Ⅰ 腌制品污水怎么处理好
腌制废水处理相对较难,主要是废水中含盐会抑制细菌生长,我们做的榨菜废水处理项目出水非常好,盐度采用稀释法。还有一种是做泡椒鸡爪之类的废水也很成功。
Ⅱ 减小腌制榨菜对环境污染的措施
废气方面:应将腌制过程的废气使用集气罩或其他设施集中收集后进行处理,处理后的废气使用排气筒有组织排放。
废水方面:建设污水处理站或购置污水处理设施进行废水的处理,保证外排废水达标排放;搞好厂内特别是生产区、固废集中存放区的防雨和防渗工作,保证地下水不被污染。
固废方面:产生的废料或其他固体废物集中收集后统一处理,不能随意堆放。
Ⅲ 请问哪位同仁有腌制厂废水的处理工艺其盐含量2000mg/l_2500mg/l
腌制废水含盐高,高盐抑制生物的生长,最简单的处理方式是清水稀释,其次是蒸发或钠滤等,目的是降低盐份,或者将废水中的盐分离出来,由于清水的浪费,加上蒸发运行成本过高,以袭蚂及钠滤浓盐水的处理难度使不少用户望而确步。
协同催化氧化法,致使高浓度、难降解、不易侍举生化的废水无选择地氧化成CO2、H2O或矿物盐,并能卓有成效地脱色、脱氮、除磷及氧化重金属和难降解有毒、有机物,同时提高可生化生性,越过高盐拍谈埋抑制,已在腌制、卤制等高盐、高氨氮、高浓度废水中得到成功应用。
我手头有贵州长城环保科技有限公司和重庆楚天环保科技有限公司对腌制、卤制等高盐、高氨氮、高浓度废水处理工艺,但没有电子板,如果需要,请与他们联系。
Ⅳ 高盐废水处理
供参考:
一、前言
台湾腌渍酸菜的过程常伴随着含高盐分的废水,早期因酸菜腌渍桶都设置在农田旁,在经过45 天的腌渍,取出酸菜成品后,农民会直接将含高盐分的酸菜废水倒入农田旁,常会造成土壤严重盐化而导致无法耕作,形成严重的环境污染。
目前处理这些废水,所使用的方式为热处理,就是将废水加热,去除水分,达到减量之目的,但须耗费大量能源,增加处理废水的成本。若能利用厌氧处理,将含盐废水中的有机质转变为可利用的甲烷,再以甲烷做为其加热处理时的燃料,将可降低其处理成本。
但废水中的盐分常会抑制微生物的生长,所以生物处理有其难度。Lefebure (2006)指出,若是缓慢的在废水中增加盐分,让微生物产生适应性,可以使微生物在含盐的废水下具有处理能力,但目前在盐分对于甲烷菌的影响,以及和甲烷产量相关的研究并不多,因此本研究之目的在于:
1. 探讨菌种可承受的最高盐度以及
2. 探讨甲烷产率,有机物去除率和盐度的关系,以作为未来设计含盐废水处理程序的参考。
二、实验设备与方法
(一) 实验设备
本研究中我们采用的是厌氧滤床,而厌氧消化系统的设置,包括厌氧反应槽、进出流设备、菌种产生的气体测量及收集设备、温度控制及填充介质等。为了配合此含盐废水实验,使用海水养虾池之底泥,经过驯养后取出做为处理含盐废水处理之菌种。废水则采用人工废液,经驯养后再进进批次实验,各批次则逐渐增加盐分的浓度,人工废水配置后存于4℃冰箱中避免微生物孳生。
(二) 实验方法
1. 起动测试
实验开始时,先在不加盐的状况下操作,观察菌种的生长情形,并缓慢增加HRT,取样时取出上澄液检测其PH 及COD,记录其气体产量,和甲烷含量等。
第二阶段为盐度测试,在每次进流前,先记录气体产量,之后从气体取样瓶中抽取1c.c.气体,注入气相层析仪(GC8700T-TCD,中国层析,台湾),进行气体分析。完成气体分析后,再进行进出流程序:
(1) 取样:先摇晃反应器使均匀后,取出500 ml 的液体,再经过2 分钟的自然沉淀,取出上澄液,利用量瓶取出当日出流量。
(2) 进流:在取样完之后,加入进流之人工废液,并将过量而余留的上澄液利用泵浦打回反应槽,维持反应槽总体积5 公升。
2. 加盐测试
添加盐分的实验分别进行0.5%,1.0%及3.0%三个批次(图1)。本研究每天取样两次,每个样本分别分析pH、COD 及TDS,在进行含盐废水的试验时,则再加测TS 和盐度。
http://tyh.1.blog.163.com/blog/static/74145910201332243622631/
Ⅳ 腌制咸鸭蛋设备及流程,废水怎么处理
记忆中姥姥家没有来断过腌咸鸭蛋,特源别喜欢吃她腌的咸鸭蛋。做法很简单,1.找个可以密封不透光的容器洗干净,放满清水倒入小半袋盐(这个大约20多个鸭蛋的量),盐你要根据鸭蛋数适当的增减。水中只放盐,其他的东西不要放。
2.洗干净鸭蛋。
3.把洗好的鸭蛋放到盛水的容器中,如果你想快点吃到腌好的鸭蛋可以为鸭蛋轻轻磕开一点点,不要磕破也不用有长裂缝,只是很小很小一点点的裂痕,方便腌制。当然可以不磕破的。
4.盖紧盖子密封好,放置到一个地方。
5.静等鸭蛋腌好,磕破的15-20天,不破的20-30天。OK鸭蛋腌制完成了。
关于废水,因为只是盐水,没啥危害吧!
Ⅵ 如何去除氯离子
随着我国经济的发展,一方面我国水资源的需求量在急剧增加,另一方面我国水污染情况又越来越严重。在这样的水环境情况下,人们对水污染处理技术的关注程度越来越高,COD、BOD、氮、磷、重金属等污染物的去除技术得到了极大的发展,而工业废水中氯离子由于其不被微生物所利用,其去除技术相对较少。我国《污水综合排放标准(GB8978-1996)》[1]中并没对氯化物排放进行限定,大量的氯化物进入环境对环境和生物造成严重的危害,因此研究氯离子的去除技术对保护环境和生物都很有意义。
1氯离子的来源及危害
Cl-可与Na+、Ca2+、Mg2+、K+等的离子形成氯化物。地表水中氯化物的来源有自然源和人为源两类。自然源主要有两种:一是水源流过含氯化物地层,导致食盐矿床和其他含氯沉积物溶解于水;二是接近海洋的河流或江水受到潮水和海水吹来的风的影响,导致水中氯化物含量增加。人为源主要有采矿、石油化工、食品、冶金、制革(鞣革)、化学制药、造纸、纺织、油漆、颜料和机械制造等行业所排放的工业废水以及人类生活所产生的生活污水,其中工业排放是最主要来源。
工业废水中氯化物含量较高,如泡菜行业腌渍废水氯离子浓度可达1153000mg/L[2],如不加控制直接排入水体,将严重危害水环境、破坏水平衡,影响水质,对渔业生产、农业灌溉、淡水资源造成影响,严重时甚至会污染地下水和引用水源。比如,水中氯化物含量过高时,会腐蚀金属管道和构筑物、妨碍植物生长、影响土壤铜的活性、引起土壤盐碱化(特别是四川地区)、使人类及生物中毒。当水中阳离子为镁,氯化物浓度为100mg/L时,即可使人致毒。
2工业废水氯离子去除技术
氯离子是氯最为稳定的形态,一方面,由于微生物不能利用Cl-,所以不能通过生物法来去除Cl-,并且废水中氯离子含量会抑制微生物的生长,阻碍生物法处理废水效率,许多研究表明,当废水含盐质量分数在3%以上时,废水的生物处理效率明显下降;另一方面,因为水中氯离子会对金属产生腐蚀作用,因此废水回用时必须去除过量的氯离子,达到循环水氯化物标准。目前专门为了去除氯离子使其达标排放而研发的技术是很少的,去除氯离子的目的大致有两种:一是为了使废水能满足后续生物处理生物活性要求;二是为了达到废水回用氯化物含量标准。氯离子去除原理主要有两种:要么被其它阴离子替代;要么同其它阳离子一起去除。根据不同性质大体归类为四种方式:沉淀盐方式、分离拦截方式、离子交换方式、氧化还原方式。
2.1沉淀盐方式
采用Ag+或Hg+等与Cl-生成沉淀,再将沉降过滤,从而去除Cl-。沉淀盐方式主要有化学沉淀法,关于该方法研究也很多。金艳等[3]发明了处理一种氯碱行业高氯含汞废水的系统,由于废水中含氯离子浓度高达50000-60000mg/L,由于配合作用,汞主要以HgCl3+与Hg-Cl2-的非汞离子形态存在,经过一系列处理后,出水汞浓度可达1.5ppb,Cl-也得到了一定的去除。
李文歆等[4]利用化学沉淀法做了专业特征废液中氯离子的处理的研究,氯离子去除率高达90%以上。该法具有操作简单、污染小、去除率高等特点。
化学沉淀法由于要加入沉淀试剂,如硝酸银、硝酸汞等,这些沉淀剂的价格往往较高,导致其工业成本很高,应用不广泛,基本仅限于实验室使用。如果开发价格低廉的沉淀剂,由于化学沉淀法反应过程简单、易操作,所以还是有很大的应用前景的。
2.2分离拦截方式
主要采用蒸发浓缩、电吸附、膜过滤、溶剂萃取和复合絮凝剂絮凝等方法将Cl-分离去除。
2.2.1蒸发浓缩法
对废水升温,由于无机盐类氯化物沸点高于水,最后被浓缩结晶;氯化氢沸点相对较低,同水蒸气等易挥发物质一同被去除。从而实现了氯离子与废水的分离。
江西理工大学材化学院科研人员[5]发明了含铵含氯废水处理并回收利用铵和氯的方法,利用该方法使得铵盐和氯不仅得到有效分离,还能回收利用。该法有效去除了有色金属冶炼过程中含铵含氯废水中氯离子,并实现了经济与环境的统一。
泡菜生产过程主要产生的废水类型有腌渍废水、脱盐废水及脱盐水、清洗水、冲洗水等,其中以腌渍废水氯离子浓度可达153000mg/L,对部分量少的废水可采用蒸发法。丁文军等[6]采用三效浓缩设备将盐渍水浓缩至饱和状态,再经结晶、离心分离等工序制得食盐并回用于泡菜腌制。
蒸发浓缩法适合于小水量高浓度的废水,其操作简单,效果明显,在泡菜等行业应用较多;但对于水量较大废水,其成本很高,相比其他处理方法不实用。
2.2.2电吸附法
电吸附技术结合了电化学理论和吸附分离技术,通过对水溶液施加静电场作用,在电极上加上直流电压,在两电级表面形成双电层,由于双电层具有电容的特性,因而能够进行充电和放电过程,且溶液中离子不发生化学反应。在充电过程中吸附并保存溶液中离子,在放电过程中释放能量和离子,使双电层再生。其目前应用也比较多。
魏鸿礼[7]做了电吸附工艺去除再生水中氯离子的研究,结果表明,含氯离子平均为307mg/L的原水,产水平均为91mg/L,氯离子平均去除率为70.4%。
电吸附法相比电解法,由于不发生化学反应,相对成本较低,且处理效果良好,而在回用水净化中,其相对常规石灰软化法工艺去除氯离子等盐类效果更明显,所以其回用水净化中应用很广。
延伸阅读:
基于城镇污水处理厂尾水同级排入的深度处理技术
人工湿地在工业园区污水厂尾水处理中的工程应用
基于城镇污水处理厂尾水同级排入的深度处理技术研究
微气泡臭氧催化氧化深度处理化工园区废水研究
2.2.3絮凝沉淀、溶剂萃取法
絮凝沉淀主要利用絮凝剂作用氯离子,将其絮凝以至沉淀去除,如复合絮凝剂;溶剂萃取是利用萃取剂将含氯离子的化合物萃取去除。
汪巍[8]发明了一种用聚合硫酸亚铁对含氯废水进行絮凝沉淀的方法,该方法可把进水为500~1000mg/L含氯废水,降低到0.4mg/L以下。雷春生等[9]发明了一种由有机酸和无机盐复配而成的复合除氯剂,实验表明,该法可去除99.9%以上的氯离子。
絮凝沉淀和溶剂萃取受试剂的影响,溶剂萃取仅适用于小水量情况,更多应用于实验室;絮凝沉淀法在其成本较低的情况下,可能可应用于较大水量氯离子的去除,但目前应用并不广泛。
2.3离子交换方式
采用离子交换剂与氯离子进行交换替代氯离子,利用该方式的方法有离子交换树脂法、水滑石法等。值得说明的是水滑石法,由于水滑石(LDHs)的结构特点使其层间阴离子可与各种阴离子,包括无机离子、有机离子、同种离子、杂多酸离子以及配位化合物的阴离子进行交换。
胡静等[10]也研究了焙烧镁铝碳酸根水滑石(CLDH)对废水中氯离子的去除效果。实验表明,Cl-的去除率可达97%。
水滑石法目前研究较多,其对氯离子的去除效果也较好,但多停留在实验阶段,工程应用很少。离子交换树脂法用复床或混床,将氯离子去除,属传统工艺,设备投资较低,但阴离子交换树脂容易饱和,需要再生。
2.4氧化还原方式
采用电解或电渗析、还原方式将Cl-去除。应用方法有电解、电渗析、加氧化剂等。电解是当污水通电后,电解槽的阴阳级之间产生电位差,趋使污水中阴离子向阳极移动发生氧化反应,阳离子向阴极移动发生还原反应,从而使得废水中的污染物在阳极被氧化,在阴极被还原,或者与电极反应产物作用,转化为无害成分被分离除去。
2.4.1电渗析法
电渗析以离子交换膜为渗析膜,以电能为动力。电渗析过程是电解和渗析扩散过程的组合。在外加直流电场作用下,阴、阳离子分别往阳极和阴极移动,由于阳离子膜理论上只允许阳离子通过,阴离子膜只允许阴离子通过,如果膜的固定电荷与离子电荷相反,则离子可以通过,反之则被排斥。由此来实现氯离子的去除。
钱学玲等[11]采用味精废水-预处理-电渗析-厌氧-好氧工艺流程,整个工艺流程既保证了COD等的去除,又可使Cl-浓度从进水16.776g/L降至6g/L以下,从而达到了很好的综合去除效果。
电渗析法适合处理低浓度含氯废水,水耗和电耗较大,成本较高,其对小水量的处理还是比较实用的。
2.4.2电解、氧化剂法
电解是当污水通电后,电解槽的阴阳级之间产生电位差,趋势污水中阴离子向阳极移动发生氧化反应,阳离子向阴极移动发生还原反应,从而使得废水中的污染物在阳极被氧化,在阴极被还原,或者与电极反应产物作用,转化为无害成分被分离除去;氧化剂法是通过与氯离子发生氧化还原反应将氯离子去除的方法。
李长俊等[12]采用混凝絮凝-电解法联用技术,实验表明,Cl-浓度能从原水的136698.2mg/L降低到54205.5mg/L,能达到较好的去除效果。
电解法去除氯离子同样存在成本高的问题,对小水量废水应用有较好效果,相对于电渗析法其不存在膜堵塞问题,但运行费用相对较高,一般在废水预处理后采用。氧化剂法目前应用也较少。
3结束语
氯离子的去除技术主要有物理、化学和物理化学方法,生物法不能去除氯离子。目前工业废水去除氯离子主要是为了实现后续废水生物处理和达到回用水氯化物标准,单独为了去除氯离子而实现达标排放的做法很少,这也是人们对氯离子危害不重视的一种表现。
总的来看,氯离子的去除技术多适用于小水量和中水量情况,电吸附和电渗析由于操作简单,对较大水量可能将是氯离子去除技术的趋势和热点,相信未来会出现更多更经济更环保的氯离子去除技术。
延伸阅读:
基于城镇污水处理厂尾水同级排入的深度处理技术
人工湿地在工业园区污水厂尾水处理中的工程应用
基于城镇污水处理厂尾水同级排入的深度处理技术研究
微气泡臭氧催化氧化深度处理化工园区废水研究
Ⅶ 咸菜腌制废气治理
企业的咸菜腌渍废水,一般可分为两个部分:一是盐渍水,这部分废水间歇性排放,虽然排放量不大,但含盐量高达15-20%,COD和氨氮都很高。二是加工车间废水,包括深加工过程中的脱盐水、清洗水、冲洗水等,上述废水污染物指标虽然不高,但排放量较大。由于咸菜腌渍废水的季节性和时段性差异较大,特别是高盐含量,给处理工艺设计带来不小的挑战。
咸菜腌渍废水处理技术,是一块硬骨头。废水主要污染物是蔬菜腌制过程中的浸出物,包括植物多糖、水溶性蛋白、有机酸等成分,具有废水成分复杂、高盐分、高有机物、高氨氮特点。特别是由于废水中盐分含量较高,既不能采用絮凝沉淀等物理化学处理方法,也无法采用生物降解处理工艺,属于难处理的污水。
1、行业现状
山东省是北方蔬菜主产区,蔬菜加工是我省农产品加工支柱性行业,其中咸菜腌渍是蔬菜加工行业的传统优势产业项目。我省菜咸腌渍加工企业大多是中小型乡镇企业,企业生产规模小。由于各种原因,大多数企业在生产过程中未采取任何污染治理措施,而是直接把腌渍废水外排。由于菜咸腌渍废水是一种高盐分(NaCl含量5—10%)、高COD(CODCr=800—1600mg/L)、高固形物(SS=1000—1500mg/L)的污水,非常难治理,直接外排将会造成非常严重的环境污染事件。
为解决咸菜腌渍企业环境污染问题,确保该行业又好又快发展,我省临沂、潍坊等咸菜腌渍企业较密集地区,积极采取措施对本地区咸菜腌渍企业实施限期治理。目前,菜咸腌渍废水的治理办法主要是传统生化法,该方法存在如下缺点:(1)菜咸腌渍加工企业多为中小型乡镇企业,生产规模小,如采用传统生化处理方法,生化池占地面积大,资金投入过大,企业难以承受。(2)菜咸腌渍废水是一种高盐分、高COD的污水,污水排放时间、排放量都不规律,采用普通活性污泥曝气法处理,对活性菌有强烈的抑制作用,耐盐菌群驯化困难,污泥活性很低,对COD的降解能力很差,生化池活性污泥系统运行参数波动大,运行非常不平稳,很难达标排放。(3)菜咸腌渍废水属于高盐分废水,远高于活性污泥的耐受量,如采用活性污泥曝气法处理,必须把原废水稀释后方可处理,水中食盐无法降解,造成原材料食盐和水资源的严重浪费。(4)菜咸腌渍企业厂区大多分散在乡村,采用传统生化处理方法,治污设施运行维护困难、治污成本较高,企业治污积极性不高,环保部门监管困难,行政执法成本大。
2、零排放工艺流程
根据菜咸腌渍废水的理化特点,我们首先采用砂滤、精密过滤技术除去废水中的大颗粒和胶体状有机污染物,然后采用特种耐盐专用树脂吸附掉废水中色素、呈味物质等水溶性有机小分子污染物,水中只剩下食盐、微量水溶性糖和氨氮等无毒无害物质。处理后的水澄清透明、无色无味,水中食盐含量在5—10%左右,无须排放,可直接返回菜咸腌渍池,循环使用,对菜咸腌渍产品质量无任何不良影响。