理,其实这种工艺对
,&-、,%、.&-、石油类、挥发酚、悬浮物的去除效果
较好,但对氨氮的降解效果很差,致使出水中%*!/%
不能达到国家排放标准。经过中试研究,提出& 0 &
和( 0 & 生化处理工艺,其结果表明这两种工艺都能
使处理后出水的%*!/% 以及其它控制指标达到国家
排放标准。& 0 & 工艺流程为:炼厂隔油出水—气浮
池—一氧池—一沉池—硝化池—二沉池—处理后废
水(外排),其主要生化系统包括一氧池和硝化池。一
氧池中优势菌种为异养菌,通过代谢活动降解有机
物,而硝化池中的优势菌种为硝化菌,主要将%*!/%
转化为%&!
’ 。( 0 & 工艺流程为:炼厂隔油出水—气
浮池—调节池—缺氧池—一沉池—硝化池—二沉池
—处理后废水(外排),其中处理后废水部分回流至
调节池与气浮出水混合。其生化系统主要包括硝化
池和缺氧池,硝化池中的优势菌种为硝化菌,主要将
氨态氮转化为硝态氮;缺氧池中优势菌种为反硝化
菌,使硝化池部分回流水和气浮出水的混合水中硝
态氮转化为%",并降解有机物。这两种工艺相对来说
运行比较稳定,耐冲击力较强。
!+ " 高浓度氨氮废水
对于较高浓度氨氮废水用一种方法处理,很难
达到国家排放标准,所以对于高浓度氨氮废水可用
联合法处理以达到排放要求。
!+ "+ # 吹脱法1 生物法应用
某些制药厂由于工艺原因产生的部分高浓度氨
氮废水,不适宜于直接用生物硝化处理,处理后很难
达到排放标准,但基于各种方法的比较研究,若对氨
氮废水先进行吹脱,大大降低%*!/% 浓度,后与其它
废水混合进入生化处理系统进一步处理,则出水水
质将会大有改观,只是废水中氨氮通常以氨离子和
游离氨形态相互平衡存在,)* 值为中性时主要以
%*2
1 存在,碱性时主要以%*! 形式存在。吹脱效率
与)* 值和温度有直接关系,应该做试验确定最佳吹
脱条件,达到最佳效果。
!+ "+ " 吹脱法1 折点氯化应用
对于某材料厂的%*2,3 工业废水的研究比较,
单一的吹脱法处理无法达到排放要求,采用闭路吹
脱盐酸液吸收回收%*2,3 与折点加氯法4 $ 5 联合使
用,既可达到较好的处理效果,又能回收液态或固态
氯化胺返回工艺使用或外销,大大降低了处理成
本。其折点加氯法化学反应式如下:
%*2
1 1 *&,3*%*",3(一氯胺)1 *"& 1 *1
%*",3 1 *&,3*%*,3"
(二氯胺)1 *"&
%*,3" 1 *&,3*%,3! 6 三氯胺或三氯化氮)1 *"&
一氯胺进一步氧化为氮:
"%*",3 1 *&,3*%" 1 *"& 1 !*1 1 !,3 ’
二氯胺经下列反应生成硝酸盐:
%*,3" 1 *"&*%*(&*)1 *1 1 ",3 ’
%*(&*),3 1 "*&,3*%&!
’ 1 !,3 ’ 1 2*1
三氯胺在水中是呈稳定状态的。吹脱的含氮气
体用盐酸溶液进行二段循环吸收,反应为:
%*! 1 *,3*%*2,3
该方法既回收了有价物质,又消除了二次污染,
其工艺是脱氨氮的理想方法。
综上所述,氨氮废水治理技术的主要方法是生
物脱氮法和吹脱法及它们的联合应用,作者认为:氨
氮废水治理技术发展重点是改善现有工艺条件,降
低成本,同时开发新的治理方法。有研究指出4 7 5,鉴
于考虑到生物脱氮反硝化过程中可能出现的碳源不
足及硝化过程中可能出现的%&"
’ 的积累,如果人为
地加以引导,使%*! 以%*! %&"
’ %" 的脱氮
途径进行,即以%&"
’ 作为硝化反应的终点,则无凝
可以降低能耗,若需要外加碳源时,还可以降低脱氮
对有机碳源数量的要求。当然,生物脱氮是一个十分
复杂的生化过程,不易控制,对于以%&"
’ 作为硝化
终点的脱氮过程有待进一步研究。另外,在曝气池中
使用悬浮填料4 #8 5 也是现今的研究开发方向,但还较
少应用于工业废水方面,其密度接近于水,使用时直
接加于曝气池中,在曝气时悬浮于水中并均匀全池
流化,使固、液、气三相充分接触,污染物质被很快降
解,悬浮填料生物膜( 0 & 工艺可提高耐冲击力且只
需回流二沉池中硝化水,而无须污泥回流,动力消耗
低,运行管理方便。
2 结语
对氨氮废水的处理,至今还没有寻找到一种通
用的有效方法。目前,无论是用物化法、生物法或物化T 生物联合法处理废水,对其处理技术的正确选
择应从以下几点综合考虑:
1 提供改进生产技术和改变生产原料以减少废水量及降低氨氮浓度的机会;
2与优化的水利用计划、良好的工厂管理及可能的副产品回收相结合;
3用其它方法代替,包括物化法和生物法;
4能够经济地处理废水中的氨氮。
Ⅳ 生物膜反应器的生物膜反应器微生物量的测量
在正常运行状况下,复合生物反应器下部是固定生物膜滤床,上部是移动床,其微生物量为:
1、CBBR混合液SS为1 604 mg/L,总量约为2.456 g。
2、固定填料生物膜总量为12.036 g。
3、移动床悬浮填料生物膜总量为1.428 g。
4、CBBR微生物总量约为15.92 g。
该工艺对污水除臭起到了很大作用,它的除臭工艺简单且效果显出。复合生物反应器与其他污水处理设备相结合,降低污水处理难度,从而改善周边环境,有效遏制病菌的传播。随着医疗技术的不断提高,新型药剂的产生将继续加大污水处理难度,所以水处理技术仍需随之提升,满足时代发展需求。
4 MBR研究进展
目前,MBR的研究主要集中在以下几个方面:(1)降低膜污染,提高膜通量;(2)探求合适的工作条件和工艺参数;(3)降低处理工艺的运行成本。
张少辉, 郑平, 华玉妹〔1〕用反硝化生物膜启动厌氧氨氧化反应器的研究等选取不同截留分子量的聚醚砜膜(PES),采用板框式膜组件构成的厌氧MBR对高浓度食品废水进行处理,考察了截留分子量对膜通量和出水效果的影响。
王荣昌,文湘华,钱易〔2〕 分析了生物膜反应器中好氧颗粒污泥形成机理,研究了MBR运行条件对膜过滤特性的影响。
杨玉旺〔3〕研究了移动床生物膜反应器处理污水的研究应用进展。
邢传宏等进行了管式MBR(分置式)处理城市污水的工艺设计,认为运行成本主要由电费、药剂费和人工费等3部分组成。其中电费是最主要的,电耗为2.3kW·h/m3。
鲁敏,曾庆福,张跃武〔4〕对一种新型生物膜反应器处理污水的研究发生了浓厚兴趣。
王亚娥等分析了影响超滤膜通量和过滤阻力的主要因素。
杨磊等对MBR运行过程中的膜污染和清洗进行了较详尽的试验。
李军, 彭永臻, 杨秀山 ,王宝贞 ,杨海燕〔5〕着重研究了序批式生物膜法反硝化除磷特性及其机理。
姜苏等〔6〕研究了一体化A/O生物膜法处理生活污水。
白宇等〔7〕研究分析了污水深度处理生物滤层中菌群的时空分布特征。
陈壁波等〔8〕对移动床生物膜反应器及对造纸废水处理的意义进行了卓有成效的研究论证。
Cote P 研究了浸没式膜系统的电耗,包括抽吸泵及曝气2部分。每立方米产水仅耗电0.3~0.6 kW·h,而电耗是运行费用的主要部分。
荣宏伟等〔9〕在实验室条件下对序批式生物膜法生物除磷进行了试验研究,得出了令人期待的结论。
Wang L-Choo Ho等比较了浸没式和分置式MBR工艺运行时的电耗,结果是,在通量为18L/(m2·h)的情况下,前者电耗仅为0.2~0.4 kW·h /m3,而后者电耗为2~10 kW·h /m3。
鲍立宁等〔10〕在电极生物膜脱氮工艺中反硝化菌相分析方面进行了研究。
MBR因自身特殊的工艺也要求了不同于一般的超、微滤膜材料,但制备针对于MBR所用的膜材料的研究还很少。显然选择合适的膜材料是降低膜污染的一个重要方法,这还有待于进一步研究。
5 MBR应用实例
随着研究的深入,国内外已有了MBR应用的实例。实践表明,膜污染严重、水通量低,是限制MBR推广应用最主要的原因。
加拿大Cote P等 报道了北美洲在20世纪90年代MBR发展的概况。其中ZENON环保公司在1996年推出了组件膜面积为46m2、体积密度为63m2/m3的ZW-500型膜生物反应器,该设备已成功地应用于市政污水处理。目前以小规模装置为主,处理能力为10~200m3/d,主要在办公楼、购物中心、学校、医院和疗养地推广使用。装置的水力停留时间(HRT)为24h,SRT为1~2年。滤出液经过紫外线消毒或活性炭吸附后,用作厕所冲洗水。在安大略省建成的日处理污水3 800m3的MBR装置,安装了ZW-500型膜组件144个,总膜面积6624m2。曝气池体积440m3,正常HRT为3.8h;厌氧反应池体积为380m3,HRT为2.4h。运行期间的MLSS浓度为12 000~20 000mg/L,MLVSS浓度仅为MLSS的55%~70%。运行9个月以来出水BOD和有机磷的去除率都接近100%。
日本自1998年以来,着重推广了中水道系统的开发利用。其目的主要是将以厨房排水、洗脸及洗澡后的排水为主体的楼房排水进行处理,然后作为厕所冲洗水再利用。比如,日立工厂建设公司用高浓度活性污泥法和旋转平板超滤膜装置组合而成的系统作为大楼中水道的回用系统。因为膜板旋转,使膜表面的污泥被搅拌,从而可控制膜面污染。
天津清华德人环境公司和天津大学共同研制的MBR已有了一些的应用实例。以处理天津某写字楼排放的污水为例,该写字楼的建筑面积约为17 000m2,采用了日处理能力为25m3 的装置,设备本体占地3.2m2,投资10余万元,能耗为0.8kW·h/m3。处理出水可用作冲厕、绿化及洗车等。
郑斐等〔11〕研制出生物膜法的新工艺—无泡曝气膜生物反应器。
吕晓辉等〔12〕对移动床生物膜反应器脱氮除磷技术情有独衷,使脱氮除磷效率又有了较大的发展。
6结语 1 MBR综合了膜分离技术和生物处理技术的优点,超、微滤膜组件能替代CAS中的二沉池,更有效地进行泥水分离,并延长SRT,提高微生物对污水中有机物的处理能力。经超、微滤膜处理后出水水质好可以直接用于非饮用水回用。系统占地面积小,几乎不排剩余污泥,具有较高的抗冲击能力。 2 MBR具有一定的实用性,但膜污染仍是制约MBR推广应用的最主要因素。因为MBR中膜材料既要面临活性污泥、污水中固体颗粒的污染,又要面临活性污泥中微生物的侵蚀。虽可以通过控制抽停时间、曝气量等工艺参数以及采用适当的清洗技术来减少膜面的污染,但最有效、最根本的方法是研制出一种抗污染、耐微生物侵蚀的新的膜材料及对膜进行适当的改性。 3 在应用MBR技术处理市政、生活污水并实现中水回用时,还要考虑另外一个关键因素,即运行成本。因此,在研究中要始终将运行成本。作为考虑试验方案和确定试验结果的主要出发点。 7参考文献
1张少辉, 郑平, 华玉妹. 反硝化生物膜启动厌氧氨氧化反应器的研究. 环境科学学报,2004,24(2):220~224
2王荣昌,文湘华,钱易. 生物膜反应器中好氧颗粒污泥形成机理. 中国给水排水,2004,20(3):5~8.
3杨玉旺.移动床生物膜反应器处理污水的研究应用进展. 工业水处理,2004,24(2):12~15.
4 鲁 敏,曾庆福,张跃武. 一种新型生物膜反应器处理污水的研究. 中国给水排水,2004,17(4):5~8.
5 李 军, 彭永臻, 杨秀山 ,王宝贞 ,杨海燕. 序批式生物膜法反硝化除磷特性及其机理. 中国环境科学 2004,24(2):219~223。
6 姜苏, 周集体, 郭海燕, 张志勇. 一体化A/O生物膜法处理生活污水. 中国给水排水,2004,20(5):56~58.
7 白宇, 张杰, 闫立龙, 陈淑芳, 郜玉楠. 污水深度处理生物滤层中菌群的时空分布特征. 城市环境与城市,2004,17(4):21~23.
8 陈壁波,李友明. 移动床生物膜反应器及对造纸废水处理的意义. 中国造纸,2004,23(8):47~50.
9 荣宏伟, 吕炳南, 张子辉. 序批式生物膜法生物除磷的试验研究. 湘潭矿业学院学报,2004,19(1):88~91.
10 鲍立宁, 洪桂云, 黄显怀. 电极生物膜脱氮工艺中反硝化菌相分析. 安徽建筑工业学院学报(自然科学版), 2004,12(5):1~4.
11 郑斐,朱文亭. 生物膜法新工艺—无泡曝气膜生物反应器. 工业用水与废水,2004,35(3):11~14.
12吕晓辉, 胡龙兴. 移动床生物膜反应器脱氮除磷技术. 化学工程师,2004,108(9):20~22
Ⅵ 工业废水如何处理
含有剧毒物质废水,如含有一些重金属、放射性物质、高浓度酚、氰等废水应与其他废水分流,以便于处理和回收有用物质。一些流量大而污染轻的废水如冷却废水,不宜排入下水道,以免增加城市下水道和废水处理厂的负荷。这类废水应在厂内经适当处理后循环使用。
含有剧毒物质废水,如含有一些重金属、放射性物质、高浓度酚、氰等废水应与其他废水分流,以便于处理和回收有用物质。
一些流量大而污染轻的废水如冷却废水,不宜排入下水道神饥,以免增加城市下水道和废水处理厂的负荷。这类废水应在厂内经适当处理后循环使用。
在使用有毒原料以及产生有毒的中间产物和产耐芹品的生产过程中,采用合理的工艺流程和设备,并实行严格的操作和监督,消除漏逸,尽量减少流失量。
最昌瞎毕根本的是改革生产工艺,尽可能在生产过程中杜绝有毒有害废水的产生。如以无毒用料或产品取代有毒用料或产品。
Ⅶ 废水处理流程
具体如下。
废水处理工艺流程一般分为三级:一级处理采用物理处理方法,即用格栅、筛网、沉沙池、沉淀池、隔油池等构筑物,去除废水中的固体悬浮物、浮油,初步调整pH值,减轻废水的腐化程度。二级处理是采用生物处理方法及某些化学方法来去除废水中的可降解有机物和部分胶体污染物。经过二级处理后,废水中BOD的去除率可达80-90%。
污水处理工艺流程是用于某种污水处理的工艺方法的组合。通常根据污水的水质和水量,回收的经济价值,排放标准及其他社会、经济条件,经过分析和比较,必要时,还需要进行试验研究,决定所采用的处理流程。一般原则是:改革工艺,减少污染,回收利用,综合防治,技术磨哗先进,经济合理等。在流余升程选择时应注重整体最优,而不只是追求某一环节的最优。瞎毁行
Ⅷ 废水如何处理
1、用物理处理法处理废水。回收并分离废水中的可溶性物体,可以采用重力分离、离心分离等。2、用化学处理法处理废水。通过化学反应分离废水,需要不断的消耗化学原料,消耗大但成本低、操作简便。3、用筛滤法处理废水。用筛网等设备去除废水中的悬浮污染物。4、用沉淀法处理废水。利用重力沉积分离悬浮污染物和废水。5、用活性污泥去除废水。用废水中的有机污染物,在持续供养的条件下将微生物混合培养,从而形成活性污泥,达到去除废水的作用。
Ⅸ 废水处理的方法
以下是废水处理方法:
通过物理作用分离、回收废水中不溶解的悬浮状态污染物(包括油膜和油珠)的方法,可分为重力分离法、离心分离法和筛滤截留法等。
属于重力分离法的处理单元有沉淀、上浮(气浮)等,相应使用的处理设备是沉砂池、沉淀池、隔油池、气浮池及其附属装置等。离心分离法本身就是一种处理单元,使用的处理装置有离心分离机和水旋分离器等。
筛滤截留法有栅筛截留和过滤两种处理单元,前者使用的处理设备是格栅、筛网,而后者使用的是砂滤池和微孔滤机等。
以热交换原理为基础的处理方法也属于物理处理法,其处理单元有蒸发、结晶等。一种去除废水中有机物的方法是活性炭吸附法。活性炭处理可以与活性污泥法一同使用,在这一过程中使用粉末活性炭。粉末活性炭可吸附那些对微生物有毒的物质,并最终同污泥一起收集。活性炭法在污水处理过程中存在的最主要的危险是失效的活性炭可能一直存在于水中。
Ⅹ 污水处理厂的废水怎么处理污水处理厂的废水是如何处理的
1、城市废水的一般处理工艺流程:其主要任务是去除城市废水羡蔽旦中含有的悬浮物和溶解性有机物。一般处理工艺流程,根据不同的处理程度,可分为预处理、一级处理、二级处理和三级处理。
(1)预处理:主要工艺包括格栅、沉砂池,用于去除城市污水中的粗大悬浮物和比重大的无机砂粒,以保护后续处理设施正常运行并减轻负荷。
(2)一级处理:一级处理一般为物理处理,主要去除污水中的悬浮状固体物质。悬浮物去除率为50%~70%,有机物去除率为25%左右,一般达不并肢到排放标准。因此一级处理属于二级处理的前处理。主要工艺为沉淀池。
(3)二级处理:二级处理为生物处理,用于大幅度去除污水中呈兄扰胶体或溶解性的有机物,有机物去除率可达90%以上,处理后出水BOD可降至20~30毫克/升,达到国家规定的污水排放标准。主要工艺有活性污泥法、生物膜法等。
(4)三级处理:在二级处理之后,用于进一步去除残存在废水中的有机物和氮磷,以满足更严格的废水排放要求或回用要求。采用的工艺有生物除氮脱磷法,或混凝沉淀、过滤、吸附等一些物化方法。
2、工业废水的处理工艺流程:由于工业废水水质成分复杂,且随行业、生产工艺流程、原料的变化而变化,故没有通用的工艺流程。